
Dyna, year 79, Nro. 173, pp. 96-103. Medellin, june, 2012. ISSN 0012-7353

SOFTWARE FOR FAULT DIAGNOSIS USING KNOWLEDGE
MODELS IN PETRI NETS

SOFTWARE PARA EL DIAGNÓSTICO DE FALLAS MEDIANTE
MODELOS DE CONOCIMIENTO EN REDES DE PETRI

ADRIAN ARBOLEDA
M.Sc, National University of Colombia, Medellin Campus, asarbolec@unal.edu.co

GERMAN ZAPATA
Ph.D, Universidad Nacional de Colombia, Medellin Campus, gdzapata@unal.edu.co

JOSÉ VELÁSQUEZ
Electrical Engineer, EMGESA S.A.E.S.P., Bogotá, Colombia, jvelazqu@emgesa.com.co

LUIS MARÍN
Electrical Engineer, EMGESA S.A.E.S.P., Bogotá, Colombia, lmarin@emgesa.com.co

Received for review: September 01th, 2011, accepted: January 27th, 2012, final version: March, 23th, 2012

RESUMEN: Los sistemas de diagnóstico de fallas en empresas asociadas al sector eléctrico requieren propiedades de precisión y flexibilidad
cuando surgen eventos de falla. Actualmente existen sistemas que pretenden mejorar el proceso de diagnóstico mediante varios métodos y
técnicas computacionales, reduciendo el tiempo de respuesta a perturbaciones. Sin embargo, son pocas las propuestas que unifican modelos
gráficos de conocimiento con las señales de un proceso que pueden ofrecer dispositivos como controladores lógicos programables (PLCs).
Este artículo propone un software novedoso guiado por modelos basados en redes de Petri e integrado con señales del proceso, para el
diagnóstico de falla en centrales de generación eléctrica. Un caso de estudio demuestra la flexibilidad y adaptabilidad del software cuando
nuevas nociones en los modelos de conocimiento cambian, sin realizar procedimientos de reingeniería al software.

PALABRAS CLAVE: diagnóstico de fallas, redes de Petri, desarrollo de software, modelos de conocimiento, sistemas de energía,
automatización.

ABSTRACT: Fault diagnosis systems in electric sector companies require precision and flexibility properties in case of events. Currently,
there are systems aimed at improving the diagnosis process through various methods and techniques, reducing response time to disturbances.
However, few proposals unify graphical models of knowledge with process signals. These signals can be provided by devices such as
programmable logic controllers (PLCs). This article proposes novel model-driven software based on Petri nets and integrated with process
signals for fault diagnosis in power plants. A case study demonstrates the flexibility and adaptability of the software when new concepts
change in the knowledge models, without requiring reengineering procedures to be performed on the software.

KEYWORDS: fault diagnosis, Petri nets, software development, models of knowledge, power systems, automation.

1. INTRODUCTION

Communication and diagnosis systems in energy companies
use constantly evolving technologies due to the constant
increase of variables and alarms that can be monitored. This
trend forces such systems to be highly complex, especially
with regard to fault diagnosis systems. According to [1], the
development of software for fault analysis must be of a hybrid
nature. This means combining computational techniques
for precise and reliable diagnosis, based on continuous and
discrete control components of the energy company.

Studies focused on fault diagnosis methods such as neural
networks and genetic algorithms [2], have produced
interesting results. However, when companies need to expand
their business models, change control devices, or update
infrastructure, these methods lack flexibility and adaptability
characteristics, and require a process of re-engineering. Other
alternatives such as Petri nets and methods based on models
indicate their capacity for adaptability in the area of fault
diagnosis in energy systems [3–5].

Currently, software aimed at use in power plants
requires the basic characteristic of integrating its

Dyna 173, 2012 97

control signals to diagnosis processes [1]. Based on
this characteristic, this paper presents flexible software
for fault diagnosis guided by Petri net models. The
advantages of Petri nets are explored and a graphics
editor is developed based on a framework of Eclipse
Graphical Modelling (GMF) [6].

