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RESUMEN: Este artículo presenta un esquema general de micro-simulación que captura importantes relaciones dinámicas y 
procesos de toma de decisiones entre agentes que afectan el espacio urbano. El artículo muestra cómo, a partir de formulaciones 
económicas y de la interacción de agentes, se logran simular patrones globales de comportamiento y dinámicas de ocupación 
del suelo urbano. 
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ABSTRACT: This article presents a general agent-based simulation approach that captures agents’ decision-making processes and dynamic 
relationships that determine urban shape. The article shows how to simulate urban growth patterns and land-use change dynamics using 
economic assumptions and by modeling the interactions of computational agents.
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1.  INTRODUCTION

Individual decisions determine changes in land use, 
but they are also determined by land-use policies 
and planning. Urban planners need to understand 
the dynamics of land-use changes in order to assess 
local policies and devise the economic and regulatory 
incentives to guide urban growth. However, urban 
systems are highly complex and involve non-linear 
interactions of physical, economic, and governmental 
agents with conflicting interests. Such systems can 
reach different equilibrium states through a variety of 
trajectories. As a result, urban dynamics processes are 
still poorly understood [1]. 

The models for explaining land-use and land-use changes 
range from stylized models of economic equilibrium, 
[2–4] in which spatial features are simplified and 
decision-makers are highly homogeneous, [5–8] to 
detailed comprehensive models that integrate economic 
modeling with spatial data and computer simulation. 

Equilibrium models have been extended by adding a 
spatial dimension and by integrating the interaction 
between transportation demand and land-use [9,10], 
and more recently, equilibrium models add endogenous 
congestion effects [11,12]. Spatial interaction models 
have also been modified to include dynamic adjustments 
in production and demand [13].

Forrester [14] takes a different approach and develops a 
simulation model that directly addresses the complexity 
of urban dynamics. In Forrester’s model, population 
and economic growth drive urban growth within a 
fixed land area and the city is a self-regulatory system 
going through a cycle of growth, maturity, and decline. 
This model was the first to include both the positive 
and negative feedback loops of urban systems, thus 
explaining some unintended results of policies such 
as housing subsidies.

With the increased availability of geographical 
information systems and data, urban models are now 
more disaggregated than the models discussed above. 
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The recent literature on computer models of land-use 
changes is extensive; see [1] for a comprehensive 
review. Urban modeling is now approached from 
complex systems theory. Models for complex systems 
use behavioral and allocation rules to reproduce 
emergent behaviors. The most commonly used 
modeling approaches are cellular automata [15], and 
agent-based simulation [16].

Agent-based simulation models were first developed 
during the 1980s [17–20] with a growing number of 
applications to computer science [21–23] , software 
development, control systems, [24–26] and negotiation 
[27]. Applications in complex socio-economic systems 
are less common, but agent-based simulation models 
have been applied to study markets and economic 
systems [28] and they have also been incorporated to 
wide-scale urban planning models [29]. 

To our knowledge, with the exception of [30], who 
develops and tests agent-based models of urban 
sustainability, there have been no instances of ABS 
for studying urban dynamics in Colombia. This is 
partly because agent based simulation (ABS), and its 
applications are not well known by urban planners. 
In this paper, we use a model developed by [30] to 
explain how the ABS methodology can be applied to 
model dynamics of urban land-use changes. This model 
is developed using NETLOGO, an open multi-agent 
modeling environment developed by [31].

This article is organized as follows: Section 2 presents 
the simulation environment and the main concepts for 
building an agent-based model. The methodology is 
illustrated in Section 3, using a model developed by 
[30]. The model formulation and simulation results are 
presented in Sections 4 and 5, respectively. 

2.  MODELING URBAN LAND-USE DYNAMICS 
USING AGENT-BASED SIMULATION  

Agent-based simulation is a technique for modeling 
processes as dynamic systems of interacting agents. 
An agent is a software piece containing information, 
attributes and behavior, and which represents an entity 
of an artificial computational world [32]. Agent-based 
modeling is essentially a collection of algorithms 
logically programmed into the methods of the classes 
that represent the agents [33]. A class contains 

information (attributes and variables) and behavior 
methods that act upon such information. Methods 
and information can be public, private, or protected—
meaning that different computing entities have different 
access to information [34], and interaction between 
model’s agents arises from information exchanges 
established in their behavior methods.

In an urban land-use model, an agent can represent 
an individual (e.g., worker, consumer); a social group 
(e.g., family, industry, government); an institution 
(e.g., market, regulation system); a biological entity 
(e.g., ecosystem, forests); or a physical entity (e.g., 
infrastructure, regions). Agents can have learning 
capabilities, similar to the human cognitive functions 
and abilities [28]. In addition, agents can be organized 
hierarchically. For example, an agent representing 
an industry can be composed of agents with a lower 
hierarchical range, such as a worker or a manager. 

