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Abstract

By means of a theoretical development of lecture [3], we provide a characterization of the
Goldbach Conjecture in an infinite set of even numbers in terms of gradients of deformed
hyperbolas.
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1 Hyperbolic classification of natural numbers

1.1 Introduction

For a natural number n > 1 the fact of being a prime is equivalent to stating that the hyperbola
xy = n does not contain non-trivial natural number coordinate points that is, the only natural
number coordinate points in the hyperbola are (1, n) and (n, 1).

We establish a family of bijective functions between non-negative real numbers and a half-
open interval of real numbers. Bijectivity allows us to transport usual real number operations,
sum and product, to the interval. It also allows us to deform the xy = k hyperbolas with k
as a real positive number in such a way that we can distinguish whether a natural number n
is a prime or not by its behaviour in terms of gradients of the deformed hyperbolas near the
deformed of xy = n (Hyperbolic Classification of Natural Numbers).

In this section we define a function ψ which ranges from non-negative real numbers to a
half-open interval, strictly increasing, continuous in R+ = R≥0 and class 1 in each interval
[m, m + 1] (m ∈ N = {0, 1, 2, 3, ...}) . The bijectivity of ψ allows to transport the usual sum and
product of R+ to the set R̂+ := ψ(R+) in the usual manner. That is, calling x̂ := ψ(x), we define
ŝ⊕ t̂ := ψ(s + t), ŝ⊗ t̂ := ψ(st). Therefore, (R̂+,⊕,⊗) is an algebraic structure isomorphic to
the usual one (R+,+, ·) and as a result, we obtain an algebraic structure (N̂ := ψ(N),⊕,⊗)
isomorphic to the usual one (N,+, ·). The function ψ also preserves the usual orderings. Thus
we transport the notation from R+ to R̂+, that is n̂ is natural iff n is natural, p̂ is prime iff p is
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prime, x̂ is rational iff x is rational, etc. Assume that, for example 0̂ = 0, 1̂ = 0′72, 2̂ = 1′3, 3̂ =

3′0001, 4̂ = π, 5̂ = 6′3, 7̂ = 7′21, ..., 1̂2 = 9′03, ... then, the following situation would arise:
the even number 9′03 is the sum of the prime numbers 6′3 and 7′21 and the number π is the
product of the numbers 0′72 and π.

Obviously, until now, we have only actually changed the symbolism by means of the func-
tion ψ. If we call x̂ŷ plane the set (ψ(R+))

2, the hyperbolas xy = k (k > 0) of the xy plane with
x > 0 and y > 0 are transformed by means of the function ψ× ψ at the x̂⊗ ŷ = k̂ "hyperbolas"
of the x̂ŷ plane. We will restrict our attention to the points in the x̂ŷ plane that satisfy x̂ > 0̂ and
ŷ ≥ x̂. Then, with these restrictions for the ψ function, it is possible to choose right-hand and
left-hand derivatives of ψ at m ∈ N∗ = {1, 2, 3, ...} such that we can characterize the natural
number coordinate points in the x̂ŷ plane in terms of differentiability of the functions which
determine the transformed hyperbolas. As a result, we can distinguish prime numbers from
composite numbers in the aforementioned terms.

Definition 1.1. Let ψ : R+ → R be a map and let ψm be the restriction of ψ to each closed
interval [m.m + 1] (m ∈N) . We say that ψ is an R+ coding function if:
(i) ψ(0) = 0.
(ii) ψ ∈ C(R+).
(iii) ∀m ∈N, ψm ∈ C1([m, m + 1]) with positive derivative in [m, m + 1].

Figure 1. R+ coding function.

Remarks 1.2. (1) Easily proved, if ψ is an R+ coding function then it is strictly increasing and
consequently, injective.
(2) If Mψ : = sup {ψ(x) : x ∈ R+} then, Mψ ∈ (0,+∞] (being Mψ = +∞ iff ψ is not bounded),
and so ψ (R+) =

[
0, Mψ

)
. Therefore ψ : R+ → ψ (R+) =

[
0, Mψ

)
is bijective, and here onwards

we will refer to the ψ function as a bijective function.
(3) We will frequently use the notation x̂ := ψ(x). Due to the ψ bijection, we transport the
sum and the product from R+ to

[
0, Mψ

)
in the usual manner ([2]), that is we define in

[
0, Mψ

)
the operations ψ-sum as x̂ ⊕ ŷ := ψ(x + y) and ψ-product as x̂ ⊗ ŷ := ψ(x · y). Thus, ψ :
(R+,+, ·)→

([
0, Mψ

)
,⊕,⊗

)
is an isomorphism.

(4) The ψ function preserves the usual orderings, that is, ŝ ≤ t̂⇔ s ≤ t, ŝ = t̂⇔ s = t.
(5) For x̂ ∈

[
0, Mψ

)
we say that x̂ is a ψ-natural number iff x is a natural number, x̂ is ψ-prime iff

x is prime, x̂ is ψ-rational iff x rational, etc.
(6) When we work on the set

[
0, Mψ

)2, we say that we are on the x̂ŷ plane.
(7) For x ≥ y we denote x̂ ∼ ŷ := ψ(x − y) = (ψ-subtraction) and for y 6= 0, x̂ ÷ ŷ := ψ(x/y)
(ψ-quotient).

1.2 ψ-hyperbolas in the x̂ŷ plane

The aim here is to study the transformed curves of the y = k/x hyperbolas (k ∈ R+ − {0}) by
means of an R+ coding function in terms of differentiability. Consider the function

hk : (0,+∞)→ (0,+∞) , hk (x) =
k
x

.
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Figure 2. ψ-hyperbolas in the x̂ŷ plane.

We call ψ-hyperbola any transformed curve graph of Γ (hk) by means of ψ × ψ. Notice that
the function which defines the ψ-hyperbola is:

ĥk :
(
0, Mψ

)
→
(
0, Mψ

)
, ĥk (u) = ψ

(
k

ψ−1 (u)

)
.

Theorem 1.3. Let ψ : R+ →
[
0, Mψ

)
be an R+ coding function. Then, ĥk :

(
0, Mψ

)
→
(
0, Mψ

)
is

continuous and strictly decreasing.

