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ABSTRACT: We implemented an algorithm using the link variable method to solve the time dependent Ginzburg-Landau equation in 
a superconductor prism with circular geometry. The sample is surrounded by a thin layer of another superconductor at higher critical 
temperature and submitted to an external magnetic field applied perpendicular to its plane. The boundary condition is taken into account 
with the de Gennes extrapolation length.  We evaluate the magnetization, vorticity, the first, and the third critical 
thermodynamical fields as functions of the external magnetic field and  parameter.  We found that for these interfaces, the third critical 
field   and magnetization are largely increased while the first critical field  remains practically constant.
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RESUMEN: Implementamos un algoritmo usando el método de variables de enlace para resolver las ecuaciones Ginzburg Landau 
dependientes del tiempo en un prisma superconductor con geometría circular. La muestra está rodeada por una pequeña capa de otro 
superconductor a mayor temperatura crítica y sometida a un campo magnético externo aplicado perpendicular a su plano. Las condiciones 
de contorno son tomadas en cuenta con la longitud de extrapolación de de Gennes Evaluamos la magnetización, la 
vorticidad, el primero y tercer campos críticos termodinámicos como función  del campo magnético externo y el parámetro  . Encontramos 
que para estas interfaces, el tercer campo crítico termodinámico  y la magnetización aumentan grandemente mientras el primer 
campo crítico  permanece prácticamente constante.
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1.  INTRODUCTION

The properties and applications of superconductors 
are determined by their critical parameters. By 
nanostructuring a superconductor, one can modify the 
properties of an existing superconducting structure 
[1–6]. A way to modify, enhance, or suppress the 
properties of superconducting samples can be realized 
by controlling the sample boundary conditions. 
Theoretically, one can simulate different types of 
material by varying the de Gennes extrapolation 
length  in the boundary conditions for the order 
parameter. It is well known that the phenomenology 
of superconductivity can be described by the time-
dependent Ginzburg Landau (TDGL) equations [7–9]. 
In the present paper we use the TDGL theory to study 

the magnetization, vortex configuration, and the 
transition fields in a circular sector with arbitrary shape 
(see Fig. 1 of [10]). We use an algorithm considering 
the boundary conditions for the order parameter. Our 
procedure makes it possible to generalize the algorithm 
to any circular geometry and  value. According to the 
choice of boundary conditions, we will show that the 
superconductivity can be considerably enhanced, and a 
new classification of type-I and type-II superconductor 
may occur.

2.  THEORETICAL FORMALISM

The properties of the superconducting state are usually 
described by the complex order parameter  for 
which the absolute square value  represents the 
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superfluid density, and the vector potential A, which is 
related to the local magnetic field, as  
In dimensionless units, the TDGL equations are given 
by [11–14]:

 	 (1)

 (2)

Equations (1) and (2) were rescaled as follows:  in 
units of  lengths in units of ,  in units 
of  in units of , temperatures in 
units of , we use The dynamical equations 
are complemented with the appropriate boundary 
conditions for the order parameter:

   		  (3)

where  is the unity vector perpendicular to the surface 
and directed outward the domain of the superconductor, 
and  is the mesh size. This domain is defined by the 
internal and external radii, r and R, respectively, and 
spans an angular width, which can vary from 0 (slit) 
to 2π  (disc) (see Fig. 1 of [10]). (We will assume 
that the current density normal to surface does not 
vanish at the interfaces. We can show that the discrete 
implementation of this condition is as follows:

 	 		  (4)

 	 	 (5)

 	 		  (6)

 	 	 (7)

We unify the boundary conditions upon introducing  
γ=(1-σ⁄b). For convenience, this notation allows us to 
obtain a better analysis of the results.  For more details 
see [8].

3.  RESULTS

The parameters used in our numerical simulations 
were κ=2.2. 

