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Abstract
In this paper, we present a nonlinear mathematical model, describing the
spread of high-risk alcohol consumption behavior among college students
in Colombia. We proved the existence and stability of the alcohol-free
and drinking state equilibrium by means of Lyapunov function and
LaSalle’s invariance principle. Also, we apply optimal control to study the
impact of a preventive measure on the spread of drinking behavior among
college students. Finally, we use numerical simulations and available data
provided by the United Nations Office on Drugs and Crime (UNODC) and
the Colombian Ministry of Justice to validate the obtained mathematical
model.
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Mathematical Modeling of the Spread of Alcoholism Among Colombian College Students

Modelamiento matemático de la propagación del 
alcoholismo entre estudiantes universitarios 
colombianos

Resumen
En este trabajo, presentamos un modelo matemático no lineal, describiendo
la propagación de consumo de alcohol de alto riesgo entre estudiantes
universitarios en Colombia. Probamos la existencia y estabilidad del estado
de equilibrio libre de alcohol y el estado endémico por medio de funciones
de Lyapunov y el principio de invarianza de LaSalle. Además, aplicamos
control óptimo para estudiar el impacto de una medida preventiva sobre
la propagación del comportamiento de consumo de alcohol entre los
estudiantes universitarios. Finalmente, usamos simulaciones numéricas y
datos disponibles, proporcionados por la Oficina de las Naciones Unidas
contra la Droga y el Delito (ONUDD) y el Ministerio de Justicia de
Colombia para validar el modelo matemático obtenido.

Palabras clave: Consumo de alcohol; modelamiento matemático;
sistemas dinámicos no lineales; control óptimo; número reproductivo
básico; simulaciones numéricas.

1 Introduction

Drinking alcohol is widely socially accepted and associated with relaxation
and pleasure, and some people drink alcohol without experiencing harmful
effects. However, according the World Health Organization (WHO) in
2016, the harmful use of alcohol resulted in some 3 million deaths (5.3%
of all deaths) worldwide and 132.6 million disability-adjusted life years
(DALYs)-i.e. 5.1% of all DALYs in that year. Mortality resulting from
alcohol consumption is higher that caused by diseases such as tuberculosis,
HIV/AIDS and diabetes. Among men in 2016, an estimated 2.3 million
deaths and 106.5 million DALYs were attribute to the consumption of
alcohol. Women experienced 0.7 million deaths and 26.1 million DALYs
attributable to alcohol consumption.

The report, which comes out every four years, reveals that all deaths
attributable to alcohol consumption worldwide, 28.7% were due to injuries,
21.3% due to digestive diseases, 19% due to cardiovascular diseases,
12.9% due to infectious diseases and 12.6% due to cancers. About 49%
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of alcohol-attributable DALYs are due to noncommunicable and mental
health conditions, and about 40% are due to injuries. Harmful use of
alcohol caused some 1.7 million deaths from noncommunicable diseases in
2016, including some 1.2 million deaths from digestive and cardiovascular
diseases (0.6 million for each condition) and 0.4 million deaths from cancers
[1]. Globally an estimated 0.9 million injury deaths were attributable to
alcohol, including around 370000 deaths due to road injuries 150000 due
to self-harm and around 90000 due to interpersonal violence. Of the road
traffic injuries, 187000 alcohol-attributable deaths were among people other
than drivers.

Worldwide, alcohol was responsible for 7.2% of all premature (among
persons 69 years of age and younger) mortality in 2016. People of younger
ages were disproportionately affected by alcohol compared to older persons,
and 13.5% of all deaths among those who are 20 − 39 years of age are
attributed to alcohol.

Young people often are in situations where drinking is tolerated or even
reinforced [2],[3]. Specifically, problem drinking during the college years is
a significant public health concern with a variety of negative consequences
like: missing class, falling behind in school work, engaging in unplanned and
or unprotected sexual activity, getting hurt or injured, damaging property,
getting in trouble with law enforcement, or requiring medical treatment
for an alcohol overdose [4],[5]. Heavy drinking also increases probability of
sexual victimization; alcohol use increased the risk of being victim to sexual
assault as well as the severity of the sexual assault in a sample of college
women [6],[7]. There are several variables linked to college drinking in
the literature, these influences include: demographic variables, personality,
drinking history, alcohol expectancies, drinking motives, stress and coping
and peer and family influence [4].