Proof.
(
0, Mψ

) ψ−1

→ (0,+∞)
hk→ (0,+∞)

ψ→
(
0, Mψ

)
, thus ĥk = ψ ◦ hk ◦ψ−1 is a composition of con-

tinuous functions, and is consequently continuous. In addition

0 < s < t < Mψ ⇒ ψ−1 (s) < ψ−1 (t)⇒ k
ψ−1 (s)

>
k

ψ−1 (t)

⇒ ψ

(
k

ψ−1 (s)

)
> ψ

(
k

ψ−1 (t)

)
⇒ ĥk (s) > ĥk (t) ,

that is, ĥk is strictly decreasing.

Let us call (ψi−1)
′
− (i) = ai and (ψi)

′
+ (i) = bi (i = 1, 2, 3, . . .) We will now analyse the differ-

entiability of ĥk distinguishing, for this, the cases in which the dependent and/or independent
variable takes ψ-natural number values or not.

Theorem 1.4. Where x, y ∈ R+ −N, bxc = n, byc = m.
1.- If (x̂, ŷ) ∈ Γ(ĥk), then

(ĥk)
′(x̂) =

−k
x2 ·

(ψm)′(y)
(ψn)′(y)

.

2.- If (x̂, m̂) ∈ Γ(ĥk), then

(ĥk)
′
+ (x̂) =

−k
x2 ·

am

(ψn)
′ (x)

, (ĥk)
′
− (x̂) =

−k
x2 ·

bm

(ψn)
′ (x)

.

3.- If (n̂, ŷ) ∈ Γ(ĥk), then

(ĥk)
′
+ (n̂) =

−k
n2 ·

(ψm)
′ (y)

bn
, (ĥk)

′
− (n̂) =

−k
n2 ·

(ψm)
′ (y)

an
.

4.- If (n̂, m̂) ∈ Γ(ĥk), then

(ĥk)
′
+ (n̂) =

−k
n2 ·

am

bn
, (ĥk)

′
− (n̂) =

−k
n2 ·

bm

an
.
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Proof. Case 1 u ∈ (n̂, n̂⊕ 1̂) (n ∈N) that is, u is not a ψ-natural number. We obtain

(n̂, n̂⊕ 1̂)
ψ−1

→ (n, n + 1)
hk→(k/(n + 1), k/n)

ψ→(k̂÷ (n̂⊕ 1̂), k̂÷ n̂)

so, ĥk maps ĥk : (n̂, n̂⊕ 1̂)→ (k̂÷ (n̂⊕ 1̂), k̂÷ n̂).
1.a) Suppose ĥk(u) is not a ψ-natural number (Fig. 3). Since k/ψ−1 (u) is not a natural number,
in a neighbourhood of u, the expression of the ĥk function is:

ĥk(t) = ψ⌊
k

ψ−1(u)

⌋ ( k
ψ−1(t)

)
.

Figure 3. Finding (ĥk)
′(u).

(ĥk)
′ (u) =

ψ⌊
k

ψ−1(u)

⌋
′ ( k

ψ−1 (u)

)
· −k

(ψ−1 (u))2 ·
1

(ψn)
′ (ψ−1 (u))

.

Consequently ĥk is differentiable at u.
1.b) Suppose ĥk(u) is a ψ-natural number (Fig. 4). This is equivalent to say that k/ψ−1 (u) is a
natural number. For a sufficiently small ε > 0 we obtain

(u ∼ ε, u]
ψ−1

→
(
ψ−1 (u ∼ ε) , ψ−1 (u)

] hk→

[
k

ψ−1(u)
,

k
ψ−1(u ∼ ε)

)
ψ→
[
k̂÷ ψ̂−1(u), k̂÷ ̂ψ−1(u ∼ ε)

)
.

We can choose ε > 0 such that n < ψ−1(u ∼ ε) < ψ−1(u) < n + 1 and as a consequence for
every t ∈ (u ∼ ε, u] we verify k/ψ−1(u) ≤ k/ψ−1(t). That is, we can choose ε > 0 such that
∀t ∈ (u ∼ ε, u], ĥk (t) = ψ k

ψ−1(u)

(
k/ψ−1(t)

)
. Thus:

(ĥk)
′
− (u) =

(
ψ k

ψ−1(u)

)′
+

(
k

ψ−1 (u)

)
· −k

(ψ−1 (u))2 ·
1

(ψn)
′ (ψ−1 (u))

.

Let us now examine the value of (ĥk)
′
+(u). For a sufficiently small ε > 0 we obtain (Fig. 5).

[u, u⊕ ε)
ψ−1

→
[
ψ−1 (u) , ψ−1 (u⊕ ε)

) hk→
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Figure 4. Finding (ĥk)
′
−(u).

Figure 5. Finding (ĥk)
′
+(u).

(
k

ψ−1 (u⊕ ε)
,

k
ψ−1 (u)

]
ψ→
(

k̂÷ ̂ψ−1(u⊕ ε), k̂÷ ψ̂−1(u)
]

.

We can choose ε > 0 such that n < ψ−1(u) < ψ−1(u⊕ ε) < n + 1 and as a consequence for
every t ∈ [u, u⊕ ε) we verify k/ψ−1(t) ≤ k/ψ−1(u). That is, we can choose ε > 0 such that
∀t ∈ [u, u⊕ ε),

ĥk(t) = ψ k
ψ−1(u)

−1

(
k

ψ−1(t)

)
.

Would result:

(ĥk)
′
+ (u) =

(
ψ k

ψ−1(u)
− 1

)′
−

(
k

ψ−1 (u)

)
· −k

(ψ−1 (u))2 ·
1

(ψn)
′ (ψ−1 (u))

.

Case 2 u = n̂ (n ∈N∗) that is, u is a ψ-natural number (u > 0). For a sufficiently small ε > 0
and ψ(n + δ) = n̂⊕ ε we obtain (Fig. 6)

[n̂, n̂⊕ ε)
ψ−1

→ [n, n + δ)
hk→
(

k
n + δ

,
k
n

]
ψ→
(

k̂÷ (n̂⊕ δ̂), k̂÷ n̂
]

.

