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ABSTRACT: MEG/EEG brain imaging has become an important tool in neuroimaging. The reconstruction of cortical current flow is an 
ill-posed problem, but its uncertainty can be reduced by including prior information within a Bayesian framework. Typically this involves 
using knowledge of the cortical manifold to construct a set of possible regions of neural source activity. In this work a second stage is 
proposed to reduce localisation error without severely increasing the computational load. This stage consists of iteratively updating the set 
of possible regions based on previous reconstructions, in order to focus on those brain regions with a higher probability of being active. 
The proposed methodology was tested with synthetic MEG datasets giving as a result zero localisation error for single sources and different 
noise levels. Real data from a visual attention study was used for validation.
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RESUMEN: La reconstrucción de actividad neuronal a partir de datos MEG/EEG se ha convertido en una importante herramienta en 
neurología. A pesar de ser un problema mal condicionado, su incertidumbre se puede reducir incluyendo información previa en algoritmos 
basados en inferencia Bayesiana. Típicamente esto implica el uso de conocimiento acerca de la superficie cortical para generar posibles 
regiones de actividad neuronal. En este trabajo se propone una segunda etapa con el objetivo de reducir el error de localización sin aumentar 
fuertemente la carga computacional, esta etapa consiste en actualizar iterativamente el conjunto de posibles regiones de activación 
basándose en las reconstrucciones previas, enfocándose en aquellas regiones del cerebro que tienen más probabilidad de tener actividad. 
La metodología propuesta fue probada con datos simulados de MEG dando como resultado error cero de localización para fuentes únicas y 
diferentes valores de ruido, también se realizaron pruebas de validación con datos reales de actividad en la corteza visual.

PALABRAS CLAVE: Problema inverso MEG/EEG, Múltiples fuentes previas dispersas, Imágenes cerebrales.

1.  INTRODUCTION

MEG/EEG neural activity reconstruction involves the 
estimation of the cortical current distribution, which 
gives rise to the externally measured electromagnetic 
field. It is based on the assumption that local groups 
of neurons (around 104) can be modelled as equivalent 
current dipoles. There are two main ways to reconstruct 
brain activity based on this dipolar model: (a) Assume a 
small number of activated regions of arbitrary location 
and orientation, and fit with a non linear search through 

the brain [1]. (b) Populate the source space with a large 
number of dipoles distributed at fixed locations and 
orientations and estimate their amplitude. Recently 
major effort has been dedicated to the distributed 
approach because it is linear, independent of the number 
and characteristics of activated regions; and because 
using strategies to reduce the noise and search space, 
it is robust and computationally feasible [2].

Since the introduction of the well-known minimum 
norm estimation (also known as total least squares 
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observer) to neuroimaging [3], it has been noted how 
the inclusion of prior information can reduce the 
uncertainty of the solution. The use of a smoother 
proposed by Pascual-Marqui et al. [4] showed how 
the same minimum norm structure could be improved 
with more informative priors.

These static approaches have been improved with 
the inclusion of temporal information with Kalman 
filters[5]. The Kalman filter is a stochastic optimal 
estimator that updates the first two moments of random 
variables (in this case the dipoles) based on the data, 
providing a robust solution [6]. This Markovian update 
is highly dependent on the temporal transition among 
samples. Initially authors treated this problem with 
quadratic parametric equations based on physiological 
constraints [5, 7]. An extension to higher order models 
was presented in [8, 9].

The use of Kalman filtering presented two main 
limitations: the lack of information to form the 
temporal model of all the neural activity, and the 
high computational burden with large sets of dipoles. 
Inclusion of temporal models from the data [10] and 
good estimation of parameters [9] allowed the reduction 
of the temporal model uncertainty, but model reduction 
techniques [5, 11] were unable to allow an increase 
in the number of dipoles, a requisite to reduce the 
quantisation error; neural sources between dipoles can 
only be located in the nearest dipole.

