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ABSTRACT: In this work, a new methodology for automatic selection of the free parameters in the least squares–support vector machines 
(LS-SVM) regression oriented algorithm is proposed. We employ a multidimensional generalized cross-validation analysis in the linear 
equation system of LS-SVM. Our approach does not require prior knowledge about the influence of the LS-SVM free parameters in the 
results. The methodology is tested on two artificial and two real-world data sets. According to the results, our methodology computes 
suitable regressions with competitive relative errors.
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RESUMEN: En este trabajo, se propone una metodología para la selección automática de los parámetros libres de la técnica de regresión 
basada en mínimos cuadrados máquinas de vectores de soporte (LS-SVM), a partir de un análisis de validación cruzada generalizada 
multidimensional sobre el conjunto de ecuaciones lineales de LS-SVM. La técnica desarrollada no requiere de un conocimiento a priori 
por parte del usuario acerca de la influencia de los parámetros libres en los resultados. Se realizan experimentos sobre dos bases de datos 
artificiales y dos bases de datos reales. De acuerdo a los resultados obtenidos, se concluye que el algoritmo desarrollado calcula regresiones 
apropiadas con errores relativos competentes.

PALABRAS CLAVE: selección de parámetros, mínimos cuadrados–máquinas de vectores de soporte, validación cruzada generalizada 
multidimensional, regresión

1. INTRODUCTION

Solving machine learning problems requires for one to 
suitably fix the needed free parameters of the system in 
order to obtain reliable results according to the given 
application such as: data preprocessing, feature extraction, 
classification, and regression [6,17,18]. Particularly, in 
order to solve a regression problem, it is necessary to 
generate a methodology that analyzes, interprets, and 
discerns patterns, finding the relationships between the 
outputs and inputs of the system. In this sense, some 

algorithms have been developed based on statistical 
models and artificial neural networks (ANNs) [1,2]. 
Nonetheless, in most cases these techniques overfit the 
regression system due to the large number of parameters to 
fix, and the little prior user knowledge about the relevance 
of the inputs in the analyzed problem [3].

This is why support vector machines (SVMs) have been 
developed as an alternative that avoids such limitations. 
Their practical successes can be attributed to solid theoretical 
foundations based on VC-theory [4]. The SVM computes 
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globally optimal solutions, unlike those obtained with 
ANNs, which tend to fall into local minima. However, many 
SVM application studies are performed by expert users 
having a good understanding of the SMV methodology [5]. 
Therefore, the quality of SMV models depends on a proper 
setting of a considerable number of parameters. Moreover, 
the SVM algorithm demands a high-computational load due 
to the form of its optimization problem.

In this sense, the least squares–support vector machines 
(LS-SVM) method is proposed in [6], which is a 
reformulation of the traditional SVM algorithm. The 
LS-SVM uses a regularized least squares function with 
equality constraints, leading to a linear system which 
meets the Karush-Kuhn-Tucker (KKT) conditions 
for obtaining an optimal solution. Consequently, the 
regression problem can be solved by a linear equation 
system rather than quadratic programming, as in SVM.

Although LS-SVM simplifies the SVM procedure, the 
regularization parameter and the kernel parameters play 
an important role in the regression system. Therefore, 
it is necessary to establish a methodology for properly 
selecting the LS-SVM free parameters, in such a way 
that the regression obtained by LS-SVM must be robust 
against noisy conditions, and it does not need priori user 
knowledge about the influence of the free parameters 
values in the problem studied.

Cherkassky et al. [5] present a methodology to choose the 
regularization value in SVM from an analytic analysis over 
the regression function, which is similar to the LS-SVM 
one. Moreover, they employ a Gaussian kernel to train the 
system. However, this approach does not consider the direct 
possible influence of the band-width kernel parameter, which 
is manually fixed. In this sense, the user must infer the 
kernel parameter value according to his/her prior knowledge 
about the problem, over-fitting the regression system. 
Again, in Zhou et al. [7] a multi-parameter selection in LS-
SVM is proposed. Even though this technique computes a 
competitive regression, it requires the assumption of some 
parameter values for the quantum-behaved particle swarm 
optimization (QPSO) algorithm, which can be unsuitable. 
Besides, they just test the proposed multi-parameter 
selection technique using a single database, which is 
perturbed with Gaussian noise. As a result, it is not possible 
to ensure reliable performance over different data sets. 

In this paper, a new methodology for choosing the 

regularization and Gaussian kernel band-width 
parameters in LS-SVM is proposed. We analyze 
the LS-SVM linear system using the generalized 
cross-validation (GCV) technique [8,9] in order to 
simultaneously infer the free parameters. Our approach 
does not require a prior knowledge about the influence 
of the LS-SVM parameters in the regression results. 