The software developed aims at improving supervision,
operational efficiency, fault detection accuracy, and
diagnosis speed. This article proposes a special form of
structuring the functions in a software engine, and presents a
generic architecture which explains the software modules of
the system and their general functioning. The final product
is an application which is easily adaptable to a power plant.

This article is structured as follows: Part two analyzes
the studies undertaken in the field of fault diagnosis,
Part three presents the definition of Petri nets and the
construction method of a graphics editor, Part four
presents the software›s architecture and functioning, and
finally Part five presents conclusions and future work.

2. PREVIOUS WORKS

Modern energy systems tend to be interconnected, complex,
and highly scalable systems. According to these strengths,
different types of software for fault detection and diagnosis,
based on computational science techniques have become
more popular on the market. Techniques applied in the
current literature include neural nets [7], knowledge-
based methods [8], genetic algorithms [2], and expert
systems [24]. However, these techniques lack flexibility
and adaptability for when companies grow, or for when
market conditions change, and high costs in the processes
of re-engineering and re-adaptation get out of hand.

There are other approaches such as Petri nets and knowledge
based methods which maximize flexibility and simplicity
properties in computational systems. [9] indicates the
advantages of applying Petri nets in business processes and
their capacity to model, in a unified manner, the processes of
control and other knowledge schemes proper to each company,
also observed in [10]. Petri nets have been broadly used in the
field of energy systems in order to model the configuration
of power plants [3], producing important results in terms of
reducing diagnosis time and improving diagnosis accuracy.

Additionally, studies such as [1] and [11] explain
the importance of fault diagnosis automation and

of its integration into information systems through
model-based methods. These studies also propose the
development of hybrid systems for complex system
analysis and control, since today’s problems require
integrated mathematic and empiric solutions guided
by company experience.

Other proposals such as [4], [5], and [12] attempt to unify
model-based methods with Petri nets. These produce
interesting results in terms of effectiveness, analysis
quality, and the interaction with planned signals and process
planning. However, these proposals omit the possibility of
integration with software engines which, based on process
events and model knowledge, allow users to interact and
diagnose in an easy way. Since the early 90s, generic
software engines have been developed at low costs in the
different areas of science, resulting in great benefits in time
and performance [13]. This type of software functions with
specific models created by experts in a specific domain.
[14] presents important aspects to be considered when it is
required to unify business models in a software prototype,
highlighting the tools’ potentials when requirements change
in the environment.

The papers just mentioned lack important aspects
such as the combination of natural language, cost
reduction in software development, and the capacity
for integration between software engines, real control
signals, and models. These are important aspects
for developing software aimed at energy generation
companies, specifically in the field of fault diagnosis.

3. MODELS IN PETRI NETS FOR FAULT
DIAGNOSIS

Petri nets (PNs) are a formal modelling tool for
dynamic systems that may become quite complex.
They are characterized by an easy-to-understand
graphical component, and by their mathematical theory
foundations. Petri nets are currently applied in different
fields of science, highlighting fault diagnosis [15],
state analysis [16], work flows [17], and knowledge
representation [18].

3.1. Definition of Petri Net

According to [19], a Petri net may be formally
considered as a set of 5-tuples, PN = (P, T, F, W, M0),
where:

Arboleda et al98

P = {p1, p2,…, pm} is a finite set of places,

T = {t1,t2,…,tn} is a finite set of transitions,

F ⊆ (P×T) ∪ (T × P) is a set of arcs,

W: F → {1,2,3,…}is a function of weight,

M0: P → {0,1,2,3,…} is the initial marking,

P ∩ T = Φ and P ∪T ≠ Φ.

The evolution of a state S of a Petri net, from a state k
to another k+1, can be expressed as

qs[k + 1] = qs[k] + Bx[k] (1)

Where B = [bij
+ -bij

-] is the incidence matrix of the Petri
net(bij

-denotes the weight of the arc from place pi to
the transition tj , and bij

+ denotes the weight of the arc
from transition tj to the place pi). qs[k] is the state of the
Petri net in time k. x[k] in the entrance to the Petri net.
If x[k] = [0, ...,1,...,0]T (a 1 is in the j-th position), the
transition tjis triggered (j inside {1,2, ..., m}).