The main improvement of these Kalman filter 
approaches has been the natural inclusion of the 
Bayesian framework, already used in economy, 
engineering and astrophysics. Its implementation in 
neuroimaging is described within a unifying Bayesian 
framework compiled in [12]. The Bayesian approaches 
are inherently static, but given the off-line analysis 
of MEG/EEG data several dimensional reduction 
techniques such as principal components and wavelets 
can be implemented over the time window of interest 
[13, 14]. This avoids the regularisation based on data 
commonly used on inverse problems [15].

The main idea of the Bayesian framework is that if the 
MEG/EEG inverse problem is ill-posed, then it is not 
possible to perfectly reconstruct the neural activity, 
but it is possible to provide a probability distribution 
of the states with a given degree of certainty about 

their characteristics. It is achieved by using the theory 
of Empirical Bayes to construct an informative state 
covariance matrix, formed by the weighted sum 
of a set of possible covariance components. Each 
covariance component might, for example, describe 
the sensor level covariance one would expect due to 
an active patch of cortex. These weights are obtained 
by optimising a given cost function. A good example 
of this implementation is the Multiple Sparse Priors 
(MSP) algorithm [16], using the negative variational 
Free energy [17] for that purpose.

The MSP estimation is highly dependent on the set 
of selected covariance components (or patches). In 
absence of knowledge about the size, shape and location 
of the neural current flow, the set of components should 
ideally be composed of patches of all possible locations 
and sizes. But this would incur a prohibitively large 
computational load, conversely too few patches will 
result in an under sampled solution space.

In Harrison et al. [18] a Green’s function based on a 
graph Laplacian was proposed in order to generate the 
set of components. This forms a compact set of bell 
shaped patches of finite cortical extent. Preliminary 
tests of this work showed that if the neural source is 
far from the patch centres of the Green’s function the 
estimation fails [19].

In this work we present an improvement for reducing 
the localisation error due to a poor initial patch set in 
the MSP reconstruction. We suggest an iterative patch 
selection approach in which the result of a previous 
MSP reconstruction is used to generate a new set of 
patches. This new patch set is seeded close to the 
reconstructed sources of the previous iteration. This 
process can be done iteratively using the Free energy 
of each inversion as a cost function.

This manuscript proceeds as follows. In Section 2 the 
inverse problem is presented in the Bayesian framework 
and then the MSP algorithm is explained in terms of 
the Restricted Maximum Likelihood optimisation. The 
new stage for reducing the localisation error is also 
explained. In Section 3 simulation results with noisy 
synthetic MEG data are presented, these datasets were 
generated using realistic head models computed with 
the SPM8 software package (http://www.fil.ion.ucl.
ac.uk/spm). In Section 4 the proposed methodology is 
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validated with real MEG data;visual cortex activity is 
recovered after intentionally removing patches from 
the region with neural activity. Finally, the results are 
discussed in Section 5.

2.  THEORY

The MEG/EEG data can be related to the neural activity 
that generates it using the general linear model (GLM):

The neural activity propagates the energy of 
dN  current dipoles through the head, where a set of cN  

gradiometers/electrodes is used to acquire nN  time samples 
on the dataset . The fixed location of the dipoles 
guarantees a linear propagation model that allows the use 
of a fixed gain matrix L . Finally, the measurements are 
affected by zero mean Gaussian noise ϵ. Empty room noise 
can be introduced for more realistic assumptions [20].

For a reliable reconstruction of the neural activity it 
is necessary to define a large number of fixed dipoles 
inside the search space; these dipoles usually outnumber 
the sensors (Nd>>Nc), making it an ill-posed problem. 
Under Gaussian assumptions the solution of the GLM 
can be expressed as the minimisation problem:

( ) ( ) 0| arg min | ( )ˆ
J

J E p J Y p Y J p J = ∝  	 (1)

where the likelihood is  , with 
1M L−≈ , and the prior source probability distribution 

is ( )0 ( ;0, )p J J Q=  . Assuming a priori that J  and 
ϵ are zero mean Gaussian processes with covariances 
Q  and  respectively, and ( )⋅  is the multi normal 
probability density function.