The proposed algorithm is experimentally verified 
on two artificial and two real-world data sets. The 
regression quality is measured using the relative error 
between the target and the predicted sample. 

This paper is organized as follows: Section 2 gives a 
brief introduction to the LS-SVM algorithm and the GCV 
methodology. Section 3 describes the algorithm proposed 
to simultaneously select the LS-SVM free parameters 
(regularization parameter and Gaussian kernel band-
width). Section 4 presents the experimental conditions 
and shows the regression results obtained. Finally, the 
discussion and conclusions are given in Sections 5 and 6. 

2.  BACKGROUND

2.1  Least squares-support vector machines LS-SVM

Let X  be the n p×  input data matrix, and y  the 
1n×  output vector. Given the 1{ , }n

i i iy =x  training data 
set, with p

i ∈ℜx , and iy ∈ℜ , the LS-SVM goal is 
to construct the function ( )f y=x , which represents 
the dependence of the output iy  on the input ix . This 
function is formulated as

 ( ) ( ) ,f bϕ= +x w x
   (1)

where w  and ( ) : p nϕ ℜ →ℜx  are 1n×  column vectors, 
and b∈ℜ . The LS-SVM algorithm [6] computes the 
function (1) from a similar minimization problem found 
in the SVM method [4]. However, the main difference 
is that LS-SVM involves equality constraints instead of 
inequalities, and it is based on a least square cost function. 
Furthermore, the LS-SVM method solves a linear problem 
while conventional SVM solves a quadratic one. More 
precisely, the optimization problem and the equality 
constraints of LS-SVM are defined as follows:
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where e  is the 1n×  error vector, 1  is an 1n×  vector 
with all entries 1, and C +∈ℜ  is the tradeoff parameter 
between the solution size and training errors. From (2) 
a Lagrangian is formed, and differentiating with respect 
to , , ,bw e a  ( a : Lagrangian multipliers), we obtain 
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where I  represents the identity matrix and 

( ) ( ) ( )[ ]1 2, , , nϕ ϕ ϕ=Z x x x
 . 

From rows one and three in (3) =w Z a  and C =e a
. Then, by defining the kernel matrix =K ZZ , and 
the parameter 1Cλ −= , the conditions for optimality 
lead to the following overall solution:
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In this work, we consider the Gaussian Kernel, which 
is defined as

 ( )
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We can obtain the solution of the linear equation system 
presented in (4) as
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with ( , )σ λ σ λ= +A K I . Hence, Eq. (1) can be rewritten 
as a function of the Lagrangian multipliers

( ) ( )( , ) ( , )1
a ,

i

n

ii
f bσ λ σ σ λ=

= +∑x K x x .  (7)

Taking into account Eq. (7), the LS-SVM performance 
depends of two free parameters: 1Cλ −=  and σ . In this 
sense, it is necessary to develop a methodology for 
finding suitable values of the LS-SVM free parameters.

We use the generalized cross-validation (GCV) method 
for analyzing the linear equation system (4) to fix the 
free parameters of LS-SVM. Next, a brief description 
of GCV is presented.

2.2  Generalized Cross-Validation (GCV)

For dealing with ill-conditioned matrices A , the 
regularization techniques are based on approximations 
of the form † ε

γ
ε

γ=u A r , where 0γ >  is the regularization 
parameter, εr  is a column vector with the estimated 
measures, ε

γu  is a column vector containing the 
calculated solutions, and †

γA  is a stable, easy to compute 
approximation of the generalized inverse of A .

The GCV algorithm [8,9] looks for a γ  value that 
allows for one to obtain a suitable balance between the 
regularization error and the perturbation in the solution. 
In this sense, the GCV method calculates the γ  value 
that minimizes

 

( ){ }
( )

2

2†
min G

tr

ε

γ
γ

γ
ε

γ
−

=
−

Au r

I AA

 

(8)

3.  LS-SVM FREE PARAMETER SELECTION 

In this work, we relate the linear equation system (4) 
with a problem of the form ε=Au r , in order to fix the 
free parameters of LS-SVM ( 1Cλ −= ,σ ) using the GCV 
method. Nevertheless, it should be noted that the original 
GCV algorithm method (8) was designed for the selection 
of a single parameter. For this reason, it is necessary 
to formulate the inverse problem of LS-SVM, in order 
to select its two free parameters simultaneously. Other 
similar approaches of the GCV method for choosing 
multiple parameters can be found in [10,11]. Based on 
the linear system presented in (4), we propose to set the 
relationships between LS-SVM and GCV as
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Note that σ λ+K I  is positive definite. Hence, the 
GCV function to be considered is
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The above optimization problem is generally referred 
to as a constrained nonlinear optimization. It can be 
solved using the active-set optimization algorithm, 
which uses a sequential quadratic programming (SQP) 
method [12,13]. We will use its implementation in the 
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fmincon Matlab routine. 

