

DOI: 10.20983/culcyt.2020.2.2.3

Análisis de Vibración de Platos Anulares con Soporte Elástico

Vibration Analysis of Annular Plates with Elastic Support

José Alfredo Ramírez-Monares¹

¹ Technische Universität Darmstadt

RESUMEN

La presente investigación consiste en un modelo mecánico de sujeción por resortes a flexión y a tensión-compresión para analizar el cambio en las frecuencias naturales y formas modales con respecto a las rigideces en la sujeción del disco. Las sujeciones empotradas de un sistema mecánico real son comúnmente modeladas como una sujeción ideal que restringe totalmente los momentos y fuerzas, lo cual comúnmente no existe en los sistemas reales. Esta limitación motiva el desarrollo del presente modelo que permite tomar en cuenta la elasticidad de la sujeción que existe en el disco anular. Se modela la vibración libre de un plato anular con aristas externa libre y diferentes valores de rigidez como condiciones de frontera en la arista interna y se resuelve analíticamente mediante las funciones de Bessel. Los parámetros de frecuencia natural y^2 son tabulados para el soporte empotrado y elástico con diferentes relaciones de radios externo-interno, modos de vibración y rigideces en la arista interna. Se observa que conforme las rigideces del soporte flexible aumentan, los valores de los parámetros y^2 convergen a los del disco con soporte clásico empotrado. Las formas modales cambian de manera distinta con respecto a los cambios en la rigidez a tensión-compresión y con respecto a cambios en la rigidez a flexión.

PALABRAS CLAVE: frecuencias naturales; disco anular; vibración libre; formas modales.

ABSTRACT

This research consists of a mechanical model of bending and tension-compression springs to analyze the change in natural frequencies and modal shapes with respect to the rigidities in the supported disc. The clamped fastening of a real mechanical system is commonly modeled as an ideal fastening that totally restricts the moments and forces, which commonly does not exist in real systems. This limitation motivates the development of the present model that allows considering the elasticity of the fastening that exists in the annular disc. The free vibration of an annular plate with outer free edge is modeled by different stiffness boundary conditions at the inner edge and solved analytically by the Bessel functions. The natural frequency parameters γ^2 are tabulated for the clamped and the elastic support for different internal-external radius ratios, modes of vibration and stiffnesses at the inner edge. It is observed that as the rigidities of the flexible support increase, the values of the parameters γ^2 converge to the classical clamped supported disk. Modal shapes change differently with respect to changes in stress-compression stiffness and with respect to changes in flexural stiffness.

KEYWORDS: natural frequency; annular plate; free vibration; modal shapes.

Correspondencia:

DESTINATARIO: José Alfredo Ramírez Monares INSTITUCIÓN: Technische Universität Darmstadt (Universidad Técnica de Darmstadt) DIRECCIÓN: Dolivostr. 15, 64293, Darmstadt, Alemania CORREO ELECTRÓNICO: ramirez@dyn.tu-darmstadt.de Fecha de recepción: 9 de noviembre de 2020. Fecha de aceptación: 16 de diciembre de 2020. Fecha de publicación: 22 de diciembre de 2020.

I. INTRODUCCIÓN

La naturaleza del tipo de sujeción de las estructuras conduce al uso de condiciones de frontera como apoyos simples o empotrados, en cuyo caso, se supone que los desplazamientos o pendientes cero se mantienen en los límites. Sin embargo, en aplicaciones físicas, es imposible mantener condiciones de frontera realmente fijas. Esto puede deberse a propiedades físicas del sistema que se está modelando, limitaciones en los mecanismos de sujeción o propiedades del material que impiden que las abrazaderas sean perfectas, por ejemplo, se producirá un deslizamiento si el material de la estructura que se sujeta es significativamente más blando que las abrazaderas.

Una forma en la que se manifiesta la pérdida de rigidez debida al movimiento en las condiciones de contorno es a través de una disminución de las frecuencias naturales de la estructura o sistema acústico estructural. Este cambio en las frecuencias puede variar desde niveles de 1-2 % en sistemas bien sujetos a 20%-30% en sistemas con sujeción débil ^[1]. Sin embargo, estos sistemas de sujeción floja aun soportan un momento, de modo que las condiciones de frontera de soportes simples o empotrados (desplazamiento cero y momento cero) no son apropiadas.

Para representar tales fenómenos el mecanismo de sujeción de un disco anular se modela como un resorte que opone resistencia a la flexión y un resorte que se opone al desplazamiento vertical en la ubicación del mecanismo de sujeción. En el presente estudio se considera el modelado de su sujeción bajo vibración libre mediante la teoría de placas delgadas de Kirchhoff.