For every t ∈ [n̂, n̂ ⊕ ε), we verify ĥk(t) = ψb k
n c
(
k/ψ−1 (t)

)
if k/n /∈ N∗ and ĥk (t) =

ψ k
n−1

(
k/ψ−1(t)

)
if k/n ∈N∗. As a consequence

(ĥk)
′
+ (n̂) =

(
ψb k

n c
)′ ( k

n

)
· −k

n2 ·
1

(ψn)
′
+ (n)

(if k/n /∈N∗),
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Figure 6. Finding (ĥk)
′
+(n̂).

(ĥk)
′
+ (n̂) =

(
ψ k

n − 1

)′
−

(
k
n

)
· −k

n2 ·
1

(ψn)
′
+ (n)

(if k/n ∈N∗).

Finally we have to study the differentiability of ĥk at u = n̂ from the left side. For a suffi-
ciently small ε > 0 and ψ(n− δ) = n̂ ∼ ε, we obtain (fig. 7)

(n̂ ∼ ε, n̂]
ψ−1

→ (n− δ, n]
hk→
[

k
n

,
k

n− δ

)
ψ→
[
k̂÷ n̂, k̂÷ (n̂ ∼ δ̂)

)
.

Figure 7. Finding (ĥk)
′
−(n̂).

We can choose ε > 0 such that ∀t ∈ (n̂ ∼ ε, n̂] we verify

ĥk (t) = ψb k
n c

(
k

ψ−1(t)

)

regardless of whether k/n is a natural number or not. This therefore would result

(ĥk)
′
−(n̂) =

(
ψb k

n c
)′
+

(
k
n

)
· −k

n2 ·
1

(ψn−1)
′
−(n)

.

We have completed our examination of the differentiability of ĥk when dependent and/or
independent variables take ψ-natural number values or not. Since (ψi−1)

′
− (i) = ai and (ψi)

′
+ (i)

= bi (i = 1, 2, 3, . . .), the proposition is proven.
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Corollary 1.5. If we want the ĥk functions to be only differentiable at the points where both the
ordinate and the abscissa are not ψ-natural numbers, we must select ψ in such a way that

(an 6= bn) ∧ (am 6= bm) ∧ (anam 6= bnbm) ∀n ∈N∗, ∀m ∈N∗. (1)

Definition 1.6. We say that an R+ coding function identifies primes if the ĥk functions are only
differentiable at the non-ψ-natural number abscissa and ordinate points

1.3 Classification of points in the x̂ŷ plane

Let ψ : R+ → [0, Mψ) be an R+ coding function that identifies primes. The class of sets H =

{Γ(hk) : k ∈ R+ − {0}} is a partition of (0,+∞)2 and being ψ a bijective function, the class
Ĥ = {Γ(ĥk) : k ∈ R+ − {0}} of all ψ-hyperbolas is a partition of

(
0, Mψ

)2. Every subset of
R2 will be considered as a topological subspace of R2 with the usual topology. We have the
following cases:

1.- (x̂, ŷ) ∈
(
0, Mψ

)2
(x /∈ N ∧ y /∈ N). Then, in a neighbourhood V of (x̂, ŷ) we verify:

∀(ŝ, t̂) ∈ V, the ψ-hyperbola which contains (ŝ, t̂) is differentiable at ŝ. Of course, we mean to
say the function which represents the graph of the ψ-hyperbola (Fig. 8).

Figure 8. x 6∈N, y 6∈N.

2.- (x̂, m̂) ∈
(
0, Mψ

)2
(x /∈ N ∧m ∈ N∗). Then, in a neighbourhood V of (x̂, m̂) we verify:

∀(ŝ, t̂) ∈ V, the ψ-hyperbola which contains (ŝ, t̂) is differentiable at ŝ iff t̂ 6= m̂ (Fig 9).

Figure 9. x 6∈N, m ∈N∗.

3.- (n̂, ŷ) ∈
(
0, Mψ

)2
(n ∈ N∗ ∧ y /∈ N). Then, in a neighbourhood V of (n̂, ŷ) we verify:

∀(ŝ, t̂) ∈ V, the ψ-hyperbola which contains (ŝ, t̂) is differentiable at ŝ iff ŝ 6= n̂ (Fig. 10).

Figure 10. n ∈N∗, y 6∈N.

4.- (n̂, m̂) ∈
(
0, Mψ

)2
(n ∈ N∗ ∧m ∈ N∗). Then, in a neighbourhood V of (n̂, m̂) we verify:

∀(ŝ, t̂) ∈ V, the ψ-hyperbola which contains (ŝ, t̂) is differentiable at ŝ iff ŝ 6= n̂ and t̂ 6= m̂ (Fig.
11).
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Figure 11. n ∈N∗, m ∈N∗.

Given the symmetry of the ψ-hyperbolas with respect to the line x̂ = ŷ, let us consider the
triangular region of the x̂ŷ plane Tψ =

{
(x̂, ŷ) : ŷ ≥ x̂, x̂ > 0̂

}
.

Definition 1.7. Let ψ be an R+ coding function that identifies primes and assume that (x̂, ŷ) ∈
Tψ. If (x̂, ŷ) = (n̂, m̂) with n ∈N∗, m ∈N∗ we say that it is a vortex point with respect to ψ (Fig.
12).

Figure 12. Vortex points.

The existence of vortex points in a ψ-hyperbola allows us to identify ψ-natural numbers (ψ-
prime iff we have only one vortex point). We call this Hyperbolic Classification of Natural Numbers.

Corollary 1.8. Let k̂ ∈
(
0̂, Mψ

)
. According to the statements made above, we may classify k̂

in terms of the behaviour of ψ-hyperbolas in Tψ that are near the ψ-hyperbola x̂ ⊗ ŷ = k̂. We
obtain the following classification:
1) k̂ is a ψ-natural number iff the ψ-hyperbola x̂⊗ ŷ = k̂ in Tψ contains at least a vortex point.
2) k̂ is a ψ-prime number iff k̂ 6= 1̂ and the ψ-hyperbola x̂⊗ ŷ = k̂ in Tψ contains one and only
one vortex point.
3) k̂ is a ψ-composite number iff the ψ-hyperbola x̂ ⊗ ŷ = k̂ in Tψ contains at least two vortex
points.
4) k̂ is not a ψ-natural number iff the ψ-hyperbola x̂⊗ ŷ = k̂ in Tψ does not contain vortex points.