Ideally, classes representing agents would have the 
same decision-making and flexibility of the real 
world-entities they represent. This means that agents 
behave according to their preferences, institutions, and 
constraints; and that no external equilibrium conditions 
are imposed. Once the classes and methods representing 
real-world entities are built, the rules and mechanisms 
governing agent interactions are built. Interaction 
mechanisms can be face-to-face, neighborhood rules, 
processes, and laws, among other rules [28].  

In addition, an agent-based model can contain 
artifacts, which are elements that make no decisions, 
but are part of an agent’s environment and can affect 
an agent’s behavior. In an urban model, artifacts can 
represent natural resources such as rivers or forests, or 
infrastructure elements [35]. Finally, an ABS model 
has parameters and auxiliary variables which contain 
exogenous information about initial conditions, and 
that can also be used for controlling simulation and 
changing simulation settings.

From a set of initial conditions, the state of the system 
is updated during each simulated time step, by applying 
the behavioral methods and interaction rules, and 
by updating the agents’ information. Such a model 
is dynamically complete because it updates its state 
based on the interactions between agents and the initial 
conditions, with no external intervention. 
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In the next section, we describe the structure and 
components of an urban land-use model developed 
by [30] which was implemented in NETLOGO [31].

2.1.  Agent-based modeling in Netlogo 

NetLogo is a free and open source modeling environment 
designed for simulating complex social phenomena. It 
was authored by Uri [31] and it is being developed 
by Northwestern University’s Center for Connected 
Learning and Computer-Based Modeling. A complete 
guide to agent-based simulation using NetLogo can 
be found in [31]. In this section, we briefly define the 
main components of the programming environment.

Patches: The NetLogo world is a two-dimensional grid 
of patches, which are individual squares (or cells) in 
the grid. These patches are a type of agent that can be 
used to represent both urban land and its state, and 
their position is represented by coordinates. The size 
and number of cells can be adjusted using the settings 
option in NetLogo’s tool bar (See Fig. 1).

 
Figure 1. Patch setting option in Netlogo From Wilensky 

(1999)

Agents. Agents are discrete entities which can follow 
instructions. Each agent carries out its own activity, all 
simultaneously [31]. There are four types of agents: 
turtles, patches, links, and the observer. Turtles are 
agents that can move and can be positioned in any part 
of a patch. In a land-use model, these agents can be 
families or industries. As discussed before, patches are 
agents that do not move, although they have behaviors. 
A link is an agent connecting two turtles and can be 
used for modeling relationships such as father/child. 
Finally, the observer agent does not have a location and 
it can be used to model institutions, which interact with 
other agents. Figure 2 depicts a set of specific turtle 
agents with the ants form. 

 
Figure 2. Example of NetLogo’s turtle agents. From 

Wilensky (1999)

Agent variables. These variables store agents’ 
attributes. Global variables have only one value and 
can be accessed by every agent. By contrast, variables 
belonging to each agent have their own value [31]. 

Procedures. NetLogo provides two types of directions 
for agents: commands and reports. Commands, such as 
“move-to”, “die”, or “clear” control agents’ behaviors. 
Reports are used for asking agents to compute a value and 
return the result. Basic commands and reporters built into 
NetLogo are called primitives. User-defined commands 
and reporters are called procedures. Algorithm 1 shows 
an example of a procedure for moving agents randomly. 

3.  AN EXAMPLE OF A MODEL OF URBAN 
LAND-USE USING NETLOGO

As discussed before, our example is based on a model 
developed by [30]. This model contains two main 
sectors: industry and labor. Urban growth responds to 
economic and population growth and it is constrained 
by the exhaustion of natural resources; in this case, 
land. The model components are summarized below:
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Algorithm 1. Algorithm for agents’ random movement

3.1.  Urban land

NetLogo’s patches form a grid which, in this case, 
represents urban land. Urban grid cells have two states: 
developed or undeveloped. The cells with trees represent 
undeveloped areas, while colored cells represent 
developed land. The intensity of a color depends on 
the value (price) of developed land, which is one of the 
attributes of land in the model. Other attributes belonging 
to the cells are: attractiveness, which represents the 
preferences of agents for occupying a cell; price, which 
represents the economic value of land; density, which is 
the number of buildings per area unit; and distance, which 
is the distance of the nearest work center.

3.2.  Agents

There are two main classes of agents: developers 
and households. Each class is subdivided into types, 
according to the attributes of the agents. Household 
agents are a group of persons that demand housing. 
Households have unique attributes, mainly income and 
work location. Household agents prefer housing units 
that are closer to their place of work. 