3.2. Petri Nets editor

To develop a software engine that interprets a binary
Petri net, it is necessary to build a graphical editor
of Petri nets that includes the basic components of
modelling, and additional components that enable
defining key expressions understandable only by the
engine. These additional components are called labels
and they define the functionalities to be programmed
in the software.

To supply for the need to promptly build a robust and
reliable Petri nets editor, the framework for Eclipse
Graphical Modelling (GMF) [6] is used. Eclipse
Graphical Modelling is a plug-in which provides the
infrastructure and visual tools to develop modelling
language editors in the Eclipse platform. Eclipse
Graphical Modelling is used to build models of
specific domains from a metamodel and following
a methodology. In order to develop the editor,
programmers need to build an intermediate number
of models specifying the visual syntax of the required
language. These intermediate models are combined
and, through a set of transformations, an Eclipse plug-in
is developed, which in turn is what really implements
the editor. Figure 1 presents a summary of the process
to be followed with GMF. For readers interested in the

proper development of a graphical editor, [20] and [21]
present assistance guides, while [25] presents a paper,
analogue to this one, revealing the steps for building
an editor for an specific domain model using GMF.

Figure 1. Process of modelling with GMF taken from [22]

The main component for building the editor of Petri
nets is the metamodel. Figure 2 shows the Petri nets
metamodel formed by 6classes in which the 3basic
elements of the net (place, transition, and arc) and
the label class, which as previously mentioned has 7
attributes which turn into functions, are highlighted.
Note that the label class is an attribute of the place
class, meaning that each place created in the model may
receive a specific functionality. These functionalities are
aimed at the domain of fault diagnosis in hydroelectric
power plants and described as follows:

Indicate: A key word which indicates the publication
of information to the software and to wait for an event
from the operator.

Fault: A key word which indicates to the application
the finding of a fault in the net.

Conclude: A key word which indicates to the
application the finding of an important conclusion or
event in the net.

Inform: A key word referring to the transmission, via
text messages, of determined information to determined
telephone numbers.

Silent: A key word which indicates the finding of
relevant information to be saved in the data base,
continuing immediately with the net’s evolution (i.e.,
executing the next step in the network).

Dyna 173, 2012 99

None: A key word referring to the omission of a specific
function.

Signal: A key word integrating the value of a measuring
device to the Petri net.

Button: A key word for indicating the appearance
of buttons in the software interface, which has the
information update in the associated PN.

It must be highlighted that when a company begins
signal automation processes, the places of the models
with “button” labels, can be easily replaced by the
“signal” label. Thus, the software will not have to do an
information presentation stop in the interface, reducing
operator and software interventions.

Figure 2. Petri nets metamodel

In order to have a fully automatic fault diagnosis and
to chronograph analysis and results presentation time
in seconds, the software proposed in this article aims at
having no places in the models with the “button” label.
This approach for the Etiqueta class enables programming
by modules, indicating what the software must do when
the engine goes through each one of the places.

When the unification of intermediate models is finally
accomplished in Eclipse, the tool automatically executes
code generation, obtaining the graphical editor of Petri
nets. Then, the next procedure is to create Petri nets
containing the knowledge for fault diagnosis through the
association of places with descriptions in natural language.
Figure 3 shows the editor’s graphic interface indicating the
symbols palette, the properties panel of each component,
and the central panel of graphical edition. It highlights that
it is, in general terms, an intuitive tool to model.

The creation of PN files linked to the new application is XML
based. Therefore, it is necessary to develop in the software a
module that interprets the XML components of the Petri net.

Figure 3. Petri nets editor

4. FAULT DIAGNOSIS SOFTWARE
ARCHITECTURE

Process modelling becomes a complex task due to
the constant requirement changes in the environments
where the processes take place [14]. Diagnosis tools,
in the settings of energy systems, tend to combine
precision methods such as mathematics with empiric
methods resulting from company knowledge and
experience. Therefore, the reasons for developing a
fault diagnosis system guided by Petri nets are avoiding
the overhead costs of software engineering processes,
converting the models into knowledge schemes that
are reusable and flexible, and unifying measurement
methods with natural language to have diagnoses that
are more accurate and reliable.

