Juegos y Rarezas Matemáticas

Curiosidad del número combinatorio (concepto de orden)

Curiosity of the combinatorial number (concept of order)

Juan Patricio Ondo Ona Ayetebe

Revista de Investigación

Volumen X, Número 1, pp. 115–126, ISSN 2174-0410 Recepción: 5 Mar'20; Aceptación: 25 Mar'20

1 de abril de 2020

Resumen

En este artículo se muestran una manera curiosa en la que se pueden comportar los números combinatorios dando lugar a un nuevo concepto curioso (orden de número combinatorio). Además del orden, se analiza la suma, el binomio y algunos números primos interesantes empleando dicho concepto.

Palabras Clave: Curiosidad del número combinatorio, orden del número combinatorio.

Abstract

This article shows a curious way in which combinatorial numbers can behave giving rise to a curious new concept (order of combinatorial number). In addition to the order, the sum, the binomial and some interesting prime numbers using this concept are analyzed.

Keywords: Curiosity of the combinatorial number, order of the combinatorial number.

1. Un producto de números combinatorios

> Se considera: $c_m^n \cdot c_n^k = {m \choose n} \cdot {n \choose k}$;

Si tomamos como referencia los índices superior e inferior, observamos que el índice superior del primer factor coincide con el índice inferior del segundo factor.

Como sabemos los números combinatorios se calculan de la siguiente manera:

$$\binom{m}{n} = \frac{m!}{n!(m-n)!}; \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Entonces podemos establecer que:

$$c_m^n \cdot c_n^k = {m \choose n} \cdot {n \choose k} = \frac{m!}{n!(m-n)!} \cdot \frac{n!}{k!(n-k)!}$$

Y a ese producto lo denotamos por:

$$\binom{m}{n}_{k}$$

Por lo tanto tenemos que: $\binom{m}{n} = \frac{m!}{k!(m-n)!(n-k)!}$ siendo $m \ge n \ge k$

Donde: $m \to \text{indice superior}, n \to \text{indice medio}, k \to \text{indice inferior}$

En conclusión:

El producto de dos números combinatorios cuyo índice superior del primer factor es igual al índice inferior del segundo factor, y el índice inferior del primer factor es igual al índice superior del segundo factor, es otro número al que llamaremos número combinatorio de orden 2 cuyo índice superior es el mayor de los índices superiores y cuyo índice medio es el índice común (que tienen en común) y cuyo índice inferior es el menor de los índices inferiores.

$$\binom{m}{n} \cdot \binom{n}{k} = \binom{m}{n}$$

Definición: Se llama número combinatorio de orden 2 a:

$$\binom{m}{n}$$

Ejemplos:

$$\binom{6}{6} \cdot \binom{9}{6} = \binom{9}{6} = \frac{9!}{6!(9-6)!(6-6)!} = 84$$

$$\binom{7}{3} \cdot \binom{3}{1} = \binom{7}{3} = \frac{7!}{1!(7-3)!(3-1)!} = 105$$

$$\binom{8}{5} \cdot \binom{9}{8} = \binom{9}{8}; \binom{11}{9} \cdot \binom{9}{3} = \binom{11}{9}; \binom{k}{s} \cdot \binom{s}{x} = \binom{k}{s} k \ge s \ge x$$

Igualdad de números combinatorios de orden 2 2.

También podemos proceder a establecer la igualdad, por ejemplo, si tenemos un número combinatorio de tipo:

$$\binom{m}{n}_k$$

Y otro de tipo:

$$\binom{m}{n}$$

Entonces:

$$\binom{m}{n} = \frac{m!}{k!(m-n)!(n-k)!}$$

$$\binom{m}{n} = \frac{m!}{(n-k)!(m-n)![n-(n-k)]!} = \frac{m!}{k!(m-n)!(n-k)!}$$

Por lo tanto serán iguales cuando los índices superiores son iguales al igual que los índices medios y la suma de los índices inferiores sea igual al índice medio.

$$\binom{m}{n} = \binom{m}{n}$$

Ejemplos

$$\begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 2 \end{pmatrix}; \quad \begin{pmatrix} 9 \\ 8 \\ 3 \end{pmatrix} = \begin{pmatrix} 9 \\ 8 \\ 5 \end{pmatrix}; \quad \begin{pmatrix} 18 \\ 15 \\ 8 \end{pmatrix} = \begin{pmatrix} 18 \\ 15 \\ 7 \end{pmatrix}; \quad \begin{pmatrix} 23 \\ 21 \\ 10 \end{pmatrix} = \begin{pmatrix} 23 \\ 21 \\ 11 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ x \end{pmatrix}; \qquad \begin{pmatrix} 13 \\ x \\ 5 \end{pmatrix} = \begin{pmatrix} 13 \\ x \\ 4 \end{pmatrix}; \qquad \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix} = x + 2$$

$$3 + x = 5 \rightarrow x = 2 \qquad 5 + 4 = x \rightarrow x = 9 \qquad \frac{4!}{1!(4-2)!(2-1)!} = x + 2 \rightarrow x = 10$$

Esta expresión está relacionada con la expresión de la propiedad de igualdad de los números combinatorios normales (orden 1).