In this model, households are reactive agents and 
dynamics is driven by the behavior of developers. 
Developers transform urban land by building housing 
or industry units. Developers’ types are defined based 
on the sector they attend (low or high income, for 
example), but all developers perform the same actions 
that change land use. These actions are: deforesting, 
changing land value, changing land attractiveness, and 
increasing density. 

Deforestation occurs every time an undeveloped cell 
is urbanized. Urbanization also implies changing 
land value because high-value buildings increase 
neighborhood price whereas low-value buildings 
decrease the value of a land cell and of neighboring 
cells. Similarly, urbanization changes the attractiveness 
of land and the density of its population. 

3.3.  Artifacts

At the beginning of the simulation, the land is covered 
by forests which represent rural areas, open spaces, or 
other environmental amenities which are affected by 
urban growth. Forests are an artifact which is defined 
to make a future analysis of urban growth sustainability. 

3.4.  Parameters, controls, and exogenous variables

Controls are used for initializing agents and cells’ 
attributes as well as for governing the simulation. 
Parameters and exogenous variables are defined for 
experimenting under different conditions. Among the 
parameters that can be changed by users are: initial 
endowment of forest land, growth rates for a given 
population, number of jobs created by a particular 
industrial unit, the number of industrial units that can 
be built during the simulation, and the average number 
of persons in each household. Users can also change 
developers’ search parameters and preferences. 

In the following section, we describe in greater detail 
the assumptions used for building the behavioral 
methods of developer and person agents.

 4.  MODEL FORMULATION

We assume that agents are rational and that they 
maximize utility. Developers have complete information 
about developed and non-developed land, and their 
utility function ranks available land units according 
to their attractiveness, location, and building density. 
As discussed above, persons (corresponding to 
households) are passive agents in this model, which 
is consistent with other approaches [36]. An agent 
demanding housing is assigned to the unit closest to 
his or her job and with the lowest price. In the case of 
a tie between housing alternatives, the model assigns a 
random housing unit to the agent. Population increases 
each time step, according to an exogenously defined 
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growth rate. This population growth fuels housing 
demand. Although this is not a model of the housing 
market, agents compete for the land units that are more 
accessible, and land units are allocated to the agents 
that value them most. 

4.1.  Developers’ behavior

As discussed previously, developers maximize a utility 
function. Developer utility has two components: a 
deterministic component, represented by a Cobb-
Douglas function that represents their preferences, 
and a random component that reflects uncertainty 
in decision-making [37]. Although developers have 
perfect information about land cells, they do not 
evaluate all undeveloped cells. Instead, they evaluate 
the utility of developing each land unit belonging to 
a random sample, which is drawn from the set of all 
available units, using a uniform probability distribution 
function. 

The utility function of Eq. (1) is a Cobb-Douglas 
function commonly used in ABS [31,38]. 

U is the utility of developers, which depends on the 
distance of the land unit to the nearest commercial or 
work center, dist; on the density of buildings in the 
land unit, dens; and on the attractiveness of the land 
unit for persons, ps. These factors are weighed using 
parameters βα , , and γ  which vary according to the 
developer’s type in order to represent the preference 
of developers of low-income, high-income,  and 
commercial neighborhoods.

4.2.  Simulation

Dynamic behavior results from applying the rules 
described above and updating system’s state each 
(simulated) time step. At each time step, t∆ , the 
following sequence of events is followed:

•	 Housing demand increases as a result of population 
growth.

•	 New land cells are developed according to the 
developers’ preferences and available savings.

•	 Savings are updated.

•	 Attributes of developed land cells are updated. 

•	 Developed land units are assigned to demand, and 
land prices are updated. 

In the algorithm above, the attributes of land cells are 
updated using the idea of neighborhood, also used 
by cellular automata models, and which is defined as 
those cells whose attributes change instantly whenever 
a neighbor cell changes its state/activity [15]. This 
neighborhood approach gives the model a spatial 
dimension, in addition to the dynamic dimension 
added by increasing simulated time. Land development 
decisions change a cell’s attributes, but they also 
influence the neighborhood attributes, as depicted in 
Fig. 3.  

 
Figure 3. Neighborhood

The model runs for 400 time steps with a time step of 1.

5.  RESULTS 

In this section, we run the simulation using three 
different scenarios for the model parameters. The 
results we present here illustrate how small changes 
in the parameters of the model described above result 
in different urban configurations. For the base case, 
developers of low-income neighborhoods look for land 
units with the lowest cost, and assign low weight to land 
attributes such as distance to the nearest working center 
(industry or commerce unit), density, and attractiveness. 
Developers of high-income neighborhoods, by contrast, 
assign a high value to land attributes. 