The situation in Colombia is no better than the rest of the world. It
has been estimated that Colombian youth tend to start drinking alcohol
at age 12 [8],[9]. The alcohol is the most common psychoactive substance
used in the country. According to the Colombian Ministry of Health and
Social Protection around seven million of people between the ages of 12
and 65 years are current drinkers (35 percent of this age group), around
2.4 million reported binge drinking (15 percent of this age group). The
most prevalence of drinking is reported between ages 18-24 (46%), followed
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by the ages 25-34 (43%). Among Colombian college students the data
provided by the United Nations Office on Drugs and Crime (UNODC) and
the Colombian Ministry of Justice [8] show that the percentage of drinkers
has decreased from 87.76% in 2012 to 84.28% in 2016 among men, and
from 82.51% in 2012 to 79.59% in 2016 among women.

To respond to problems related to drug use, Colombia is implementing
a national Policy on Drug Abuse 2014-2021 that is based on four pillars:
i)prevention; ii) treatment; iii) risk and harm reduction; and iv) health
promotion. The main programme on drug prevention is Strengthening
Families: Love and Limits, initiated in 2012 under the leadership of the
Ministries of Justice and Law, and Health and Social Protection, and
in close cooperation with the World Health Organization and UNODC.
Among the new partners to the programme, there are governorships,
mayorships, and family welfare institutions reaching 14.000 families, and
impacting over 50.000 persons, in 100 municipalities of 24 provinces in the
country.

In the present work, our goal is to analyze and explain the dynamic of
the prevalence of alcohol consumption among Colombian college students
through the analysis of a mathematical model given by a system of
nonlinear differential equations.

Mathematical modeling of infectious disease has its origin in the early
20th with an important work of Kermack and McKendrick [10] where it
is describes the relationship between susceptible, infected and immune
individuals in a population. The Kermack-McKendrick epidemic model
was successful in predicting the behavior of outbreaks very similar to that
observed in many recorded epidemics [11]. Mathematical models provide
useful tools to study the mechanism by which diseases spread and to predict
the future course of an outbreak and to evaluate strategies to control an
epidemic [12],[13].

In this paper, we consider drinking behavior as a “disease" which can
be spread through peer-influence. We use a system of nonlinear differential
equations to represent the relationships between non-drinkers, occasional
drinkers and alcohol dependent individuals. Our model is a variant of the
classical susceptible, exposed and infectious (SEI) model, here we consider
two levels of infectives, namely occasional drinkers and alcohol dependent.
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Several different mathematical models for drinking had been formulated
and studied [14],[15],[16],[17],[18]. In this paper, we use a modified model of
[19] to model alcoholism as epidemic and to the best of our knowledge such
model has not been used to analyze the problem of alcohol consumption
among Colombian college students. One main difference between our model
and the one considered in [19] is that a person with alcohol dependence
cannot recover unless they pass through a disease control strategy like a
treatment. Also, in our model is not possible for a susceptible individual to
become an alcohol dependent without passing through the moderate alcohol
consumption class. Furthermore, we analyze separately the prevalence of
alcohol consumption in both women and men.

In order to study the stability of the model proposed we found the
basic reproduction number R0 [20],[21],[22]. Then the stability analysis of
the model is made using the basic reproduction number. Next we apply
an optimal control strategy to reduce the number of infected individuals.
Finally, numerical simulations confirm our analytic results.

The paper is organized as follows: In section 2, we present the
model description and the stability analysis of drinking-free and endemic
equilibria. Section 3 presents an optimal control problem, which we use to
study the impact of a treatment on the spread of drinking behavior. After
the mathematical modelling, we use the obtained model to simulate it in
Section 4 with the parameters estimated from recent statistical data based
on the UNODC and the Colombian Ministry of Justice report of the 2017
[8]. We end with Section 5 of conclusions and discussions of our results.

Peer influence

According to B. Bradford Brown, adolescents are influenced by the world
through four different means: family, school, the media, and their peers.
Adolescence initiates a process in which individuals search for their own
personality and a sense of identity. In this period of life, the most
important role in the development of values and attitudes is played by
peers [23]. Brown points that as adolescents grow older, friends become
more influential with regard to substance use. When children start to
drink at an (nonnormative) early age, alcohol use is mainly affected by
familiar factors such as parental alcohol use and parenting practices, and
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by genetic susceptibility. However, when adolescent’s drinking goes beyond
occasionally trying out alcohol, the role of friends becomes stronger. This
is partly due to the increasing importance of friendships and intimate
relationships during the course of adolescence and the fact that when
teenagers go out to parties and public drinking places, their drinking is
concentrated in these peer settings [24]. Therefore, adolescents’ alcohol
consumption is closely associated with the drinking behavior of their peers.
Thus, the peer influence exerts a role in explaining the willingness to drink
alcohol [25],[26]. For instance, students who associate with more friends
who drink tended to consume more alcohol than those students who fewer
friends who drank according to the student’s self-report [27],[28].