The estimated source activity Ĵ is obtained by 
minimising Eq. (1) [2]:

	

this solution is static but it can be extended to dynamic 
activity by projecting the temporal information as 
proposed in[13, 14].

2.1.  Computation of the covariance components

The solution of the GLM is highly dependent on a 
good selection of the prior covariance matrices Q and 

. In absence of sensor noise information the noise 
is considered independent and uniformly distributed: 

, with NcI  a ( )c cN N×  identity matrix.

The prior source covariance matrix has been traditionally 
defined as a single smoother [2]. But modern algorithms 
based on Empirical Bayes such as the Multiple Sparse 
Priors (MSP) algorithm [16] divide the smoother into 
a set of qN  diagonal components { }1, ,

qNC C C= … , 
each component typically (but not always) describing 
covariance due to a connected patch of cortex. These 
are subsequently weighted by the algorithm to make 
an estimate of the sensor covariance Q:
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fMRI data can be highly informative when considered 
as components[21], but in absence of prior information 
these components are patches generated with a Green’s 
function.

The sources of neural activity are composed by focal 
regions of neurons with synchronous activity; these focal 
regions are mostly bell shaped with a maximum in their 
centre and attenuation in amplitude corresponding to the 
square of the distance to it [22]. The Green’s function is 
used to generate bell shaped (Gaussian) patches for each 
covariance component following this behaviour [18].

The Green’s function is based on a graph Laplacian
d dN N

LG ×∈R   that uses the vertices and faces provided 
by a structural MRI of the cortical manifold. The 
Green’s function d dN N

GQ ×∈R is defined as:

LG
GQ eσ= 					     (2)

withσ  a positive constant value that determines the 
size of the activated regions. Each patch (covariance 
component) is generated with a column of GQ  forming 
a bell centred on the corresponding vertex. The size of 
the regions, the number of patches, and their locations 
must be carefully selected in order to avoid empty 
spaces in the search space. If the set is too large the 
computational effort to determine which of them are 
active will be prohibitive.

With the set of covariance components C  generated, 
the weights (hyperparameters) { }1, ,

qNλ λ λ= …  are 
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pruned to those iC  corresponding to activated regions 
with a non-linear search method, using the Free energy 
as the cost function.

2.2.  Definition of a cost function

Within the Bayesian Framework the optimal set 
of hyperparameters is obtained from the expected 
value of their posterior probability given the data: 

[ ( )ˆ | ]E p Yλ λ= . It can be expressed in terms of 
known distributions using the Bayes’ theorem:

	 ( ) ( ) 0| ( )
|

( )
p Y p

p Y
p Y
λ λ

λ =

where the evidence ( )p Y  is fixed for a given dataset. 
The problem is that we only have an approximate 
posterior: q ( ) ( )|p Yλ λ≈ ,and it is necessary to use a 
cost function to find the optimal set of hyperparameters.

Let us define the log evidence as:

	 ( )log ( ( ) || ( | ))p Y F KL q p Yλ λ= +

with ( )KL ⋅  the Kullback-Leibler (KL) divergence. 
When the approximate posterior ( )q λ  is equal to the 
true posterior ( | )p Yλ , the KL divergence is zero, and 
the Free energy is maximised: log ( )F p Y= .

The Free energy gives a measure between the variance 

of the data , and the model based 

variance ; while at the same time 
punish ing  models  wi th  la rge  numbers  o f 
hyperparameters[17]:

	

	

where | |⋅  is the matrix determinant operator, and the 
prior and approximate densities of the hyperparameters 
are  consideredto be Gaussian dis t r ibuted: 

, and . The optimal combination of hyperparameters is 

achieved when the maximum Free energy value: 
arg axˆ m F

λ
λ = , which is when the Free energy is 
approximately the log evidence. In absence of prior 
information the hyperparameters may be selected with 
zero mean and infinite variance in order to guarantee 
flat hyperpriors.