There are no budget constraints in the base case. 
Developers build new units considering only the 
demand of housing, and labor demand from industries. 
Table 1 shows the values of the parameters for the 
base case. 
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Table 1. Values of the parameters for the basic model

Parameter Value Parameter Value
Employments by 

center 200 Low income 
developers

α 0. 3
β 0.3

Max Work-
Centers 77 γ 0.3

High income 
Developers

α 0.5 Work-Centers 
Developers

α 1
β 0.8 β 1
γ 0.8 γ 1

Low and high income neighborhoods grow from this initial 
configuration. Figure 2 shows the results by the end of the 
simulation. As can be seen in Fig. 4, high-income residences 
(light gray) are closer to the work centers, than low-income 
buildings (dark gray). The value of land is higher for work 
centers, followed by high-income neighborhoods and low-
income neighborhoods. This behavior is consistent with 
results reported in the literature [12,13,15].

Figure 4. Base scenario, simulation results

Results in Fig. 4 correspond to a simulation length of 400 
time steps. If we extend the simulation time to 800 periods, 
the city reaches its limits to growth, which are given by the 
fixed amount of land. These results are shown in Fig. 5.

  

Figure 5. Limits to growth

The results above assume that all new housing units are 
assigned, regardless of people’s income. Similarly, new 
houses are built independently of developers’ income. 
A more realistic assumption would be to assign a value 
to the income attribute, and to allow both households 
and developers to save their disposable income in order 
to reinvest it in property or development. In a second 
scenario, households earn an average income, which 
depends on the number of work centers in the city. 
City growth is completely endogenous, and does not 
depend on exports. 

In this second scenario, both developers and households 
are constrained by their income. If there is not enough 
demand, developers cannot build new housing units. 
Similarly, income restricts people’s choices of the type 
of residences they can afford. Only people with high 
income can invest in high-income residences or build 
new work centers. The results of the simulation with 
these assumptions, and the same initial conditions of 
a basic scenario are shown in Fig. 6. As Fig. 6 shows, 
segregation is higher in this scenario. High-income 
neighborhoods occupy locations near industrial 
(including commerce) centers. These industrial centers 
tend to agglomerate forming a city centre, which is 
surrounded by low-income neighborhoods. Notice that 
the average distance of low-income neighborhoods to 
the city centre increases with respect to Fig. 4.

 
Figure 6. Scenario 2 (income constraints), simulation 

results

For the third scenario (Scenario 3, strategic 
infrastructure), we assume that developers of industrial 
or commercial units have a preference for strategic 
urban infrastructure. In this case, developers of 
commercial units prefer to be near the main road of 
the city, and still value low-priced land. In addition, the 
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parameters for developers are modified. As is depicted 
in Table 2, for the third scenario, the developers 
of low-income neighborhoods look for land units 
nearest to working centers, and assign low weight to 
density and attractiveness. Developers of high-income 
neighborhoods, by contrast, assign a high value to 
density and attractiveness.

Table 2. Parameters of Scenario 3 (strategic infrastructure)

Parameter Value Parameter Value
Low-

income  

developers

α 0.8 High-
income 

developers

α 0.2
β 0.1 β 0.8
γ 0.1 γ 0.8

Figure 7 shows the final urban configuration with the 
assumptions of Table 2. Work centers are located near 
the main road, and low-income neighborhoods grow 
around them. High-income neighborhoods move to 
the suburbs.  

Figure 7.  Simulation results for the strategic 
infrastructure dcenario (Scenario 3)

The segregation of low and high-income neighborhoods 
observed in Fig. 7 is produced by the increase of the 
weight of attractiveness in the utility function of 
developers of high-income neighborhoods..

6.  CONCLUSIONS

In this article we illustrate the capability of agent-based 
simulation for studying the behavior of complex social 
systems. The land-use model we present is a simplified 

model of the decisions made by urban developers. The 
behavior of agents is based on economic theory, such 
as utility maximization, and on dynamic rules that 
establish how state and auxiliary variables are updated. 
Agents’ preferences over land attributes are represented 
by a Cobb-Douglas utility function and uncertainty in 
decision-making is modeled by examining random 
samples of available land. In addition to the dynamic 
rules for updating the state of the system along time, 
the model has a spatial dimension and changes in 
the attributes of a land cell also affect the state of 
neighboring cells. As results show, the agent-based 
model allows for a wide range of settings that lead to 
different spatial and social configurations of the city 
from the same initial conditions. The model is able to 
reproduce the segregation patterns predicted by other 
land-use models, which, along with other behavioral 
tests reported in Liévano (2010), supports the validity 
of the assumptions and the model structure. Future 
work includes testing the model with GIS data from a 
real location, and estimating the parameters of utility 
functions using real and experimental data. 
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