The area of the circular sector is S= 49ξ2(T) for angular 
width θ=π/2 . The internal radius is r=ξ(T). Such 
that the external radius is given by 

. We have taken the length of the largest unit cell to 
be no larger than $0.1ξ(T)×0.1ξ(T). Since the order 
parameter varied most significantly over a distance  
ξ(T), this choice for the grid space is sufficient to pick 
the variations of Ψ. We started from the Meissner state, 
where Ψ =1 and A=0 everywhere are taken as the initial 
conditions. Then we let the time evolve until the system 
achieves a stationary state. This is done by keeping 
the external applied magnetic field Ha which is taken 
constant until the system achieves a stationary state. 
Next, we ramp up the applied field by an amount ∆H . 
The stationary solution for Hais then used as the initial 
state to determine the solution for Ha+∆H, and so on. 
Usually we started fro zero field and increased Ha until 
the superconductivity is entirely destroyed. We ramp 
up the applied magnetic field adiabatically, typically 
in steps of ∆H=10-5.

In Fig., 1 we determined the values of the magnetization 
for an external magnetic field Ha=0.28HC2(T) as a 
function of γ. At this magnetic field, the superconducting 
sample is still in the Meissner state and will be more 
pronounced for bigger values of γ. As one can easily 
notice, the negative magnetization grows with γ. We 
found a linear behavior of M as a function of γ, with  
m=0.0016±0.00001 as the slope.

Figure 1. Magnetization as a function of the γ parameter 
at Ha=0.28HC2(T) 

In Fig. 2, We present the magnetization as a function 
of the external applied magnetic field Ha for a circular 
sector for several values of the γ parameter. These 
curves present a typical profile of a magnetization 
curve of a mesoscopic superconductor and exhibit a 
series of discontinuities, in which each jump signals 
the entrance of one or more vortices into the sample. 
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Notice that the number of jumps and the transition fields 
vary significantly with γ.

 
Figure 2. Magnetization curve as a function of the 

external applied magnetic field for γ=1.0,1.1,1.2,1,3 

Another interesting feature is shown for the third 
critical field HC3(T), the critical field which marks 
the transition from surface superconductivity to the 
normal state. In Fig. 3, we present the  HC3 (T)-γ phase 
diagram for 5 samples with γ=1.0,1.25,2.0,2.5,3.0;  we 
found HC3(T)=0.26,0.72,1.63,2.25,2.99  for these cases, 
respectively. The superconductor/normal transition 
field HC3(T) grows quickly with γ.

 
Figure 3. The upper critical field HC3(T) field as a function 

of the γ parameter

The Cooper pair density as a function of γ is shown in 
Fig. 4. For these γ values, we observed a power-law 
behavior, and obtained slope m=-3.33±0.005.

 
Figure 4. The upper critical field HC3(T) field as a function 

of the γ parameter

In Figs. 5 and 6, we depict |Ψ|2 for the stationary states 
with a vorticity equal to 3. We choose different values 
of the γ  parameter to illustrate the role played by the 
boundary conditions on the properties of the interfaces. 
We use (a) γ=1.3 at  Ha=0.52HC2(T), and (b) γ=1.2  at  
Ha=0.42HC2(T). In both cases, we have 4 vortices in 
the sample.

 
Figure 5. Two-dimensional density contour plot of |Ψ|2 

for 3 vortices and the boundary conditions with (a)  γ=1.3 
at Ha=0.52HC2(T), and (b) γ=1.2 at Ha=0.42HC2(T) 
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In the superconductor/superconductor at higher critical 
temperature interface we see that |Ψ|2 is strongly 
enhanced in a region near the surface due to the 
shielding currents and the Cooper pairs originating 
from the superconductor of a higher Tc.

4.  CONCLUSIONS

In summary, an algorithm has been devised for solving the 
time-dependent Ginzburg Landau equations for circular 
geometry and a superconductor/superconductor at a 
higher critical temperature boundary condition. We have 
presented some evidence that, if we choose the γ parameter 
accordingly, we can strongly enhance superconductivity. 
Also, we found an analytical behavior for the magnetization 
curve as a function of the γ parameters; we obtained M~γ, 
HC3~γ and  〈|Ψ|2〉 ~ γ for this sample.

Figure 6. Two-dimensional density contour plot of 
|Ψ|2  for 3 vortices and boundary conditions with γ=1 at 

Ha=0.58HC2 (T)
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