Sabemos que:
$$\binom{n}{k} = \binom{n}{n-k}$$

Al ser iguales podemos multiplicar a la expresión $\binom{m}{n}$ por $\binom{n}{k}$ y por $\binom{n}{n-k}$ obtenemos:

$$\binom{m}{n} \cdot \binom{n}{k} = \binom{m}{n} \cdot \binom{n}{n-k}$$

Con lo establecido en la sección 1 obtenemos que:

$$\binom{m}{n} = \binom{m}{n}$$

3. Suma de números combinatorios de orden 2

Para la suma, si tenemos un número combinatorio de tipo:

$$\binom{m}{m}$$

Y otro de tipo:

$$\binom{m}{m}$$

Entonces:

$$\binom{m}{m} + \binom{m}{m} = \binom{m+1}{m+1}$$

Lo vemos:

$$\begin{split} \frac{m!}{n!(m-m)!(m-n)!} + \frac{m!}{(n+1)!(m-m)!\left[m-(n+1)\right]!} \\ &= \frac{m!}{(n+1)!\left[(m+1)-(m+1)\right]!\left[(m+1)-(n+1)\right]!} = \\ &= \frac{m!}{n!0!(m-n)!} + \frac{m!}{(n+1)!0!(m-n-1)!} = \frac{(m+1)!}{(n+1)!0!(m-n)!} \end{split}$$

Entonces tenemos:

$$\frac{m!}{n! \, 0! \, (m-n)!} + \frac{m!}{(n+1)! \, 0! \, (m-n-1)!} = \frac{(m+1)!}{(n+1)! \, 0! \, (m-n)!}$$

$$\frac{m!}{n! \, (m-n)(m-n-1)!} + \frac{m!}{(n+1)! \, (m-n-1)!} = \frac{(m+1)m!}{(n+1)! \, (m-n)(m-n-1)!}$$

$$\frac{m! \, [(n+1)! + n! \, (m-n)]}{n! \, (n+1)! \, (m-n)(m-n-1)!} = \frac{(m+1)m!}{(n+1)(m-n)(m-n-1)!}$$

$$\frac{(m+1)! + n! \, (m-n)}{n!} = m+1 \rightarrow \frac{n! \, [(n+1) + (m-n)]}{n!} = m+1 \rightarrow n+1 + m-n = m+1$$

Sumando y restando nos queda: m = m

Se ha deducido que: la suma de dos números combinatorios cuyos índices superiores y medios son iguales entre sí y los índices inferiores difieren en una unidad, da como resultado otro número combinatorio cuyos índices superior y medio son mayores en una unidad a los índices superiores y medios de los sumandos y cuyo índice inferior es el mayor de los índices inferiores.

Ejemplos:

$$\begin{pmatrix} 7 \\ 7 \\ 5 \end{pmatrix} + \begin{pmatrix} 7 \\ 7 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \\ 6 \end{pmatrix}; \qquad \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \\ 2 \end{pmatrix}$$

Al igual que la igualdad de los números combinatorios de orden 2, la suma también está relacionada con los números combinatorios normales (orden 1) ya que:

$$\binom{m}{n} + \binom{m}{n+1} = \binom{m+1}{n+1}$$

Un triángulo de números combinatorios de orden 2 4.

En esta sección vamos a desarrollar un análogo del triángulo de Pascal o Tartaglia para los números combinatorios de orden 2.

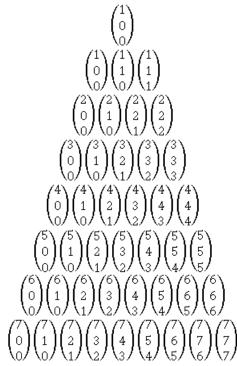


Figura 1: Triángulo de Tartaglia para números combinatorios de orden 2.

```
1
1 1 1
1 2 2 1
1 3 6 3 1
1 4 12 12 4 1
1 5 20 30 20 5 1
1 6 30 60 60 30 6 1
1 7 42 105 140 105 42 7 1
```

Figura 2: resultados de la figura 1 aplicando la fórmula para números combinatorios de orden 2

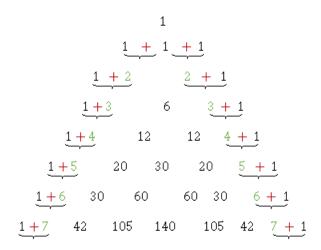


Figura 3: el primer término de una fila y el segundo término de la misma da como resultado el segundo término de la fila siguiente