So, vortex points are characterized in terms of differentiability of the ψ-hyperbolas in Tψ

near these points. For every k > 0, denote k̄ := Γ(ĥk) ∩ Tψ and let 0̄ be one element different
from k̄ (k > 0). Define R =

{
k̄ : k ≥ 0

}
and consider the operations on R :

(a) k̄ + s̄ = k + s , k̄ · s̄ = k · s (k > 0, s > 0).
(b) t̄ + 0̄ = 0̄ + t̄ = t̄ , t̄ · 0̄ = 0̄ · t̄ = 0̄ (t ≥ 0).

Then, (R,+, ·) is an isomorphic structure to the usual one (R+,+, ·) and prime numbers
p ∈N are characterized by the fact that p̄ 6= 1̄ and p̄ contains one and only one vortex point.

Amongst the R+ coding functions that identifies primes, it will be interesting to select those
given by ψm : [m, m + 1]→ R+ (m = 0, 1, 2, ...) functions that are affine (Fig. 13).
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Figure 13. R+ prime coding.

ψm(x) = ξm(x−m) + Bm (ξm > 0 ∀m ∈N, B0 = 0, Bm =
m−1

∑
j=0

ξ j if m ≥ 1). (2)

We can easily prove that the ψ functions defined by means of the sequence (ψm)m≥0 are R+

coding functions. Now, we have ξ0 = a1, ξ1 = a2 = b1, ξ2 = a3 = b2, ξ3 = a4 = b3 . . ., that is
an = ξn−1, am = ξm−1, bn = ξn, bm = ξm. The conditions (1) for ψ to identify primes are clearly
guaranteed by choosing ξi such that

0 < ξ0 < ξ1 < ξ2 < ξ3 < . . .

though this is not the only way of choosing it.

Definition 1.9. Any R+ coding function ψ that is defined by means of ψm affine functions that
also satisfies 0 < ξi < ξi+1 (∀i ∈ N) it is said to be an R+ prime coding. We call the numbers
ξ0, ξ1, ξ2, ξ3, ... coefficients of the R+ prime coding.

2 Essential regions and Goldbach Conjecture

Goldbach’s Conjecture is one of the oldest unsolved problems in number theory and in all of
mathematics. It states: Every even integer greater than 2 can be written as the sum of two primes
(S). Furthermore, in his famous speech at the mathematical society of Copenhagen in 1921
G.H. Hardy pronounced that S is probably as difficult as any of the unsolved problems in
mathematics and therefore Goldbach problem is not only one of the most famous and difficult
problems in number theory, but also in the whole of mathematics ([5]). In this section, and using
the Hyperbolic Classification of Natural Numbers we provide a characterization of S .

In the x̂ŷ plane determined by any R+ prime coding function ψ and for any given ψ-even
number α̂ ≥ 1̂6 we will consider the function in which any number k̂ of the closed interval
[4̂, α̂÷ 2̂] corresponds to the area of the region of x̂ŷ: x̂ ≥ 2̂, ŷ ≥ x̂, x̂⊗ ŷ ≤ k̂ (called lower area)
and also the function that associates each to the area of the region of x̂ŷ: x̂ ≥ 2̂, ŷ ≥ x̂, α̂ ∼ k̂ ≤
x̂ ⊗ ŷ ≤ α̂ ∼ 4̂ (called upper area). The x̂ŷ plane is considered imbedded in the xy plane with
the Lebesgue Measure ([4]). This means that for any given ψ-even number α̂ ≥ 1̂6 we have
α̂ = k̂⊕ (α̂ ∼ k̂) and, associated to this decomposition, two data pieces, lower and upper areas.
We will study if α̂ is the ψ-sum of the two ψ-prime numbers k̂0 and α̂ ∼ k̂0 taking into account
the restrictions α̂ ∼ 3̂ and α̂÷ 2̂ both ψ-composite. The upper and lower area functions will not
yet yield any characterizations to the Goldbach Conjecture. We will need the second derivative
of the total area function (the sum of the lower and upper areas).

To this end, we define the concept of essential regions associated to a hyperbola which,
simply put, is any region in the xy plane with the shape [n, n + 1]× [m, m + 1] where n and m
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are natural numbers, m > n > 1 and the hyperbola intersects it in more than one point or else
the shape [n, n + 1]2 where n > 1 and x ≤ y and the hyperbola intersects in more than one
point.

These essential regions are then transported to the x̂ŷ plane by means of the ψ× ψ function,
and we will find the total area function adding the areas determined by each hyperbola in the
respective essential regions, and the second derivative of this area function in each essential re-
gion. After this process we obtain the formula which determines the second derivative function
of the total area ÂT in each sub-interval [k̂0, k̂0 ⊕ 1̂], k0 = 4, 5, ..., α/2− 1 a derivative which is
continuous.

(ÂT)
′′(k̂) =

xk0

ξ2
k0

· 1
k
+

yk0

ξ2
α−k0−1

· 1
α− k

(k̂ ∈ [k̂0, k̂0 ⊕ 1̂]).

Both xk0 and yk0 are numeric values in homogeneous polynomials of degree two obtained
from substituting in their variables the ξi coefficients of the ψ R+ prime coding function . We
call Pk0 =

(
xk0 , yk0

)
an essential point. The study of the behaviour of the second derivative in

these intervals allows the following characterization of the Goldbach Conjecture for any even
number α ≥ 16 with the restrictions α− 3 and α/2 composite.

Claim 2.1. Let α ≥ 16 be an even number. Then, α is the sum of two prime numbers k0 and
α− k0 (5 ≤ k0 < α/2) iff the consecutive essential points Pk0−1 and Pk0 are repeated, that is, if
Pk0−1 = Pk0 .

Remark 2.2. Consider the infinite sets:

P = {α ∈N : α even, α ≥ 16} ,
A = {α ∈N : α even, α ≥ 16, with α/2 and α− 3 composite} ,
B = {α ∈N : α even, α ≥ 16, with α/2 prime or α− 3 prime} .

Then, the Goldbach Conjecture is trivially satisfied in B, and P is a disjoint union of A and B so,
Claim 2.1 provides a characterization of this conjecture in the infinite set A.