Youth in Colombia as in other parts of the world congregate in
more or less recognized peer groups and engage in collective behavior.
They provide referential parameters and behavioral codes [23]. The
university environment promotes the creation of natural environments,
around different activities, such as: academic, social and recreational
activities. For example, in the case of males, football (soccer) represents an
element of identification among Colombian adolescents and young adults
living in the cities. After or during the game, depending on whether one
is a player or only a spectator, the consumption of alcohol constitutes the
main activity for many youths and one of the reasons to be part of the
group [23]. That is, how most of the Colombian colleges students reported
consuming alcohol with their group of friends (76%), followed by the family
(24.9%), partner (15.3%), and coworkers (6.6%) [29].

Our model assumes the effects of peer pressure in the dynamics of
alcohol abuse disorders. As presented, it only considers peer influence in
the recruitment of new alcohol users (the nonlinear terms).

2 Model formulation and equilibrium discussion

We propose a nonlinear system of three ordinary differential equations,
which is analyzed to find the equilibrium points and their stability,
including the threshold parameter R0 known as the basic reproduction
number. The basic reproduction number, is defined as the expected
number of secondary infections produced by an index case in a completely
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susceptible population. This number is a measure of the potential for
disease spread within a population. Usually R0 is defined as the dominant
eigenvalue of a matrix K, called the next-generation matrix (NGM) that
relates the numbers of newly infected individuals in the various categories
in consecutive generations [20],[21].

We consider three classes of individuals in a constant population size
of N . The class S(t) for those individuals that are susceptible to becoming
regular alcohol users (people who did not drink any alcohol in the previous
12 month period, this includes former drinkers and lifetime abstainers),
E(t) who consumed alcohol in the previous 12 month period, but have not
become alcohol dependent and D(t) alcohol consumers now dependent on
alcohol (to identify the individuals in this class we use the Alcohol Use
Disorders Identification Test, which is a simple and effective method of
screening for unhealthy alcohol use). We describe the dynamics of drinking
behavior by the following three nonlinear differential equations:

Ṡ = µN − β1
SE

N
− β2

SD

N
− µS,

Ė = β1
SE

N
+ β2

SD

N
− αE − µE,

Ḋ = αE − µD,

(1)

where µ is the combined birth/death rate,
β1 is the effective influence rate between E and S,
β2 is the effective influence rate between D and S,
α is the rate at which occasional drinkers become alcohol dependent.

µN

µS
µD

D(t)S(t) E(t)

β1
S E
N

β2
S D
N

µE

αE

Figure 1: Dynamics of the model. The boxes represent the subpopulation and
the arrows the transition between the subpopulations.
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All the parameters mentioned above are positive constants. Notice that
Ṅ = Ṡ + Ė + Ḋ = 0 thus N(t) is constant for all t. Thus, the solutions of
(1) with positive initial conditions are bounded in Ω1 given by

Ω1 = {(S,E,D) ∈ R3
+ : 0 < S + E +D = N}.

It’s straightforward verify that Ω1 is positively invariant with respect to
(1).

Lemma 2.1. The solution (S(t), E(t), D(t)) of system (1) with positive
initial conditions is positive in Ω1.

Proof. Considering that the right-hand of (1) is continuous with continuous
partial derivatives, then (1) has a unique solution in Ω1. And since

Ṡ = µN − β1
SE

N
− β2

SD

N
− µS ≥ −S

(
β1
E

N
+ β2

D

N
+ µ

)
,

we have

S(t) ≥ S(0) exp

(
−
∫ t

0
(β1

E(θ)

N(θ)
+ β2

D(θ)

N(θ)
+ µ)dθ

)
> 0, ∀t > 0,

similarly

Ė = β1
SE

N
+ β2

SD

N
− αE − µE ≥ −E(α+ µ),

then

E(t) ≥ E(0) exp

(
−
∫ t

0
(α+ µ)dθ

)
> 0, ∀t > 0.