2.3.  Restricted Maximum Likelihood

An optimal way to optimise the Free energyis with the 
restricted maximum likelihood (ReML) algorithm, that 
iteratively calculates the gradient and Hessian of F  
with respect to the hyperparameters:

	

	

with

	

The update of the hyperparameters is obtained for 
1, ,k K= …  iterations:

	

using Fisher scoring as the updating rule:

	

Within the ReML updates, those hyperparameters 
near to zero are pruned for faster computation. The 
convergence is achieved for small changes in the Free 
energy .Note that the total Free energy was 
not computed with ReML, it is done just once at the 
end of the iterative process.

2.4. Iterative update of patches

Pyramidal cells located in the grey matter generate 95 % 
of the neural activity acquired with MEG/EEG devices 
[22]; this reduces the search space where the patches 
must be located. The original implementation of the 
MSP and similar algorithms is basedon a fixed set of 
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patchesdistributed over the entire cortical surface [12].
However these patches do not cover it entirely leaving 
empty spaces, if an active focal source is located in a 
region for which no patches existthe reconstruction is 
severely affected (See Figure 1 for example).

The MSP algorithm provides a Free energy value for the 
source reconstruction based on a given set of patches. This 
Free energy corresponds to the set of hyperparameters 
that best fit the data with the givenpatches [16]. In order 
to proceed we make two assumptions. Firstly, that those 
patches nearest to a true (but missing) source will have 
higher hyperparameter values. Secondly that an MSP 
reconstruction based on a set of patches that includes the 
true source location, will have higher Free energy than a 
reconstruction which does not. Both assumptions have 
been experimentally validated by evaluating the solution 
obtained with sets of randomly located patches [23].

This procedure is similar to the field of genetic algorithms, 
where the most probable patches are used as “parents” 
to generate new “children” in their neighbourhood. The 
proposed procedure can be implemented as follows:

1.	 Define a fixed set of patches covering the entire 
cortical surface. It will give an initial maximum 
localisation error ofthe distance between patch 
centres.Perform the inversion with the defined set 
of patches,and identify the subset of active ones.

2.	 Create a reconstruction using a new set of patches 
by selecting those vertices in the region surrounding 
this subset, and add it to the original set of patches. 
Perform a new inversion with the updated set of 
patches and obtain the next Free energy value; if 
it increases compared with the previous inversion 
redo step 2; if not  finish and keep the solution of 
the previous reconstruction.

Note that each iteration is performed over the initial set 
of patches plus a new set based on those active regions 
identified in the previous iteration. The new set of patches 
must cover a region surrounding those active vertices, for 
example a circle of twice the diameter of a single patch 
centred on the location of the most active vertex. The initial 
set of patches is necessary because background activity is 
expected and it must be explained; i.e. several brain regions 
are permanently active but may not be of interest.

When a patch is correctly located at the neural source 
location, the Free energy reaches its maximum; it 

is expected that further iterations will maintain the 
maximum Free energy, but it has been observed that 
sometimes in following iterations more patches become 
active around the true source, increasing the complexity 
and consequently reducing the Free energy value. This 
issue motivates the use of the variation of Free energy 
as stopping criterion of the proposed algorithm.

In the following sections this stage will be tested with 
noisy synthetic data and validated with data due to 
visual cortical activity.

3.  SIMULATION RESULTS

Single trial datasets of 161nN =  samples over 
274cN =  MEG sensors were generated, by projecting 

a single source in different locations in the cortical 
surface. A sinusoidal signal of 20 Hz was used for the 
temporal waveform of the source of neural activity. A 
Signal to Noise Ratio 0SNR =  dB was added to the 
data using white random noise. The sources were focal, 
Gaussian meshes with full width at half maximum 
(FWHM) of 10 mm, this size corresponds to common 
neural activated regions. Figure 1(a) shows an example 
of a source located in occipital cortex. The translucent 
glass brains of Figure 1 show the frontal, lateral and 
superior views of the 512 dipoles with highest variance 
during the time window of interest (200 – 500 ms).