To avoid over-fitting in the initialization of the unknown 
variables in (10), we propose the following procedure: 
First, we choose the initial value of σ  according to 
Sylverman’s rule [14]:

 
( ) ( )( )1 1/

1
5

.34std ,0.9mi rn iqs nσ −= X X
.       (11)

where ( )iqr .  computes the average interquartil range and 
( )std .  calculates the average standard deviation. Then, we 

select the initial value of λ  ( 1λ ), minimizing Eq. (10) with 
sσ σ= . We fix the bounds of 1Cλ −=  according to [8]:
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σ
υK  contains the eigenvalues of 

sσ
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than zero.

Later, we use 1λ  and sσ  as initial values to minimize (10), 
setting the bounds of λ  as in (12) and the bounds of σ  as

 ( ) ( ){ }
min

max

0.1

max std , iqr

sσ σ

σ

=

= X X . (13)

Finally, the optimal values 1
GCV GCVCλ −=  and GCVσ  that 

minimize (10) are used for training the regression 
system base on the LS-SVM algorithm. The proposed 
methodology can be summarized as presented in Fig. 1.

Figure 1. Proposed scheme for the LS-SVM parameter selection

4.   EXPERIMENTS 

Two artificial and two real-world data sets are tested. 
We employ a 10-fold cross validation analysis to 
determinate the experiment’s generalization and 
robustness. For each fold we randomly select a training 
set, which is used to calculate the LS-SVM parameters 
according to the proposed approach, and it is also 
employed to train the LS-SVM regression algorithm. 

The remaining data is used as test set. We compute the 
relative error (RE) over the test set according to Eq. 
(14), and the performance of the system is calculated 
as the mean relative error (MRE) for the 10-folds.
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4.1  Artificial data sets

The first artificial data set is the univariate Sinc 
function, which has been studied in [6,7]. This function 
is defined as
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where ∈ℜx . We generate 300 observations. The vector
x  is taken from a uniform grid in the [ 10,10]−  interval. 
We randomly select 150 samples as a training set and 
the remaining 150 conforms the test set. Moreover, the 
training output samples are perturbed with Gaussian 
noise ( ~ (0, )δδ σ ). In Table 1 the MRE for the Sinc data 
set is shown for different noise conditions. Besides, the 

sσ , 
GCV

σ , 1
1

1Cλ −=  and 1
GCV GCV

Cλ −=  parameter values are 
presented for the lowest relative error. Additionally, in Fig. 
2 some regression results for the Sinc data set are presented.

The second artificial data set corresponds to the function 
Sinc3D, which is also analyzed in [5] and can be calculated as 
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where p
i ∈ℜx . We compute 845 observations. The x  

values are sampled on a uniform square lattice [ 5,5]p−  
(p = 2). We randomly select 169 samples as training set 
and the remaining 676 as a test set. Besides, the training 
set is perturbed with Gaussian noise ( ~ (0, )δδ σ ). In 
Table 2 and Fig. 3, the Sinc3D results are shown.

4.1  Real-world data sets

The first real-world data set corresponds to the concrete 
compressive strength (CCS) [15], which is a highly 
nonlinear function of the time and ingredients. Eight 
variables are measured: including cement, blast furnace 
slag, fly ash, water, super plasticizer, coarse aggregate, 
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fine aggregate, and time. There are 1030 observations 
( 8∈ℜX ), and the goal is to predict the CCS ( ℜ∈y ) 
for different input conditions. In this case, we train the 
regression system with 309 random samples, and the 
MRE is calculated on the remaining 721 data. In Table 
3 and Fig. 4, the CCS data set results are presented.

Finally, the European Climate Assessment (ECA) real-
world data set [16] is tested. This database is a daily 
weather summary of Berlin, Germany from between 
2001 to 2004. Nine variables are measured: cloud cover, 
mean relative humidity, mean barometric pressure, snow 
depth, precipitation amount, sunshine, amount of rain, 
minimum air temperature, maximum air temperature, and 
mean air temperature. In our experiments, we analyze 
the relationships between the mean air daily temperature 
and the remaining meteorological features. Therefore, we 
have 1465 observations, where 8∈ℜX  and ℜ∈y . We 
randomly choose 439 samples for the training set, and 
1026 for the test set. In Table 5 the ECA data set results 
are presented. For illustration, see Fig. 5.