Finally, we getD(t) ≥ D(0)e−µt > 0, ∀t > 0. This completes the proof.

Since the sum of the right hand sides of (1) adds to zero, so S(t)+E(t)+
D(t) is constant over time and equal to the size of the total population N .
Consequently, the system (1) can be reduced to the following: Ė = β1

(N − E −D)E

N
+ β2

(N − E −D)D

N
− αE − µE,

Ḋ = αE − µD.
(2)
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Now, we show some numerical simulations of the dE
dt = 0 and dD

dt = 0
isoclines for different values of the parameters α, β1, β2, µ. Here the vector
field is defined by the system (2) an horizontal and vertical, respectively,
in the E−D plane. The flow toward en equilibrium is indicated by arrows
in the regions between these isoclines. Notice that from Ḋ = αE − µD,
the Ḋ = 0 isocline is a line through the origin with the slope α

µ .
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D

Figure 2: Isocline for the model values α = 0.1, β1 = β2 = 0.1 and µ = 0.15.
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Figure 3: Isocline for the model values α = 1, β1 = β2 = 10 and µ = 0.5.
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2.1 Equilibrium points and stability of the mathematical model

Setting the right-hand side of equations (1) equal to zero we can find the
equilibrium points. The system (1) has a unique disease-free equilibrium,
P0(N, 0, 0). To analyze the stability of P0 we compute the basic
reproductive number R0 for the model (1). We apply the next generation
technique as proposed in [21, 22]. The infectious classes in this model are
E(t) and D(t). Thus, at P0 we obtain

F =

[
β1 β2
0 0

]
and V =

[
α+ µ 0
α −µ

]
where the matrix F is related to the rate of increase of secondary

infections and V to the rate of the disease progression, death and recovery.
The next generation matrix, K = FV −1, is non-negative and therefore
it has a non-negative eigenvalue, R0 = ρ(FV −1) and non-negative
eigenventor ω associated with R0. Thus, applying the next generation
matrix technique we obtain the basic reproduction number

R0 =
αβ2 + β1µ

αµ+ µ2
. (3)

R_0 < 1

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

β1

β
2

Figure 4: Contour plot of the basic reproduction number in terms of the
parameters β1 and β2, for µ = 0.25 and α = 0.15.
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Let the right side of each of the two differential equations equal to zero
in system (2), giving the equations:

αE − µD = 0, (4)

and

β1
(N − E −D)E

N
+ β2

(N − E −D)D

N
− αE − µE = 0. (5)

From (4) we obtain D = αE
µ and substituting in (5) we have

β1
(N − E − αE

µ )E

N
+ β2

(N − E − αE
µ )(αEµ )

N
− αE − µE = 0. (6)

Solving equation (6) for E we obtain the solutions E∗ = 0 or

E∗ =
Nµ(αβ2 + β1µ− (αµ+ µ2))

(α+ µ)(αβ2 + β1µ)
=

Nµ

α+ µ

(
1− 1

R0

)
.

Thus, the system (1) has an unique positive endemic equilibrium

P ∗(S∗, E∗, D∗) =

(
N

R0
,
Nµ

α+ µ

(
1− 1

R0

)
,
Nα

α+ µ

(
1− 1

R0

))
,

provided R0 > 1.

2.2 Sensitivity analysis of R0

Now, we examine the sensitivity of R0 to each of its parameters, following
[30], the normalized forward sensitivity index with respect to each of the
parameters is calculated. Indeed:

Aα =
∂R0
R0

∂α
α

=
α

R0

∂R0

∂α
=

αµ(β2 − β1)
(αβ2 + β1µ)(α+ µ)

< 0 for β2 < β1,

Aµ =
∂R0
R0

∂µ
µ

=
µ

R0

∂R0

∂µ
= −(α2β2 + 2αβ2µ+ β1µ

2)

(α+ µ)(αβ2 + β1µ)
< 0,
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Aβ1 =
∂R0
R0

∂β1
β1

=
β1
R0

∂R0

∂β1
=

β1µ

αβ2 + β1µ
> 0,

Aβ2 =
∂R0
R0

∂β2
β2

=
β2
R0

∂R0

∂β2
=

β2α

αβ2 + β1µ
> 0.