Definition 2.3. Consider the family of functions

H = {hk : [ 2,
√

k ]→ R, hk(x) = k/x, k ≥ 4}

whose graphs represent the pieces of the hyperbolas xy = k (k ≥ 4) included in the subset of
R2, S ≡ (x ≥ 2) ∧ (x ≤ y). For n, m natural numbers consider the subsets of R2:
a) R(n,m) = [n, n + 1]× [m, m + 1] (2 ≤ n < m)

b) R(n,n) = ([n, n + 1]× [n, n + 1]) ∩
{
(x, y) ∈ R2 : y ≥ x

}
Let hk be an element of H. We say that R(n,m) is a square essential region of hk if R(n,m) ∩ Γ (hk)
contains more than one point. We say that R(n,n) is a triangular essential region of hk if R(n,n) ∩
Γ (hk) contains more than one point.

Example 2.4. The essential regions of the xy = 17 hyperbola are R(2,8), R(2,7), R(2,6), R(2,5), R(3,5),
R(3,4) and R(4,4) (Fig. 14).

Analyse the different types of essential regions depending on the way the hyperbola xy = k
intersects with R(n,m) (m > n). If the hyperbola passes through point P (n, m + 1) (Fig.15), then
the equation for the hyperbola is xy = n(m + 1).

The abscissa of the Q point is x = n(m+ 1)/m. We verify that n < n(m+ 1)/m < n+ 1. This
is equivalent to say nm < nm + n and nm + n < mn + m or equivalently (0 < n) ∧ (n < m),
which are trivially true.

32 | Revista “Pensamiento Matemático” Volumen X, Número 2, Oct’20, ISSN 2174-0410

mailto:frej0002@ficus.pntic.mec.es


Hyperbolic classification of natural numbers and Goldbach Conjecture Fernando Revilla Jimémez

Figure 14. Essential regions of xy = 17.

Figure 15. Intersection between hyperbolas and essential regions.

Figure 16. Types of square essential regions.

Figure 17. Types of triangular essential regions.
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The remaining types are reasoned in a similar way (Fig. 16).

We use the same considerations for the triangular essential regions R(n,n) (Fig. 17).

Let k0 ∈ N, k0 ≥ 4. We will examine which are the types of essential regions for the hyper-
bolas xy = k (y ≥ x) where k0 < k < k0 + 1. The passage through essential regions of points
P0, Q0 of the xy = k0 hyperbola with relation to P, Q points of the xy = k hyperbola corresponds
to the following diagrams (Fig. 18).

Figure 18. Square and triangular essential regions (k0 < k < k0 + 1).

As a consequence, the essential regions for the hyperbola xy = k (k > 4) are of the following
types

a) Square essential regions R(n,m).

Figure 19. Square essential regions (k > 4).

b) Triangular essential regions R(n,n).

Figure 20. Triangular essential regions (k > 4).

We will find the essential regions of the xy = k hyperbolas with the conditions k0 ∈N, k0 ≥
4, k0 < k < k0 + 1. The abscissa of xy = k0 varies in the interval [2,

√
k0] (Fig 21).

a) For n ∈ {2, 3, . . . , b
√

k0c − 1} the R(n,m) essential regions of the xy = k hyperbolas are
obtained when m varies in the set (Fig. 22):

{bk0/(n + 1)c, bk0/(n + 1)c+ 1, ... , bk0/nc}.
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Figure 21. Finding all essential regions (1).

We can easily verify that if m = bk0/nc then R(n,m) is a square essential region of Type 2, if
m = bk0/(n + 1)c, R(n,m) is a square essential region of Type 5 and the remaining R(n,m) are of
Type 3.

b) For n = b
√

k0c, the R(b
√

k0c,m) essential regions are obtained when m varies in the set:

{b
√

k0c, b
√

k0c+ 1, . . . , b k0/b
√

k0c c}.

Figure 22. Finding all essential regions (2).

If m = b
√

k0c we obtain a triangular essential region and could eventually exist a square
essential region (Fig. 22). Consider the set of indexes {(n, in)} such that

(1) For n = 2, 3, . . . , b
√

k0c − 1 then

in = bk0/(n + 1)c, bk0/(n + 1)c+ 1, . . . , bk0/nc.

(2) For n = b
√

k0c then

in = b
√

k0c, b
√

k0c+ 1, . . . , b k0/b
√

k0c c.

Let Es(k0) be the set {(n, in)}, where (n, in) are pairs of type (1) or of type (2). We obtain the
following theorem:

Theorem 2.5. Let k0 ∈N∗ (k0 ≥ 4). Then,
i) All the xy = k (k0 < k < k0 + 1) hyperbolas have the same essential regions, each of the same type.
ii) The xy = k essential regions are the elements of the set

{R(n,in) : (n, in) ∈ Es(k0)}.

Example 2.6. For k0 = 18 the essential regions of the xy = k (18 < k < 19) hyperbolas are (Fig.
23) R(2,9), R(3,6) (type 2), R(2,8), R(2,7), R(3,5) (type 3), R(2,6), R(3,4) (type 5) and R(4,4) (type 7).
The essential regions of the xy = k (19 < k < 20) hyperbolas are exactly the same, due to the
fact that 19 is a prime number.
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Figure 23. Essential regions (18 < k < 19 and 19 < k < 20).

2.1 Areas in essential regions associated with a hyperbola

To every R(n,m) (n ≤ m) essential region of the xy = k (k 6∈ N∗, k > 4) hyperbola, we will
associate the region of the xy plane below the hyperbola (we call it D(n,m)(k)). Denote A(n,m)(k)
the area of D(n,m)(k). We have the following cases (Fig. 24).

Figure 24. Areas in essential regions.

(i) Type 2 essential region

A(n,m)(k) =
∫∫

D(n,m)(k)
dxdy with D(n,m)(k) ≡ n ≤ x ≤ k/m , m ≤ y ≤ k/x. Then,

A(n,m)(k) =
∫ k

m

n
dx
∫ k

x

m
dy =

∫ k
m

n

(
k
x
−m

)
dx = k log

k
nm

+ nm− k.

If k ∈ [k0, k0 + 1] (k0 ≥ 4 natural number), then A′(n,m)(k) = log k/(nm) and the second
derivative is A′′(n,m)(k) = 1/k. Note that we have used the closed interval [k0, k0 + 1] so we may
extend the definition of the essential region for k ∈ N (k ≥ 4) in a natural manner. In some
cases the “essential region" would consist of a single point (null area).