The diagnosis system built under the Java platform is
formed by 4 software modules, which are the following:

Engine: This contains the mechanisms for interpreting
the elements of the Petri net which constitute the XML
files produced by the graphical editor. In addition,

Arboleda et al100

based on the Petri nets theory presented in Chapter 3, it
includes the algorithms that determine the new states of
the net, meaning the vector qs[k + 1]. These algorithms
were developed in previous research conducted by the
Universidad Nacional and financed by Colciencias, which
constitute the nucleus of the engine [26]. Besides this, the
module has a high interaction with GUI and supervision
modules, which constantly send data for updating places
on the net, and are executed at determined times.

Data Base: This stores knowledge models developed
in the editor, and contains the information associated
with the results of previous diagnoses.

Supervision: This contains the algorithms for the
supervision and monitoring of the signals previously
defined by each diagnosis model. It is important to mention
the use of the open-code library for communicating with
industrial devices UTGARD [23], which is of vital
importance for the integration of control signals. This
module is responsible for alerting operators about alarm
events and data updates from a PLC or control device to
the linked Petri net. Figure 4 illustrates the PLC-PN update
mechanism where, in summary, information is replaced
in the places bearing a “signal” label.

GUI: This is the module assigned for unfolding and
controlling the graphic user interfaces. It has a high
level of interaction with the other system modules.

Figure 4. Signal updating from a PLC to the Petri net

4.1. Software functioning

The general functioning of the fault diagnosis system is
illustrated in Fig. 5. First, after the development of the
models in Petri nets, the person acting as administrator
must enter the models into the system and perform the

respective configuration of control signals; meaning, the
association between the places with the “signal” label and
the PLC variables, as shown in Fig. 6. Note that there is an
option called “initiator”. This refers to the signals at the start
of a model, which turn into trigger signals, and therefore
are references always examined by the supervision module
in real time. When this configuration concludes, the model
repository is updated and the supervision module activates
the constant inspection of the registered signals. When
the value of an “initiator” signal is 1, the fault detection
process becomes active, loading the specific model linked
to the signal and alerting, on screen, about the event of a
signal pending diagnosis. At that point, it is important to
remark that each signal detected by the software becomes a
completely independent diagnosis, which may go through
different states. Five states can be summarized in total.
These are: Pending, in execution, ignored, completed, and
cancelled.

Figure 5. General functioning of the diagnosis system

Figure 6. Signal control configuration in fault diagnosis
system

Dyna 173, 2012 101

When the software presents pending signals, the operator
initiates interaction with the software to try to obtain
results, according to the analysis of the model. This
interface is presented in Fig. 7, showing three alert
signals. Two signals on pending state and one signal in
ignored state, which means that the operator decided
to omit this last signal, as it is not important. Upon
execution of the diagnosis model, the engine module
assumes the main role in the execution of the software,
sending information to the GUI module for presentation,
and receiving information from the control signals.

Figure 7. Fault detection in the diagnosis system

Figure 8 illustrates the case of Fig. 3, which presents the
case of a manual revision of a knob. There is a software
stop and an operator decision to select an option about
the movement, or lack of, of engine 90R. The model,
for this interface to unfold, interpreted the two places
of the established net with the “button” label and, in
this manner, updates the net in accordance with the
executed option.

According to this example, Fig. 9 presents diagnosis
results which can be divided into faults or conclusion.
This means that models can have at least one type of
result or both. A fault in the fuses is determined in this
case, and it is recommended to continue monitoring the
machine and adjusting the reactives. When the process
is finalized, the system saves the decision route, and
the relevant events leading to the results, in order to
consult them at any time.