Thus, we conclude that the basic reproduction number R0 is most
sensitive to changes in β1 and β2. Therefore, an increase (or decrease) in
the value of β1 or β2 leads to a corresponding increase (or decrease) in R0.
Additionally, the parameter α may have directly or inversely proportional
relationship with the reproduction number depending of sign(β2 − β1).
Thus, given R0’s sensitivity to β1 and β2, it seems sensible to focus efforts
on the reduction of β1 and β2.

2.2.1 Parameter estimation We consider the population of college
students from 18 years of age to 28 years of age. According to [9] among
Colombian college students the age range of highest alcohol consumption
is 21− 22 years.

Now, in the simplest case

dE

dt
= −αE.

Then,
E(t)

E(0)
= e−αt.

At year t = 3

E(3)

E(0)
= e−3α.

Thus, 1 − E(3)
E(0) is the proportion of Colombian college students that leave

E to become alcohol dependent in three year. It is estimated [9] that
12.3% of men and 6.6% of women leave E. Also, 11% of men and 6.2%
of women leave S to become occasional drinkers. Therefore, 1 − E(3)

E(0) =
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0.123, 1 − e−3α = 0.123, thus α ' 0.04 for men, and 0.02 for women.
Then, the average time as occasional drinkers E for men is

1

α
=

1

0.04
= 25 years .

When R0 > 1 the system has a unique equilibrium,

S → S∗, D → D∗, E → E∗.

Thus, near the equilibrium dS
dt = −βS, where β = β1E∗+β2D∗

N . Then,
S(t)
S(0) = e−βt. And, using that 11% of men leave S, we get 1− e−3β = 0.11,
so β ' 0.03. Now, notice that

β =
β1E

∗ + β2D
∗

N
= β1

µ

α+ µ

(
1− 1

R0

)
+ β2

α

α+ µ

(
1− 1

R0

)
= (R0 − 1)µ.

Therefore, assuming the mortality rate µ = 0.1, we can obtain (R0 −
1)µ = 0.03, then R0 = 1.3 for men, and similarly, we can get R0 = 1.2 for
women.

Theorem 2.1. If R0 ≤ 1, the disease-free equilibrium P0 is globally
asymptotically stable in Ω1. If R0 > 1, the disease-free equilibrium P0

is an unstable saddle point.

Proof. Constructing a suitable Lyapunov function

L = µE + β2D.

Its derivative along the solution to the system (1) is

L̇ = µ

[
(N − E −D)

N
(β1E + β2D)− αE − µE

]
+ β2(αE − µD)

≤ µ(β1E + β2D − αE − µE) + β2αE − β2µD
= E(β1µ+ β2α− αµ− µ2)
= E(αµ+ µ2)(R0 − 1).
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Clearly the last expression is negative provided R0 ≤ 1. Furthermore,
L̇ = 0, if and only if E = 0. Therefore, the maximum invariant set in
{(S,E,D) ∈ Ω1 : L̇ = 0} is the singleton {P0}. LaSalle’s invariance
principle implies that P0 is globally asymptotically stable in Ω1.

When R0 > 1, to analyze the stability of P0, we use the method of first
approximation. Indeed,

the Jacobian matrix of the system (1) at a point P0(N, 0, 0) is

J(P0) =

 −µ −β1 −β2
0 β1 − α− µ β2
0 α −µ

 .

Its characteristic equation is det(J(P0) − λI) = 0, where I is the unit
matrix. Thus, the characteristic equation becomes to

− (λ+ µ)[λ2 + λ(α− β1 + 2µ) + αµ+ µ2 − (αβ2 + β1µ)] = 0. (7)

Here (7) has one positive root and two negative roots provided αµ+ µ2 −
(αβ2 + β1µ) < 0 which is equivalent to R0 > 1. Consequently P0 is an
unstable saddle point.

Theorem 2.2. When R0 > 1, the unique positive endemic equilibrium P ∗

is locally asymptotically stable in Ωo
1.

Proof. The Jacobian matrix of the system (1) at a point P ∗(S∗, E∗, D∗) is

J(P ∗) =

 −β1E∗

N + −β2D∗

N − µ −β1S∗

N
−β2S∗

N
β1E∗

N + β2D∗

N
β1S∗

N − (α+ µ) β2S∗

N
0 α −µ

 .