(ii) Type 3 essential region
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In this case D(n,m)(k) = D′ ∪ D′′ where D′ = [n, k/(m + 1)]× [m, m + 1] and D′′ ≡ k/(m +

1) < x ≤ k/m , m ≤ y ≤ k/x. Besides, D′ ∩ D′′ = ∅.

A(n,m)(k) =
∫∫

D(n,m)(k)
dxdy =

k
m + 1

− n +
∫∫

D′′
dxdy

=
k

m + 1
− n + k log

m + 1
m

+ mk
(

1
m + 1

− 1
m

)
.

If k0 ≤ k ≤ k0 + 1 then, A′′(n,m)(k) = 0.

(iii) Type 5 essential region

In this case D(n,m)(k) = D′ ∪ D′′ where D′ = [n, k/(m + 1)]× [m, m + 1] and D′′ ≡ k/(m +

1) < x ≤ n + 1, m ≤ y ≤ k/x. Besides, D′ ∩ D′′ = ∅.

A(n,m)(k) =
∫∫

D(n,m)(k)
dxdy =

k
m + 1

− n +
∫∫

D′′
dxdy

=
k

m + 1
− n + k log

(n + 1)(m + 1)
k

−m
(

n + 1− k
m + 1

)
.

In the interval [k0, k0 + 1] we obtain A′(n,m)(k) = log((n + 1)(m + 1)/k) and A′′(n,m)(k) =

−1/k.

(iv) Type 7 essential region

D(n,n)(k) ≡ n ≤ x ≤
√

k , x ≤ y ≤ k/x.

A(n,n)(k) =
∫ √k

n
dx
∫ k

x

x
dy =

∫ √k

n

(
k
x
− x
)

dx

=

[
k log x− x2

2

]√k

n
=

k
2

log k− k
2
− k log n +

n2

2
.

If k0 ≤ k ≤ k0 + 1, A′(n,n) (k) = (1/2) log k− log n and A′′(n,n) (k) = 1/(2k).

(v) Type 8 essential region

In this case D(n,n)(k) = D′ ∪ D′′ where D′ ≡ n ≤ x ≤ k/(n + 1), x ≤ y ≤ n + 1 and
D′′ ≡ k/(n + 1) < x ≤

√
k, x ≤ y ≤ k/x. Besides, D′ ∩ D′′ = ∅.

A(n,n)(k) =
∫∫

D′
dxdy +

∫∫
D′′

dxdy
∫ k

n+1

n
dx
∫ n+1

x
dy +

∫ √k

k
n+1

dx
∫ k

x

x
dy

=
∫ k

n+1

n
(n + 1− x) dx +

∫ √k

k
n+1

(
k
x
− x
)

dx =
k
2
− n(n + 1) +

n2

2
+ k log

n + 1√
k

.

If k0 ≤ k ≤ k0 + 1, A′(n,n)(k) = log((n + 1)/
√

k) and A′′(n,n)(k) = −1/(2k).
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Figure 25. Relationship between Â(n,m) and A(n,m).

2.2 Areas of essential regions in the x̂ŷ plane

Consider in the xy plane, an essential region R(n,m)(n ≤ m) of the xy = k (k ≥ 4) hyperbola and
ψ an R+ prime coding function with ξi coefficients. Let R̂(n,m) be the corresponding region in the
x̂ŷ plane that is, R̂(n,m) = (ψ× ψ)(R(n,m)). We call Â(n,m) the area of D̂(n,m) = (ψ× ψ)(D(n,m))
supposing the x̂ŷ plane embedded in the xy plane.

Theorem 2.7. In accordance with the aforementioned conditions

Â(n,m) = ξnξm A(n,m).

Proof. The transformation that maps D(n,m) in D̂(n,m) is x̂ = ψn(x), ŷ = ψm(y). The Jacobian for
this transformation is

J = det


∂x̂
∂x

∂x̂
∂y

∂ŷ
∂x

∂ŷ
∂y

 = det
[

ψ′n(x) 0
0 ψ′m(y)

]
= ψ′n(x)ψ′m(y) 6= 0.

Thus, ([1]) Â(n,m) =
∫∫

D̂(n,m)
dx̂dŷ =

∫∫
D(n,m)

|ψ′n(x)ψ′m(y)| dxdy. Since ψ is an R+ prime cod-

ing function, then |J| = ξnξm and as a result the relationship between the areas of the essential

regions in xy and in x̂ŷ is Â(n,m) =
∫∫

D(n,m)

ξnξm dxdy = ξnξm

∫∫
D(n,m)

dxdy = ξnξm A(n,m).

Let α be an even number. We will assume for technical reasons that α ≥ 16. Let k ∈ [4, α/2]
and consider the subsets of R2 (FIg, 26):

DI(k) = {(x, y) ∈ R2 : x ≥ 2, y ≥ x, xy ≤ k},
DS(k) = {(x, y) ∈ R2 : x ≥ 2, y ≥ x, α− k ≤ xy ≤ α− 4}.

Let ψ be an R+ prime coding function and consider the subsets of [0, Mψ)2

D̂I(k̂) = (ψ× ψ)(DI(k)) , D̂S(k̂) = (ψ× ψ)(DS(k)).

We now define the functions

1) ÂI : [4̂, α̂÷ 2̂]→ R+ , k̂→ ÂI(k̂) (area of D̂I(k̂)).
2) ÂS : [4̂, α̂÷ 2̂]→ R+ , k̂→ ÂS(k̂) (area of D̂S(k̂)).
3) ÂT : [4̂, α̂÷ 2̂]→ R+ , ÂT = ÂI + ÂS.

Let α be an even number (α ≥ 16) and ψ an R+ prime coding function with coefficients ξi.
We take k0 = 4, 5, . . . , α/2− 1 and we study the second derivative of ÂI at each closed interval
[k̂0, k̂0 ⊕ 1̂]. For this, we consider the corresponding function AI(k). Then ∀k ∈ [k0, k0 + 1] we
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Figure 26. DI(k) and DS(k).

verify AI(k) = AI(k0) + AI(k)− AI(k0). Additionally, AI(k)− AI(k0) is the sum of the areas
in the essential regions associated with the xy = k hyperbola, minus the area in the essential
regions associated with the xy = k0 hyperbola so,

AI(k)− AI(k0) = ∑
(n,in)∈ES(k0)

[
A(n,in)(k)− A(n,in)(k0)

]
.