Figure 8. Decision making of the diagnosis system with

the intervention of the operator

Figure 9. Results of the diagnosis system according to the
AVR_DAVR model

5. CONCLUSIONS AND FUTURE WORK

There are diverse techniques and procedures covering
fault diagnosis in companies linked to the electric

Arboleda et al102

sector. They present a common disadvantage which
is the lack of flexibility when a diagnosis process
changes, or when part of the infrastructure is renewed.
The previous article presents a software prototype for
fault diagnosis systems, especially for power plants.
The software is guided by models in Petri nets, and
its main features are flexibility and ease of integration
between control signals and models, aiming at
diagnosis accuracy and speed. The software modules
are explained, highlighting the engine module which
supports the execution of Petri nets and the updating
of data through the PLC. When the need for updating
diagnosis models surges, an expert can easily edit them
through the also-developed Petri nets graphical editor.

Planned as future work is the unification of the files
currently in XML to the standard format of Petri
nets called pnml. Also contemplated is the addition
of functions linked to the analysis Petri nets such a
vivacity, cyclicity, limitation, and conflictiveness,
which may enable one to determine interesting
phenomena or errors in modelling.

ACKNOWLEDGEMENTS

The authors thank the company EMGESA S.A.E.S.P. and
the Administrative Department of Science, Technology,
and Innovation of Colombia COLCIENCIAS, for
their help with this research, as part of the framework
of the project entitled “Automatic Fault Diagnosis in
Hydraulic Power Plants of the System EMGESA -
COLCIENCIAS - CODENSA S.A. E.S.P. - EMGESA
S.A. E.S.P.”

REFERENCES

Wenping, W., Xiaomin, B., Wei, Z., Jian, D., and Zhu, F.
Hybrid Power System Model and the Method for Fault
Diagnosis, ISBN 0-7803-9114-4. IEEE/PES Transmission
and Distribution Conference and Exhibition: Asia and
Pacific,Dalian, China, pp.1-5, 2005.

[1] Fritzen, P., Cardoso, G., Zauk, J., Morais., Bezerra, U., and
Beck, J. Alarm processing and fault diagnosis in power systems
using Artificial Neural Networks and Genetic Algorithms,
ISBN 978-1-4244-5695-6. IEEE International Conference on
Industrial Technology (ICIT), pp.891-896, 2010.

[2] Ashouri, A., Jalilvand, A., and Noroozian, R. Fault
diagnosis modeling of power systems using Petri Nets, ISBN

978-1-4244-7128-7. 4th International Power Engineering
and Optimization Conference (PEOCO), pp.313-317, 2010.

[3] Rueppel, U., Meissner, U., and Greb, S. A Petri Net
Based Method for Distributed Process Modelling in
Structural Engineering, ISBN 3-86068-213-X. Proceedings
of the 10th International Conference on Computing in Civil
and Building Engineering ICCCBE, 2002.

[4] Rong, Z., Shengfang, F., and Jian, C. Hybrid modeling
techniques for power electronics based on Petri Net, ISBN
978-1-4244-3826-6. International Conference on Electrical
Machines and Systems ICEMS, pp.3850-3853, 2008.

[5] The Eclipse Graphical Modeling Project (GMP), Official
Web-Site. http://www.eclipse.org/modeling/gmp/. March 2010.

[6] Yuan, H., and Chen, Z. Design and Implementation of
Intelligent Fault Diagnosis System, ISBN 978-0-7695-3887-
7. 1st International Conference on Information Science and
Engineering (ICISE), pp.2296-2299, 2009.

[7] Chang, C., Tian, L., Wen, F., Han, Z., Shi, J., and Zhang,
H. Development and Implementation Knowledge-Based
System for On-Line Fault Diagnosis of Power Systems.
Electric Power Components and Systems, ISSN 1532-5008,
29 (10), pp.897-913, 2001.

[8] Salimifard, K., and Wright, M. Petri net-based modelling
of workflow systems: An overview. European Journal of
Operational Research, ISSN 0377-2217, 134 (3), pp. 664-
676, 2001.

[9] Zha, X., Lim, S., and S. C. Fok. Integrated knowledge-
based Petri net intelligent flexible assembly planning. Journal
of Intelligent Manufacturing, ISSN 0956-5515, 9 (3), pp.
235-250, 1998.