Its characteristic equation is det(J(P ∗)−λI) = 0. So the characteristic
equation becomes to λ3 + a2λ

2 + a1λ+ a0 = 0, where

a2 =
α3β2 + β1µ

2(β1 + µ) + α2β2(β2 + 3µ) + αµ(2β2µ+ β1(2β2 + µ))

(α+ µ)(αβ2 + β1µ)
,
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a1 =
α3β22 + αβ1(β1 + 4β2 − 2µ)µ2 + β1(2β1 − µ)µ3 + α2µγ

(α+ µ)(αβ2 + β1µ)
,

where γ = 2β1β2 + 2β22 − β1µ;

a0 = µ(αβ2 + β1µ− (αµ+ µ2)).

Notice that a2 > 0, and for R0 > 1 we have a0 > 0 . Besides

a2a1−a0=
[α2β2(α+β2)+2α(α+β1)β2µ+(β21+αβ2)µ

2]

(α+µ)2(αβ2+β1µ)
2

·[αβ1µ(αβ2+β1µ−(αµ+µ2))+α3β2
2+2β2

1µ
3+αβ2µ2(4β1+µ)+α2β2µ(β1+2β2+µ)].

Here a2a1 − a0 > 0 provided R0 > 1. Thus, according to Hurwitz
criterion, the epidemic equilibrium P ∗ is local asymptotically stable.

3 Optimal control

Recently, different control strategies have been used to prevent the spread
of different diseases [31],[32],[33],[34],[35],[36],[37]. Now, our objective is
to better understand and to predict the effect of a preventive measure
on the alcohol dependent individuals over time. Thus, we introduce
some preventive control strategy to the system (1) using a parameter
T ∈ [0, 1], where T = 0 indicates that no control strategy is applied, while
T = 1 means that preventive control strategies are 100 percent effective.
Preventive control strategies are any measures implemented to reduce the
spread of the disease, in our particular case of the spread of risky alcohol
consumption, some of them could be therapy through a rehabilitation
program. Thus, we consider the following optimal control problem:

Ṡ = µN − β1
SE

N
− β2

SD

N
− µS + TD,

Ė = β1
SE

N
+ β2

SD

N
− αE − µE,

Ḋ = αE − µD − TD,

(8)
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subject to given initial conditions S(0), E(0), D(0) > 0, where T
denotes a preventive measure (T is the control variable). Note that in the
absence of control measures, that is, when T (t) ≡ 0, system (8) reduces to
(1). We consider the set of admissible control functions

Ω2 = {T (·) ∈ L∞(0, tf ) : 0 ≤ T ≤ Tmax,∀t ∈ [0, tf ]};

where tf denote the duration of the treatment program, and Tmax ≤ 1.
For the system (8) the basic reproduction number with control is given

by

R0(T ) =
Tβ1 + αβ2 + β1µ

(T + µ)(α+ µ)
. (9)

Based on the stability results of the previous section it can be deduced that
the disease disappears when R0(T ) ≤ 1 (see figure 11), that is, when

T ≥ (R0 − 1)

[
αµ+ µ2

α+ µ− β1

]
= Tc. (10)

Note that the last expression holds only if R0 > 1 and α+µ−β1 > 0; that
is, in the presence of the disease. Which is reasonable, since it is only in
the presence of the disease that a control strategy should be implemented.

Now, our goal is to minimize the number of alcohol dependent
individuals and the cost required to control the disease by treating the
infected.

Thus, the optimal control problem consists in

minJ (D,T ) =

∫ tf

0
(k1D(t) + k2T

2(t))dt, (11)

subject to

Ṡ = µN − β1
SE

N
− β2

SD

N
− µS + TD,

Ė = β1
SE

N
+ β2

SD

N
− αE − µE,

Ḋ = αE − µD − TD,

(12)
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with 0 < k1, k2 < ∞. To solve the problem, we apply the Pontryagin
maximun principle [38]: the Hamiltonian is given by

H = k1D + k2T
2 + p1

(
µN − β1

SE

N
− β2

SD

N
− µS + TD

)
+ p2

(
β1
SE

N
+ β2

SD

N
− αE − µE

)
+ p3

(
αE − µD − TD

)
. (13)

From the conditions ∂H
∂T = 0 and T ∈ Ω2 the extremal control is given

by

T (t) = min

{
max

{
0,

(p3 − p1)D
2k2

}
, Tmax

}
; (14)

while the adjoint system asserts that the co-state variables pi(t), 1 ≤
i ≤ 3, satisfy