Figure 1a Figure 1b
Figure 1. (a) Synthetic simulated source. (b) MSP source 

reconstruction with the default set of patches. Note the 
large error in the estimation

The MSP algorithm was implemented over a grid 
of 8196dN =  dipoles oriented orthogonal to and 
distributed over the entire cortical surface, as shown in 
Figure 2(a). The default MSP inversion was performed 
with 512qN =  patcheswhose centres were randomly 
selected from the dN  dipoles locations as can be seen in 
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Figure 2(b). The size of the patches was approximately 
10 mm. The initial values used in the MSP algorithm 
optimisation are those of [16].

Figure 2a Figure 2b
Figure 2. (a) Distribution of dN  dipoles over the cortical 
surface. (b) Default distribution of the qN  patch centres, 

note the blank spaces due to the random selection

The single source shown in Figure 1(a) was located 
intentionally far from the patch centres of Figure 2(b). 
The source reconstruction made with the MSP shown in 
Figure 1(b) is a good example of the algorithm failure 
when the patches do not match with the sources.

3.1.  Results of iterative updates

Figure 1(b) shows that most of the energy is divided 
in three separated regions, one near the true source, 
one superficialin the left hemisphere, and another one 
deep in the left hemisphere. These activated regions 
were used as seeds about which to create a new set of 
patch centres. New patch centres were drawn from a 
Gaussian distribution of FWHM=20 mm around each 
active peak(Twice the size of a patch, see Figure 3(a)). 
For simplicity in this example, the default set of patches 
was not used in the new sets; as the synthetic data do not 
have extra activity this does not affect the Free energy.

Figure 3a Figure 3b

Figure 3. (a) Distribution of the patches for the second 

iteration based on the active sources of the first iteration. (b) 
MSP source reconstruction with the new set of patches, note 

how the spurious activity has almost disappeared

Figure 3(b) shows the MSP source reconstruction 
obtained with the new set of patches. It is clear that the 
estimated active cortex is now bounded by the more 
focally seeded patches. Also the solution is beginning 
to approach the expected results (Figure 1(a)).

A third iteration was performed again updating the set 
of patches.The third patch set (shown in Figure 4(a)) 
became in turn more focal and the reconstruction 
again approached the (focal) simulated case(Figure 
4(b)).

Figure 4a Figure 4b
Figure 4. (a) Distribution of the patches for the third 

iteration based on the active sources of the previousone. 
(b) Third MSP source reconstruction, the original source 

of neural activity was recovered

Given that the Free energy continued increasing, 
a fourth inversion was performed. Figure 5(a) 
shows the new set of patches filling the region of 
reconstructed activity. Figure 5(b) shows the fourth 
MSP reconstruction. The overlapping of patches around 
the true location meant that several overlapped patches 
were used to emulate the activity of the true source. The 
question now remains at which iteration should we have 
stopped, given that normally we have no knowledge 
of localisation error.

3.2.  Convergence

Each inversion is associated with a Free energy value. 
Table 1 shows its evolution through the inversions. 
Itshows how the Free energy increases and the 
localisation error decreases over iterations 1 – 3. At 
iteration 4 however, the Free energy begins to decrease 
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again; that is, this model (overlapping patches) has 
become unnecessarily complex to explain the data.

The localisation error of the source of neural activity 
was defined as the Euclidean distance between its 
true location: trueS , and the location of the dipole 
with maximum energy after the estimation, estS :

true esterror S S= − .

Table 1.Free energy values of the reconstructions with 
updated sets of patches.