En los trabajos de Reddy ^[2] y Weaver ^[3] se muestran funciones de desplazamiento de placas anulares con diversas condiciones de frontera y diferentes tipos de cargas distribuidas y puntuales. Ellos obtienen soluciones utilizando funciones de Bessel y el método de Rayleigh-Ritz. En el trabajo de Wang ^[4] se analizan discos circulares con soportes elásticos distribuidos en un área del disco y diversas condiciones de frontera en la arista externa. Leissa ^[5] presenta soluciones analíticas para el análisis de vibración libre de placas anulares isotrópicas delgadas que tienen diferentes condiciones de soporte. Sin embargo, en estos trabajos no existen estrategias claramente definidas para las sujeciones no ideales que existen en los sistemas mecánicos reales, tales como la elasticidad en algunos soportes. En ^[6] y ^[7] también se presentan soluciones analíticas para discos con soportes flexibles distribuidos en una región del disco circular, sin embargo, estas soluciones son funciones definidas por tramos cuya localización de raíces es complicada y tediosa, además de que solo incluyen una rigidez distribuida en un área del disco. En el trabajo de Laura [8] se estudian las vibraciones libres con el método de Rayleigh-Ritz en un disco circular con cambio lineal de grosor en la dirección radial, también considerando una rigidez distribuida en solo un área del disco. En ^[9] y ^[10] se estudian discos circulares con cambio de grosor, en ^[9] se incluyen los efectos por el incremento en la temperatura y en ^[10] se presenta un disco con dos soportes, uno de ellos con rigideces a flexión y a desplazamiento vertical similar al que se presenta aquí, sin embargo, en el presente trabajo se modela este tipo de soporte en la arista interior de un disco anular sin cambios en el grosor. En [11] se estudian algunos modelos de placas con geometrías de sectores de disco, anulares y circulares, todas ellas compuestas laminadas, es decir, formadas por capas con diferentes propiedades. En los resultados reportados en ^[11] se menciona que al incrementar la rigidez los valores obtenidos del parámetro de frecuencia natural se asemejan a los correspondientes de un soporte rígido.

II. METODOLOGÍA

El presente estudio hace uso de la teoría de placas delgadas de Kirchhoff para la solución en vibración libre de discos anulares con soporte elástico. La metodología del presente trabajo de investigación es:

- 1. El establecimiento de las ecuaciones que definen las condiciones de frontera para los modelos de soporte empotrado y soporte elástico.
- 2. La solución de la matriz característica y la obtención de los parámetros de frecuencia natural.
- 3. La presentación de los resultados en forma tabular para las diversas combinaciones de rigidez, diámetros del disco anular y modos de vibración.
- 4. El análisis de los parámetros de frecuencia natural con respecto a los cambios en las rigideces.
- 5. El análisis modal del disco para cambios en una rigidez, manteniendo la otra constante.

Modelo Clásico de Disco Anular con Aristas Externa Libre e Interna Empotrada

El modelo mecánico más simple considera la placa circular como una placa anular con la arista interna empotrada, lo cual está representado en la Figura 1. De acuerdo con ^[12], la ecuación diferencial de movimiento, considerando las energías cinética y de deformación por flexión, es como se muestra en la Ecuación (1).

Figura 1. Plato anular con aristas externa libre e interna empotrada.

$$(\nabla^2 + \gamma^2)(\nabla^2 - \gamma^2)w = 0 \tag{1}$$

La forma general de desplazamiento lateral de vibración de la placa se puede expresar como se muestra en la Ecuación (2).

$$w(r,\theta) = \sum_{m=0}^{\infty} R_{m,n}(\gamma r) \cos(m\theta) + \sum_{m=1}^{\infty} R_{m,n}(\gamma r) \operatorname{sen}(m\theta)$$
(2)

donde (r, θ) son coordenadas polares, *m* y *n* son el número de diámetros y círculos modales respectivamente, $y_{m,n}^4 = a^2 \omega^2 (\rho h/D)^{1/2}$ es el parámetro adimensional de la frecuencia natural, $D = Eh^3/12$ es la constante de rigidez a flexión, *R* es una combinación lineal de las funciones de Bessel $J_m(\gamma r)$, $Y_m(\gamma r)$, $I_m(\gamma r)$ y $K_m(\gamma r)$, donde $J_m(\gamma r)$ es la función de Bessel del primer tipo, $Y_m(\gamma r)$ es la función de Bessel del primer tipo, $Y_m(\gamma r)$ es la función de Bessel modificada del primer tipo y $K_m(\gamma r)$ es la función de Bessel modificada del segundo tipo. La solución para este modelo mecánico es una función combinada en la dirección radial que se muestra en la Ecuación (3).

$$R_n = C_1 J_m(\gamma r) + C_2 Y_m(\gamma r) + C_3 I_m(\gamma r) + C_4 K_m(\gamma r)$$
(3)
$$b \le r \le a$$