ṗ1 = −∂H
∂S

= p1
(
β1
E

N
+ β2

D

N
+ µ

)
− p2

(
β1
E

N
+ β2

D

N

)
,

ṗ2 = −∂H
∂E

= p1β1
S

N
− p2

(
β1
S

N
− α− µ

)
− p3α,

ṗ3 = −∂H
∂D

= −k1 + p1
(
β2
S

N
− T

)
− p2β2

S

N
+ p3(µ+ T ),

(15)

and given that the minimization problem stops at tf , we have a
boundary condition (called transversality condition) for the terminal values
of the co-state variables (see [35] for more details about the necessary
conditions for finite-horizon optimal control), that is:

p1(tf ) = p2(tf ) = p3(tf ) = 0. (16)

Therefore, in order to solve the optimal control problem, we solve the
following boundary value problem:
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Ṡ = µN − β1
SE

N
− β2

SD

N
− µS + TD,

Ė = β1
SE

N
+ β2

SD

N
− αE − µE,

Ḋ = αE − µD − TD

ṗ1 = p1
(
β1
E

N
+ β2

D

N
+ µ

)
− p2

(
β1
E

N
+ β2

D

N

)
ṗ2 = p1β1

S

N
− p2

(
β1
S

N
− α− µ

)
− p3α

ṗ3 = −k1 + p1
(
β2
S

N
− T

)
− p2β2

S

N
+ p3(µ+ T )

(17)

with given initial conditions

S(0) = s0, E(0) = e0, D(0) = d0,

and transversality conditions (16), where T (t) is given by (14). We solve
numerically the system (17) in Section 4.

4 Numerical simulation

In this section, we use numerical simulations to show the dynamical
behavior of our results. We solve the system (1) using an adaptive
Runge-Kutta-Fehlberg method of order four. The optimal control problem
is solved numerically by using a direct multiple shooting method and
MATLAB bvp4c routine.

In order to establish the initial conditions for the system (1) we present
some available data provided by the United Nations Office on Drugs and
Crime (UNODC) and the Colombian Ministry of Justice [8] about alcohol
consumption among college students in Colombia.

Table 1 shows students enrolled in higher education in Colombia during
the years 2009, 2012 and 2016 [National Ministry of Education-Colombia]:
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Table 1: Student enrollment in higher education in Colombia.

Sex 2009 2012 2016
Men 753589 912695 1132567

Women 839622 1016892 1261867
Total 1593211 1929587 239 4434

In Table 2 and Table 3 we can observe the statistics of alcohol
consumption in the university population during the years 2009, 2012 and
2016. Table 2 shows the percentage of occasional drinkers who consume
alcohol but have not become alcohol dependent [8].

Table 2: Percentage (%) of prevalence of drinking alcohol in the previous 12
month period.

Sex 2009 2012 2016
Men 73.1 72.36 72.15

Women 71.5 73.71 73.09

In Table 3 we can see the number of students at high risk of alcohol
dependence. For instance, according to the criteria AUDIT(Alcohol Use
Disorders Identification Test) 13.9% of men presented alcohol dependence
compared with 5.5% of women during the year 2009 [8].

Table 3: Percentage (%) of students with addiction likely.

Sex 2009 2012 2016
Men 13.9 15.4 12.13

Women 5.5 8.8 6.5

Thus, according to [8] on average 72.5% of men consumed alcohol during
the years 2009, 2012 and 2016 without alcohol dependence compared to the
72.7% of women and on average 13.8% of men present alcohol dependence
compared with 6.9% of women.
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Next, we perform numerical simulations of the college students scenario,
for both female and male population linked to the Colombian higher
education system. We use the model (1) to study the dynamics of the
different subpopulations S(t), E(t) and D(t). We simulate several years in
order to observe the dynamics of these populations.

Table 4 shows numerical simulation for the model (1), there we take
the information obtained from alcohol consumption in 2009.

Table 4: (a) Percentage of the male population for µ = 0.3, α = 0.2, β1 =
0.33, β2 = 0.3 (b) Percentage of the female population for µ = 0.3, α = 0.2, β1 =
0.21, β2 = 0.1

(a)
Initial 10 years 50 years

S(t) 13 74.3 91
E(t) 73.1 13.5 5.3
D(t) 13.9 12.1 3.7

(b)
Initial 10 years 50 years

S(t) 23 89 99.9
E(t) 73.1 4.3 0.008
D(t) 5.5 6.5 0.012

Figures 5 and 6 show numerical simulations where we can notice the
increase of individuals with alcohol dependence for R0 > 1.
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Figure 5: The dynamics of the different subpopulations for R0 = 3.2 .
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Figure 6: Left : the dynamics of the different subpopulations for R0 = 1.3.
Right : the dynamics of the different subpopulations for R0 = 1.2 .