Iteration Free energy Localisation error (mm)
1st -267.6 54.29
2nd -263.16 18.06
3rd -256.6 0
4th -258.28 7.84

Figure 5a Figure 5b
Figure 5. (a) Set of patches for the fourth inversion. (b) 
The overlapping of patches affected the fourth inversion, 

generating ghost sources

Preliminary tests with different noise levels (not shown 
here) and several source locations presented also zero 
localisation error after three or four iterations.

4.  VALIDATION WITH REAL DATA

We used some MEG data acquired in a visual attention 
task to validate the method. A detailed description of 
the experimental set-up and previous data analysis were 
presented in [24]. Averaged single subject data were used.

Figure 6(a)shows the measured activity at the scalp 
at 151.6  ms of recording. For this experiment the 
set of patches located within the visual cortex was 
deliberately sparse, affecting the source reconstruction 
as shown in Figure 6(b). This first reconstruction had 
a Free energy value of 1751.8F = .

Figure 6a Figure 6b 
Figure 6. (a) Measured MEG activity, note that it is 

localised near the visual cortex. (b) MSP reconstruction 
neglecting the patches in the visual cortex, the source 

activity surrounded the region.

The second iteration of patches is shown in Figure 7(a). 
The distribution of these patches was a Gaussian of 
FWHM=20 mm. Figure 7(b) shows the MSP estimation of 
the second iteration, there was an increase in the Free energy 
to 1753.9F = , and the source activity moved closer to 
the visual cortex. This new region was used to generate the 
new set of patches, shown in figure 7(c), for a third iteration 
where physiologically plausible sources in visual cortex can 
be observed. Figure 7(d) shows the final reconstruction.

Figure 7a Figure 7b

Figure 7c Figure 7d
Figure 7. (a) Set of patches for the second iteration. (b) 
MSP reconstruction of the second iteration, the source 
location was corrected. (c) Set of patches for the third 

iteration. (d) MSP reconstruction for the third iteration, the 
true location was correctly recovered.



Dyna 174, 2012 143

The Free energy for the third inversion was 1755.3F =
. Given that it continued increasing a forth inversion 
was performed, but the Free energy maintained its 
value finishing the iterative process and defining the 
third inversion as the final one.

5.  DISCUSSION

In this paperwe have presented a principled and 
computationally efficient patch update method for 
the MSP inversion scheme.This patch update is based 
in two assumptions [23]: Nearest patches of neural 
activity are active; and a source reconstruction with 
a patch over the true source has higher Free energy 
than a reconstruction without it. Theoretically both 
assumptions are explained by the accuracy of a solution 
with the right patch distribution, and the complexity of 
reconstructing the data without correct patches [17].

The ill-conditioned nature of the MEG/EEG inverse 
problem allows infinite possible solutions for a single 
dataset, and the noise increases this uncertainty. It is 
suggested that a fixed initial distribution covering the 
entire source space in order to allow the optimisation 
process to explain the non-interesting activity.One 
possible drawback of this algorithm is that it relies on 
an approximately correct initial inversion. There are 
however many similar approaches which (although 
entailing higher computational load) might in practice 
prove to be more robust. For example, one could simply 
use randomly distributed patch centres from the outset 
[23]. One could classify such inversions based either 
on that which yielded the highest Free energy (as here) 
or through Bayesian Model Averaging [25].

Some authors have criticised the convexity assumption 
on the Free energy [12], or proposed Markov based 
solutions [5]. But as stated in [25] the quadratic 
assumptions are comparable to the Euclidean norm 
estimation, and the source reconstruction used here 
is the same as Kalman gain with an improvement 
on priors, the Bayesian framework uses all the data 
for providing informative priors (Empirical Bayes) 
avoiding defining dynamics of the neural activity and 
allowing the reduction of model dimensionality [16].

Finally, note that a very similar procedure to that 
outlined here could be performed to determine other 

spatial characteristics such as the true extent of the 
patches. In this case, the same patch centres would 
be used but the Green’s function modified (Eq. (2)) 
between iterations. 
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