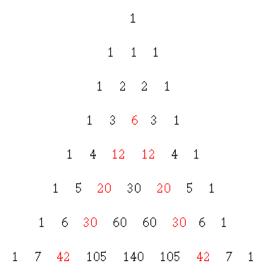


Figura 4: el producto entre el segundo término de una fila y el segundo término de la fila situada debajo de ella da como resultado el tercer término de la fila situada debajo de ella

```
1

1 1 1

1 2 2 1

1 3 6 3 1

1 4 12 12 4 1

1 5 20 30 20 5 1

1 6 30 60 60 30 6 1

1 7 42 105 140 105 42 7 1
```

Figura 5: resto de números que no se obtienen por los criterios anteriormente mencionados

Para la obtención de los números restantes basta observar que todos los números equidistantes son iguales debido a la propiedad vista en la sección 2 por lo que basta con una pequeña fórmula para obtenerlos, por ejemplo para obtener el 30 vemos que se encuentra en la posición número 3 si contamos desde la izquierda o desde la derecha sin tener en cuenta las unidades, en este caso comenzaríamos contando desde el número 5.

Ahora si contamos otra vez desde la derecha o desde la izquierda empezando desde el segundo término sin tener en cuenta las unidades el número 30 ocuparía la posición número 2.

De donde:

5 es el primer término de la derecha o la izquierda (sin tener en cuenta las unidades),

3 es la posición que ocupa el número 30

Y por último le añadimos el término factorial a la posición que ocupa el número 30 respecto al segundo término (sin tener en cuenta las unidades), es decir, posición número 2 (2!) y entonces nos quedaría:

$$J = \frac{n!}{a! \, b!}$$

Siendo:

n el primer término localizado en la derecha o en la izquierda (sin tener en cuenta las unidades)

a el número que se obtiene al restar el primer término de la derecha o de la izquierda (sin tener en cuenta las unidades) con respecto a la posición que ocupa el número buscado respecto al mismo

b el número que se obtiene al contar desde el segundo (sin tener en cuenta las unidades) hasta el número o término buscado.

Por ejemplo, el 30:

$$n! = 5!$$
, $a! = (5-3)! = 2!$, $b! = 2!$
$$J = \frac{5!}{2!2!} = 30$$

Para 60, 105 y 140:

$$n! = 6!$$
, $a! = (6-3)! = 3!$, $b! = 2!$

$$J = \frac{6!}{3!2!} = 60$$

$$n! = 7!$$
, $a! = (7-3)! = 4!$, $b! = 2!$

$$J = \frac{7!}{4!2!} = 105$$

$$n! = 7!$$
, $a! = (7-4)! = 3!$, $b! = 3!$

$$J = \frac{7!}{3!3!} = 140$$

Al ser todos los números equidistantes iguales, al obtener uno se conoce inmediatamente el otro.

Nota: Esta forma de sacar números no es eficiente, ya que al final tenemos que hacer factoriales.

Otra forma mucho más fácil de obtener los números sería: primero dividiremos el triángulo en filas.

$$1 \rightarrow fila \ 0$$

$$1 \ 1 \ 1 \rightarrow fila \ 1$$

$$1 \ 2 \ 2 \ 1 \rightarrow fila \ 2$$

$$1 \ 3 \ 6 \ 3 \ 1 \rightarrow fila \ 3$$

$$1 \ 4 \ 12 \ 12 \ 4 \ 1 \rightarrow fila \ 4$$

$$1 \ 5 \ 20 \ 30 \ 20 \ 5 \ 1 \rightarrow fila \ 5$$

$$1 \ 6 \ 30 \ 60 \ 60 \ 30 \ 6 \ 1 \rightarrow fila \ 6$$

$$1 \ 7 \ 42 \ 105 \ 140 \ 105 \ 42 \ 7 \ 1 \rightarrow fila \ 7$$

Figura 6: triangulo dividido en filas

Conociendo ya la manera en la que se distribuyen las filas, vamos a proceder a obtener los números que arriba habíamos encerrado; por ejemplo, el 30 (figura 5), en un triángulo.