We know that functions A(n,in)(k) have a second derivative in [k0, k0 + 1], therefore

A′′I (k) = ∑
(n,in)∈ES(k0)

A′′(n,in)(k) (∀k ∈ [k0, k0 + 1]).

We now want to find the expression of (ÂI)
′′ as a function of the variable k̂, where k̂ ∈

[k̂0, k̂0 ⊕ 1̂]. By proposition 2.7, Â(n,m)(k̂) = ξnξm A(n,m)(k). If we derive with respect to k̂, we
obtain

(Â(n,m))
′(k̂) = ξnξm A′(n,m)(k)

dk
dk̂

.

Figure 27. Finding (Â(n,m))
′′(k̂)).
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At k ∈ [k0, k0 + 1], the expression of k̂ is k̂ = ξk0(k − k0) + Bk0 (2). Then dk/dk̂ = 1/ξk0 ,
therefore (Â(n,m))

′(k̂) = (ξnξm/ξk0)A′(n,m)(k). Deriving once again:

(Â(n,m))
′′(k̂) =

ξnξm

ξ2
k0

A′′(n,m)(k).

We get the following theorem:

Theorem 2.8. Let α be an even number (α ≥ 16). Then for every k̂0 = 4̂, 5̂, . . . , (α̂÷ 2̂) ∼ 1̂

a) (ÂI)
′′(k̂) = ∑

(n,in)∈ES(k0)

(Â(n,in))
′′(k̂) (∀k̂ ∈ [k̂0, k̂0 ⊕ 1̂]).

b) For k̂ ∈ [k̂0, k̂0 ⊕ 1̂] and bearing in mind the different types of essential regions, we obtain

(i) Type 2 essential region: (Â(n,m))
′′(k̂) =

ξnξm

ξ2
k0

· 1
k

.

(ii) Type 3 essential region: (Â(n,m))
′′(k̂) = 0.

(iii) Type 5 essential region: (Â(n,m))
′′(k̂) = − ξnξm

ξ2
k0

· 1
k

.

(iv) Type 7 essential region: (Â(n,n))
′′(k̂) =

ξ2
n

ξ2
k0

· 1
2k

.

(v) Type 8 essential region: (Â(n,n))
′′(k̂) = − ξ2

n

ξ2
k0

· 1
2k

.

Example 2.9. We will find (ÂI)
′′(k̂) in [1̂2, 1̂3] with α̂ ≥ 2̂6 (Fig. 28).

Figure 28. Finding (ÂI)
′′(k̂) in [1̂2, 1̂3].
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(ÂI)
′′(k̂) =

ξ2ξ6

ξ2
12
· 1

k
− ξ2ξ4

ξ2
12
· 1

k
+

ξ3ξ4

ξ2
12
· 1

k
− 1

2
·

ξ2
3

ξ2
12
· 1

k

=
1

kξ2
12
(ξ2ξ6 − ξ2ξ4 + ξ3ξ4 − ξ2

3/2)

Now, consider the polynomial p(t2, t3, t4, t6)) = t2t6 − t2t4 + t3t4 − t2
3/2. We call this poly-

nomial a lower essential polynomial of k0 = 12 and we write it as PI,k0 . Let us generalize this
definition.

Definition 2.10. Let α be an even number (α ≥ 16). The polynomial obtained naturally by
removing the common factor function 1/(kξ2

0) in (ÂI)
′′(k̂) in the interval [k̂0, k̂0 ⊕ 1̂] (k0 =

4, 5, . . . , α/2− 1) is called a lower essential polynomial of k0. It is written as PI,k0 .

Remarks 2.11. (i) Lower essential polynomials are homogeneous polynomials of degree 2. (ii)
The variables that intervene in PI,k0 are at most tn and tin where (n, in) ∈ Es(k0), some of which
may be missing (those which correspond to essential regions in which the second derivative is
0). (iii) We will also use PI,k0 as the coefficient of 1/(kξ2

k0
) in (ÂI)

′′(k̂).

Corollary 2.12. Let α be an even number (α ≥ 16). Then, ∀k̂ ∈ [k̂0, k̂0⊕ 1̂] with k̂0 ∈ {4̂, 5̂, . . . , α̂÷
2̂ ∼ 1̂} we verify (ÂI)

′′(k̂) = PI,k0 /(kξ2
k0
).

2.3 (ÂS)
′′ and (ÂT)

′′ functions

Let α be an even number (α ≥ 16). We take k0 ∈ {4, 5, . . . , α/2 − 1} and we examine the
second derivative of ÂS at each closed interval [k̂0, k̂0 ⊕ 1̂]. Then, ∀k ∈ [k0, k0 + 1] we verify
AS(k) = AS(k0) + AS(k)− AS(k0). Additionally, AS(k)− AS(k0) is the area included between
the curves

xy = α− k0, xy = α− k, x = 2, y = x.

As a result, it is the sum of the areas in the essential regions of the xy = α− k0 hyperbola minus
the area in the essential regions of xy = α− k. We obtain:

AS (k)− AS (k0) = ∑
(n,in)∈ES(α−k0−1)

[
A(n,in) (α− k0)− A(n,in) (α− k)

]
,

A′′S(k) = − ∑
(n.in)∈ES(α−k0−1)

A′′(n,in)(α− k).

Of course, the same relationships as in the lower areas are maintained with the expression (ÂS)
′′

as a function of k̂ . We are left with:

(Â(n,in))
′′(k̂) = − ξnξin

ξ2
α−k0−1

· A′′(n,in)(α− k).