[10] Zoeteweij, P., Pietersma, J., Abreu, R., Feldman,
A., and Van Gemund, A. Automated Fault Diagnosis in
Embedded Systems, ISBN 978-0-7695-3266-0. Second
International Conference on Secure System Integration and
Reliability Improvement SSIRI, pp.103-110, 2008.

[11] Huang, H., and Zu, X. Hierarchical Timed Colored
Petri Nets Based Product Development Process Modeling.
In Computer Supported Cooperative Work in Design. ISBN
978-3-540-29400-9, Springer Berlin / Heidelberg 3168, pp.
378-387, 2005.

[12] Kurien. J., and Moreno, M. Costs and Benefits of
Model-based Diagnosis, ISBN 1095-323X. IEEE Aerospace
Conference, pp.1-14, 2008.

Dyna 173, 2012 103

[13] Chen, A., and Buchs, D. Towards Service-Based
Business Process Modeling, Prototyping and Integration.
In Rapid Integration of Software Engineering Techniques.
ISBN 978-3-540-34063-8, Springer Berlin / Heidelberg
3943, pp. 218-233, 2006.

[14] Genc, S., and Lafortune, S. Distributed Diagnosis
of Place-Bordered Petri Nets. IEEE Transactions on
Automation Science and Engineering, ISSN 1545-5955, 4
(2), pp. 206-219, 2007.

[15] Wu, Y., Xie, L., and Li, B. Software Design for
Reliability Analysis Using Petri Nets, ISBN 978-0-7695-
3962-1. International Conference on Measuring Technology
and Mechatronics Automation (ICMTMA), pp. 414-417,
2010.

[16] H o h e i s e l , A . , a n d A l t , M . P e t r i
N e t s . I n W o r k f l o w s f o r e - S c i e n c e
Scientific Workflows for Grids, Part II. ISBN 978-1-84628-
757-2, Springer London, pp.190-207, 2007.

[17] Ribaric, S. and Hrkac, T. A Knowledge Representation and
Reasoning Based on Petri Nets with Spatio-Temporal Tokens,
ISBN 978-1-4244-0813-9. The International Conference on
Computer as a Tool EUROCON, pp.793-800, 2007.

[18] Hui, R., and Zengqiang, M. Power system fault
diagnosis modeling techniques based on encoded Petri nets,
ISBN 1-4244-0493-2. IEEE Power Engineering Society
General Meeting, pp.1-6, 2006.

[19] The Eclipse Graphical Modeling Project (GMP),
Online Documentation. http://help.eclipse.org/ganymede/
index.jsp. March 2010.

[20] Steinberg, D., Budinsky, F., Paternostro, M., and
Merks, E. EMF: Eclipse Modeling Framework 2.0. ISBN
0321331885, Addison-Wesley Professional, 2009.

[21] Kolovos, D., Rose, L., Paige, R., and Polack, F.
Raising the level of abstraction in the development of GMF-
based graphical model editors, ISBN 978-1-4244-3722-1.
Workshop on Modeling in Software Engineering ICSE,
pp.13-19, 2009.

[22] The OpenSource SCADA System, Official Web-Site.
http://openscada.org/. March 2010.

[23] Gutierrez, S., and Branch, W. A comparison between
expert systems and autonomic computing plus mobile agent
approaches for fault management. Revista Dyna, ISSN 0012-
735, 168, pp.173-180, 2011.

[24] Montenegro, C., Gaona, P., Cueva, J y O. Martínez.
Aplicación de ingeniería dirigida por modelos (MDA),
para la construcción de una herramienta de modelado de
dominio específico (DSM) y la creación de módulos en
sistemas de gestión de aprendizaje (LMS) independientes
de la plataforma. Revista Dyna, ISSN 0012-7353, 169, pp.
43-52, 2011.

[25] Méndez, W. Diseño y Construcción de un Motor de
Ejecución de Redes de Petri para el Análisis de Estados de
una Unidad de Producción. Trabajo de grado. Escuela de
Sistemas de la Universidad Nacional de Colombia, Medellín,
Colombia, 2009.