5.  DISCUSSION 

According to the obtained results shown in Table 1 
and Fig. 2, it is possible to notice that the proposed 
methodology for choosing the values of 1Cλ −=  and 
σ  in the LS-SVM algorithm, allows for one to find 
suitable regression results for the Sinc database.

Our methodology improves the results presented in 
Zhou et al. [7], where a RE of 2.3141[%] is reported 
for a similar experiment ( 0.1δσ = ). Even when this 
technique computes competitive regression, it requires 
the assumption of some free parameter values for the 
QPSO algorithm, which can be undesirable when the user 
does not have prior knowledge about the phenomenon. 
Besides, no more experiments with different noise 
conditions are presented; so only limited conclusions can 
be reached. On the other hand, our methodology shows a 
suitable performance, even for different noise conditions. 

Furthermore, it can be seen in Table 1 how our 
algorithm controls the LS-SVM free parameters in the 
Sinc dataset. If δσ  increases, the GCVC  value is low, 
which prevents an over-fitting in the LS-SVM training.

Otherwise, if δσ  decreases, the GCVC  value is high, 
giving more weight to the training error of the LS-

SVM optimization problem. Now, the lowest GCVσ  is 
calculated for the highest δσ , which reveals that the 
proposed methodology analyzes the system with a low 
band-width when the output signal is highly perturbed.

Again, in agreement with the results shown in Table 2 
and Fig. 3, our approach computes suitable regression for 
the Sinc3D dataset. Moreover, the GCVC  and GCVσ  values 
decrease for high noise conditions, which allow for one 
to find a regression function that can deal with perturbed 
samples. The last statement can be especially corroborated by 
the regression results attained for 0.4δσ =  (Fig. 3 (b)) Note 
that our approach improves the Sinc3D results presented in 
[5], where an RE of 23.9393[%] and 2.0908[%] are reported 
for 0.4δσ =  and 0.1δσ = , respectively. It is important 
to note that the methodology presented in [5] analytically 
chooses the C  value, but it does not directly consider the 
influence of σ , which is manually fixed. This is why it is 
not possible to ensure suitable performance in several cases. 

Regarding to the real-world experiments, our methodology 
calculates appropriate regressions with low ARE results 
(Tables 3 and 4, Fig. 4 and Fig. 5), which confirm its 
applicability in complex problems. According to the fixed 

GCVC  and GCVσ values, it can be seen how our method aims 
to analyze the data with a low band-width Gaussian kernel, 
while a considerably high value for the tradeoff parameter is 
selected. Indeed, our approach fixed the highest GCVC  value 
for the ECA dataset (Table 4), which can be explained by 
the fact that ECA has a well defined dynamic that is suitably 
modeled by LS-SVM. On the other hand, CCS data contains 
more complex nonlinearities properties, which LS-SVM 
aim to compensate with low GCVσ  and GCVC   values. 
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Figure 2. Sinc results
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Figure 3. Sinc3D results

Figure 4. Target vs. prediction (CCS)

Figure 5. Target vs. prediction (ECA)

Table 1. Sinc results

δσ MRE [%] sσ 1C GCVσ GCVC
0.5 7.8386±4.2507 1.8337 0.4152 2.0501 0.4156

0.2 1.5261±0.7471 1.8337 1.4220 2.9484 10.5242

0.1 0.4865±0.1721 1.8337 2.5433 2.6602 9.5901

0.05 0.0966±0.0488 1.8337 7.6568 2.8957 43.1230

Table 2. Sinc3D results

δσ MRE [%] sσ 1C GCVσ GCVC
0.4 18.3059±5.2096 0.8169 0.6034 1.1157 0.5277

0.1 1.6655±0.3226 0.8169 2.5947 2.8516 20.7017

Table 3. CCS resultsMRE [%]

sσ 1C GCVσ GCVC
3.7873±1.1222 1.4027 21.4226 3.4043 214.2257

Table 4. ECA results
MRE [%] sσ 1C GCVσ GCVC

0.1611±0.0143 0.6117 188.6043 10.224 1886.0436

6.  CONCLUSIONS 

In this paper, a methodology for automatic parameters 
choice in the LS-SVM algorithm is proposed. It selects 
simultaneously suitable values for the parameters C  
and σ  using the GCV method, formulating a scheme 
that relates the LS-SVM optimization to an inverse 
problem. According to the experiments, our technique 
computes suitable regression results even in several 
noise conditions. 