We define upper essential polynomial in a similar way we defined lower essential polynomial
and we write them as PS,k0 . The same remarks are maintained.
Remarks 2.13. (i) Upper essential polynomials are homogeneous polynomials of degree 2. (ii)
The variables that intervene in PS,k0 are at most tn, tin where (n, in) ∈ ES(α − k0 − 1), some
of which may be missing (those which correspond to essential regions in which the second
derivative is 0). (iii) We will also use PS,k0 as the coefficient of 1/(α− k)ξ2

α−k0−1 in (ÂS)
′′(k̂).
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2.4 Signs of the essential point coordinates

Definition 2.14. Let ψ be an R+ prime coding function and α an even number (α ≥ 16). For
k0 ∈ {4, 5, . . . , α/2− 1} we write Pk0 = (xk0 , yk0) = (PI,k0 , PS,k0). We call any Pk0 an essential
point associated with ψ.

Hence, we can express

(ÂT)
′′(k̂) =

xk0

ξ2
k0

· 1
k
+

yk0

ξ2
α−k0−1

· 1
α− k

(k̂ ∈ [k̂0, k̂0 ⊕ 1̂]). (3)

The formula from proposition 2.8 is

(ÂI)
′′(k̂) = ∑

(n.in)∈ES(k0)

(Â(n,in))
′′(k̂) (∀k̂ ∈ [k̂0, k̂0 ⊕ 1̂]).

where the ES (k0) sub-indexes are:
For n = 2, 3, . . . , b

√
k0c − 1,

in = bk0/(n + 1)c, bk0/(n + 1)c+ 1, . . . , bk0/nc. (4)

For n = b
√

k0c,
in = b

√
k0c, b

√
k0c+ 1, . . . , b k0/b

√
k0c c. (5)

Thus, for sub-index n in (1), in (ÂI)
′′ only intervene in = bk0/(n + 1)c and in = bk0/nc, since

we have already seen that all the sub-indexes included between them two, (Â(n,in))
′′(k̂) = 0,

as the essential regions are of type 3. In the lower essential polynomial we obtain ξn(ξbk0/nc −
ξ[k0/(n+1)]) > 0 (for any R+ prime coding function). For n = b

√
k0 c we obtain the cases:

(i) b
√

k0c = bk0/b
√

k0cc (ii) b
√

k0c < bk0/b
√

k0cc. (6)

In case (i) we would obtain the addend (1/2)ξ2
b k0 c

, in case (ii) we would obtain (Fig. 29):

ξb
√

k0cξbk0/b
√

k0cc − (1/2)ξ2
b
√

k0c
= ξb

√
k0c(ξbk0/b

√
k0cc − (1/2)ξb√k0c) > 0.

Figure 29. Finding the sign of xk0 .

As a result, for an R+ prime coding function we obtain x4 > 0, x5 > 0, . . . , xα/2−1 > 0.
The reasoning is entirely analogous for the upper essential polynomials that is, y4 < 0, y5 <
0, . . . , yα/2−1 < 0. We will now arrange the coordinates for the essential points.

1. Lower essential polynomials If k0 ∈N, (k0 > 4) is composite, there is at least one ψ- nat-
ural number coordinates point (n̂, m̂) such that 2̂ ≤ n̂ ≤ m̂ which the ψ-hyperbola x̂ ⊗ ŷ = k̂0

42 | Revista “Pensamiento Matemático” Volumen X, Número 2, Oct’20, ISSN 2174-0410

mailto:frej0002@ficus.pntic.mec.es


Hyperbolic classification of natural numbers and Goldbach Conjecture Fernando Revilla Jimémez

goes through.

(a) If 2 < n < m we obtain the changes

Figure 30. Arranging xk0 in order. Case (a).

(b) If 2 < n = m

Figure 31. Arranging xk0 in order. Case (b).

(c) If 2 = n < m

Figure 32. Arranging xk0 in order. Case (c).

Then PI,k0 − PI,k0−1 > 0, since where there are transformations we obtain, for any prime
coding function, either (a) or (b) or (c)

(a) ξnξm − ξn−1ξm + ξn−1ξm−1 − ξnξm−1 =

ξm (ξn − ξn−1)− ξm−1 (ξn − ξn−1) =

(ξn − ξn−1) (ξm − ξm−1) > 0.

(b)
ξ2

n
2
− ξn−1ξn +

ξ2
n−1
2

=
ξ2

n − 2ξn−1ξn + ξ2
n−1

2
=

(ξn − ξn−1)
2

2
> 0.

(c) ξ2ξm − ξ2ξm−1 = ξ2 (ξm − ξm−1) > 0.

If k0 is prime then xk0−1 = xk0 since the same essential regions exist for the hyperbolas
x̂ ⊗ ŷ = k̂ in (k̂0 ∼ 1̂, k̂0) ∪ (k̂0, k̂0 ⊕ 1̂). For α− k0 prime we obtain yk0 = yk0−1 since the same
essential regions exist for the hyperbolas x̂⊗ ŷ = α̂ ∼ k̂ if k̂ ∈ (k̂0 ∼ 1̂, k̂0) ∪ (k̂0, k̂0 ⊕ 1̂).
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2. Upper essential polynomials If α − k0 is composite, and reasoning in the same way, we
obtain PS,k0 − PS,k0−1 > 0. For α− k0 prime we obtain PS,k0 = PS,k0−1 since the same essential
regions exist for the hyperbolas x̂ ⊗ ŷ = α̂ ∼ k̂ if k̂ ∈ (k̂0 ∼ 1̂, k̂0) ∪ (k̂0, k̂0 ⊕ 1̂). We obtain the
theorem:

Theorem 2.15. Let α be an even number (α ≥ 16), and ψ an R+ prime coding function. Let Pk0 =
(xk0 , yk0) be the essential points. Then,
(i) 0 < x4 ≤ x5 ≤ . . . ≤ xα/2−1. Additionally, xk0−1 = xk0 ⇔ k0 is prime.
(ii) y4 ≤ y5 ≤ . . . ≤ yα/2−1 < 0. Additionally, yk0−1 = yk0 ⇔ α− k0 is prime.

Corollary 2.16. In the hypotheses from the above theorem: The even number α is the sum of
two primes k0 and α− k0, k0 ∈ {5, 6, . . . , α/2− 1} iff the consecutive essential points Pk0−1 and
Pk0 are repeated, that is Pk0−1 = Pk0 .

Remark 2.17. Corollary 2.16 proves Claim 2.1 and according to Remark 2.2 we have provided a
characterization of de Goldbach Conjecture in the infinite set

A = {α ∈N : α even, α ≥ 16, with α/2 and α− 3 composite} .
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