Table 5 shows the variation of β2 and its effects on the population
with alcohol dependence (see Figure 7). We observe that for R0 = 4.25
the percentage of individuals with alcohol dependence is 57.3% and for
R0 = 1.85 is 34.5% for both men and women.

Table 5: Variation of β2 for β1 = 0.5, µ = 0.1 and α = 0.3.

Value of β2 0.4 0.3 0.08
Value of R0 4.25 3.5 1.85
Value of male population 432220 403760 260180with alcohol dependence
Value of female population 481560 449860 290360
with alcohol dependence
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Figure 7: Graph of population with alcohol dependence.

The solution for the optimal control problem (17) is illustrated in
Figures 8 and 9. Figure 8 shows the evolution of the number of susceptible
and occasional drinkers individuals. Figure 9 shows the evolution of
the number of alcohol dependent and the variation of co-state variables.
In what follows, we assume that tf = 5 because the World Health
Organization goals for most diseases are usually fixed for 5 years periods.
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Figure 8: State variables S(t) and E(t) of the optimal control problem (8) (
with k1 = 1 and k2 = 0.01).
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Figure 9: Left: State variable D(t) of the optimal control problem (8). Right:
co-states p1, p2 and p3 of the optimal control problem (8) ( with k1 = 1 and
k2 = 0.01) .

Figure 10 illustrates the importance of the control strategy in the
reduction of the number of alcohol dependent individuals. However, graphs
still show a disease prevalence over time.
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Figure 10: The dynamics of alcohol dependent case with and without control
strategy (with k1 = 1 and k2 = 0.01,R0 = 4.2 ).

Figure 11 shows that if Tmax is greater than Tc (see equation (10)) there
is a decrease in the number of alcohol dependent population while if Tmax

is lower than Tc there is an increase of alcohol dependent population.
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Figure 11: Left: The dynamics of alcohol dependent population with control.
Right: Graphical representations of control strategy (with k1 = 1 and k2 =
0.01,R0 = 4.2 ).

5 Conclutions

We present a simple mathematical model of spread of the alcohol abuse
among college students in Colombia, with peer pressure as the main element
in the recruitment mechanism of new drinkers. We introduced three
population classes, namely non-drinkers, occasional drinkers and alcohol
dependent. Also, we divided our target population into men and women
enrolled in higher education in Colombia.

Here we have found
R0 =

αβ2 + β1µ

µ(α+ µ)

as the basic reproduction number of the model system (1). We prove
that dynamics of system (1) are completely determined by the threshold
parameter R0. Sensitivity analysis of R0 identifies β1 and β2 as the most
important parameters for the reduction of R0, the third most important
parameter for the threshold R0 is α, which is related to the transition from
occasional drinkers to alcohol dependent. Notice, that α could have directly
or inversely proportional relationship with R0 depending of sign(β2 − β1).
Consequently, sensitivity analysis tells us that, some possible strategies
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for reducing drinking problems on college students are to minimize the
ability of occasional drinkers and alcohol dependent to directly recruit
non-drinkers, and to increase alcohol prevention programs for youth.

Our model has two steady states, alcohol-free state P0 and drinking
state P ∗. Using Lyapunov function theory we show that if R0 ≤ 1, then P0

is globally asymptotically stable, and if R0 > 1, P0 is an unstable saddle
point. Also, we prove that is R0 > 1, the unique endemic equilibrium P ∗

is locally asymptotically stable.
An important conclusion is about the prevalence of alcohol abuse among

higher education students in Colombia. An analysis based on parameter
estimation shows that the basic reproduction number R0 is greater than
one, it indicates that, there is a greater risk for the spread of alcohol
dependence among Colombian college students.

The numerical simulation shows that an optimal control strategy
indeed helps to reduce the number of alcohol dependent individuals.
Also, we can observe numerically that when the applied control has an
effectiveness T > Tc the disease is controlled. Finally, all our important
mathematical findings are numerically verified using MATLAB. We have
numerically verified that, P0 is stable when R0 ≤ 1 and when R0 > 1,
endemic equilibrium P ∗ becomes stable. Future research directions include
extending this study to incorporate more complex transitions, and more
classes such as treatment populations, among others.
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