Primero si no hubiéramos colocado ya el **30** sabríamos que el número que estamos buscando se encuentra en la fila **5**, y de antemano ya habríamos obtenido los números de la fila **4**, por lo que para obtener el treinta, basta con sumar **12+12** y dividirlo entre **4** ya que son de la fila **4**, y por último multiplicar por **5** ya que el número que queremos obtener es la fila **5**. (Figura **7**)

```
1
          1 1 1
         1 2 2 1
        1 3 6 3 1
      1 4 12 12 4 1
    1 5 20 30 20 5 1
   1 6 30 60 60 30 6 1
1 7 42 105 140 105 42 7 1
          Figura 7
```

Para el 60, haríamos lo mismo, sumar 20+30 al ser números de la fila 5 lo dividimos entre 5 y por último, el resultado lo multiplicamos por 6, ya que el número que queremos obtener se encontraría en la fila 6. (Figura 8).

```
1 1 1
         1 2 2 1
        1 3 6 3 1
      1 4 12 12 4 1
    1 5 20 30 20 5 1
   1 6 🜃 60 🚾 30 6 1
1 7 42 105 140 105 42 7 1
          Figura 8
```

Ahora, si aislamos aquellos términos que se obtienen dentro del triángulo indicado en la figura 9 y dividimos cada término entre el número de la fila que ocupa obtenemos los números marcados en la figura 10:

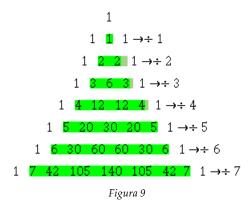


Figura 10: resultados obtenidos al dividir los números marcados en verde entre el número de la fila que ocupa

Que es conocido como el triángulo de Pascal

5. Números combinatorios de orden superior

Se puede extender la definición de los números combinatorios a cualquier orden de la siguiente manera:

$$\binom{m}{n}{k} = \frac{m!}{p! (m-n)! (n-k)! (k-p)!}$$

$$\begin{pmatrix} m \\ n \\ k \\ \vdots \\ j \\ n \end{pmatrix} = \frac{m!}{p!(m-n)!(n-k)!\dots(j-p)!}$$

El orden lo obtenemos aplicando la siguiente fórmula: N=t-1, donde N representa el orden y t el número de índices.

6. Números primos curiosos

En esta sección se aplican los números combinatorios de orden 2 la obtención de una curiosidad acerca de ciertos números primos: 3, 5, 7, 13, 37, 41. La curiosidad radica en que a partir de ellos podemos obtener otros números primos mediante la siguiente expresión.

$$L_{P} = \begin{bmatrix} 2p-1\\p-1\\p-3 \end{bmatrix} - 1 \end{bmatrix} \frac{1}{p}$$

Ejemplo: si p=3 tenemos

$$L_{3} = \begin{bmatrix} 2 \cdot 3 - 1 \\ 3 - 1 \\ 3 - 3 \end{bmatrix} - 1 = \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} - 1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Aplicando la fórmula:

$$\binom{m}{n} = \frac{m!}{k! (m-n)! (n-k)!}$$

Obtenemos que:

$$\binom{5}{2}_0 = \frac{5!}{0!(5-2)!(2-0)!} = 10$$

$$L_3 = [10 - 1] \frac{1}{3} = 3 \rightarrow L_3 = 3$$

Así:

$$L_5 = 151$$

 $L_7 = 3677$
 $L_{13} = 26401523$

Probando con los primeros valores de L_P , se observa que es posible plantear la siguiente conjetura: L_P es natural si y sólo si p es primo o cuadrado.

Identidad notable 7.

Se plantea ahora establecer el binomio de Newton utilizando los números combinatorios de orden 2:

$$(a+b)^n = b^n + \sum_{k=1}^n \frac{1}{k} \binom{n}{k} a^k b^{n-k}$$

Ejemplos:

$$(x+3)^{2} = 3^{2} + \frac{1}{1} \binom{2}{1} x^{1} 3^{2-1} + \frac{1}{2} \binom{2}{1} x^{2} 3^{2-2} = 9 + 6x + x^{2}$$

$$(m+n)^{4} = n^{4} + \frac{1}{1} \binom{4}{1} m^{1} n^{4-1} + \frac{1}{2} \binom{4}{2} m^{2} n^{4-2} + \frac{1}{3} \binom{4}{3} m^{3} n^{4-3} + \frac{1}{4} \binom{4}{4} m^{4} n^{4-4} = n^{4} + 4mn^{3} + 6m^{2} n^{2} + 4m^{3} n + m^{4}$$

La expresión se obtiene de forma inmediata utilizando la fórmula clásica del binomio de Newton y que $\binom{n}{k} = \frac{1}{k} \binom{n}{k}$ si $k \neq 0$

Como consecuencia de la identidad se obtiene:

$$1 + \sum_{k=1}^{n} \frac{1}{k} \binom{n}{k} = 2^{n}$$

Referencias

[1] FERNÁNDEZ, Justo. Combinatoria: Variaciones, permutaciones y combinaciones. Fórmulas, https://soymatematicas.com/combinatoria/

[2] PÉREZ, Victoria. *Números combinatorios*, https://matematica.laguia2000.com/general/numeros-combinatorios

Sobre el autor:

Nombre: Juan Patricio Ondo Ona Ayetebe Correo Electrónico: juanpatricio965@gmail.com

Institución: Alumno de ingeniería de la Universidad de Alicante, España.