Besides, our algorithm does not need prior knowledge 
about the influence of the LS-SVM parameters in the 
phenomenon studied. The proposed method seems to 
be appropriated for real-world regression tasks. It is 
important to note that due to the nonconvex characteristic 
of the proposed optimization problem for the LS-SVM 
free parameter selection, our approach can not ensure the 
computation of the optimal values for C  and σ . However, 
our initialization procedure allows for one to work in a 
suitable domain for minimizing the proposed objective 
function, which can be confirmed by the results attained. 

As future work, we are interested in testing more 
complex regression problems and forecasting 
procedures.



Álvarez - et al30

ACKNOWLEDGMENTS

This research was carried out under grants provided by the 
project 1115-470-22055 funded by the Research Center 
for Excellence ARTICA, Medellín, Colombia, and by 
projects 20201006599, 20201006570, and 20201006594 
funded by the Universidad Nacional de Colombia Sede 
Manizales. Moreover, GDS was supported by project 
#20110108–PI/UAN-2011–510gb UAN.

REFERENCES 

[1] Methaprayoon, K., Lee, W. J., Rasmiddatta, S., Liao, J. 
and Ross, R., Multi-stage artificial neural network short-term 
load forecasting engine with front-end weather forecast, 
IEEE Trans. Ind. Appl., pp. 1410–1416, 2007.

[2] Maier, H. and Dandy, G., Neural networks for the 
prediction and forecasting of water resources variables: a 
review of modeling issues and applications, Environmental 
Modeling and Software, vol. 15, pp. 101–124, 2000.

[3] Leng, X. and Miller, H.-G., Input dimension reduction 
for load forecasting based on support vector machines, IEEE 
International Conference on Electric Utility Deregulation, 
Restructuring and Power Technologies (DRPT2004), 2004.

[4] Vapnik, V., The nature of statistical learning, second 
edition, Springer, 1999.

[5] Cherkassky, V. and Ma, Y., Practical Selection of SVM 
Parameters and Noise Estimation for SVM regression. 
Neural Networks, vol., 17, pp. 113-126, 2004.

[6] Suykens, J. A. K., Gestel, V. T., Brabanter, J. D., Moor, B. 
D. and Vandewalle, J. Least squares support vector machines, 
World Scientific, 2002.

[7] Zhou, L., Yang, H. and Liu, C., QPSO-based hyper 
parameters selection for LS-SVM regression. Fourth International 
Conference on Natural Computation. Jinan, China, 2008.

[8] Hansen, C., Nagy, J. and Oleary, D., Deblurring Images: 

Matrices, Spectra, and Filtering. Philadelphia, PA, USA: 
Society for Industrial and Applied Mathematics, 2006.

[9] Golub, M. and Wahba, G., Generalized Cross Validation 
as a method for choosing a good ridge parameter, 
Technometrics, vol. 21, pp. 215–223, 1979.

[10] Nguyen, N., Milanfar, P., Member, S. and Golub, G., 
Efficient generalized cross validation with applications to 
parametric image restoration and resolution enhancement, 
IEEE Transactions on Image Processing, vol. 10, 2001.

[11] Peiliang, X., Iterative generalized cross-validation for 
fusing heteroscedastic data of inverse ill-posed problems, 
Geophys. J. Int, vol. 179, pp. 182-200, 2009.

[12] Boggs, P.T. and Tolle, J.W., Sequential quadratic 
programming for large-scale nonlinear optimization, Journal 
of Computational Application Mathematics, vol. 124, pp. 
123-137, 2000.

[13] Powell, M.J.D.,  A Fast Algorithm for Nonlinearly 
Constrained Optimization Calculations, Numerical Analysis, 
Lecture Notes in Mathematics, Springer Verlag, Vol. 630, 1978.

[14] Sheather, S.J., Density Estimation, Statistical Sci. 19 
(2004) 588–597.

[15] Cheng, Y., Modeling of strength of high performance 
concrete using artificial neural networks. Cement and 
Concrete Research, vol. 28, pp. 1797-1808, 1998.

[16] Tank, A. M., coauthors, Daily dataset of 20th-century 
surface air temperature and precipitation series for the 
European Climate Assessment, Journal of Climatology 22, 
pp. 1441–1453, 2002.

[17] Soto, C. and Jiménez, C., Supervised learning for fuzzy 
discrimination and classification, Revista DYNA, vol. 78, 
pp. 26-36, 2011.

[18] Pulgarín, J., Acosta, C. and Castellanos, G., Multiscale 
analysis by means of discrete mollification for ECG noise 
reduction, Revista DYNA, vol. 76, pp. 185-191, 2009.