Y las condiciones de frontera son las que se muestran en las Ecuaciones (4) a (7).

$$w(b,\theta,t) = 0 \Rightarrow R_m(b) = 0 \tag{4}$$

$$w_{r}(b,\theta,t) = 0 \Rightarrow R'_{m}(b) = 0$$
(5)

$$V_r(a,\theta) = 0 \Rightarrow Q_r(a,\theta) - \frac{1}{a} \frac{\partial M_{rt}}{\partial \theta}(a,\theta) = 0$$
(6)

$$M_{r}(a,\theta) = 0 \Rightarrow \frac{\partial^{2} w}{\partial r^{2}}(a,\theta) + \nu \left[\frac{1}{a}\frac{\partial w}{\partial r}(a,\theta) + \frac{1}{a^{2}}\frac{\partial^{2} w}{\partial \theta^{2}}(a,\theta)\right] = 0$$
(7)

donde w_{rr} es la derivada de la función de desplazamiento w con respecto al radio r, M_r es el momento flector, v es el coeficiente de Poisson, V_r es el esfuerzo cortante, Q_r es la fuerza cortante y M_{rt} es el momento de torsión. Entonces, de acuerdo con ^[7], la matriz característica se define en la Ecuación (8):

$$\begin{bmatrix} J_m(\gamma b) & Y_m(\gamma b) & I_m(\gamma b) & K_m(\gamma b) \\ R'_{m1} & R'_{m2} & R'_{m3} & R'_{m4} \\ V_{r1} & V_{r2} & V_{r3} & V_{r4} \\ M_{r1} & M_{r2} & M_{r3} & M_{r4} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(8)

donde

$$R'_{m1} = -\gamma J_{m+1}(\gamma b) + \frac{m}{r} J_m(\gamma b)$$
⁽⁹⁾

$$R'_{m2} = -\gamma Y_{m+1}(\gamma b) + \frac{m}{r} Y_m(\gamma b)$$
(10)

$$R'_{m3} = \gamma I_{m+1}(\gamma b) + \frac{m}{r} I_m(\gamma b)$$
(11)

$$R'_{m4} = \gamma K_{m+1}(\gamma b) + \frac{m}{r} K_m(\gamma b)$$
(12)

$$V_{r1} = mJ_{m}(\gamma a) - \gamma aJ_{m+1}(\gamma a) + \frac{m^{2}(1-\nu)}{\gamma^{2}a^{2}}[(m - 1)J_{m}(\gamma a) - \gamma aJ_{m+1}(\gamma a)]$$

$$V_{r2} = mY_{m}(\gamma a) - \gamma aY_{m+1}(\gamma a) + \frac{m^{2}(1-\nu)}{m^{2}(1-\nu)}[(m - 1)]$$
(13)

$$+\frac{m}{\gamma^2 a^2} [(m \qquad (14)) \\ -1)Y_m(\gamma a) \\ -\gamma a Y_{m+1}(\gamma a)]$$

$$V_{r3} = -mI_m(\gamma a) - \gamma a I_{m+1}(\gamma a) + \frac{m^2(1-\nu)}{\gamma^2 a^2} [(m$$
(15)

$$-1)I_{m}(\gamma a) + \gamma aI(\gamma a)]$$

$$V_{r4} = -mK_{m}(\gamma a) + \gamma aK_{m+1}(\gamma a)$$

$$+ \frac{m^{2}(1-\nu)}{\gamma^{2}a^{2}}[(m - 1)K_{m}(\gamma a) - \gamma aK_{m+1}(\gamma a)]$$
(16)

$$M_{r1} = J_m(\gamma a) - (1 - \nu) \left[\frac{m(m-1)}{\gamma^2 a^2} J_m(\gamma a) + \frac{1}{\gamma a} J_{m+1}(\gamma a) \right]$$
(17)

$$M_{r2} = Y_m(\gamma a) - (1 - \nu) \left[\frac{m(m-1)}{\gamma^2 a^2} Y_m(\gamma a) + \frac{1}{\gamma a} Y_{m+1}(\gamma a) \right]$$
(18)

$$M_{r3} = -I_m(\gamma a) - (1 - \nu) \frac{m(m-1)}{\gamma^2 a^2} I_m \ \gamma a$$
(19)
$$-\frac{1}{\gamma a} I_{m+1}(\gamma a)$$

$$M_{r4} = -K_m(\gamma a) - (1) - \nu \left[\frac{m(m-1)}{\gamma^2 a^2} K_m(\gamma a) + \frac{1}{\gamma a} K_{m+1}(\gamma a) \right]$$
(20)

Ahora se pueden encontrar los parámetros de las frecuencias naturales $\gamma_{m,n}^2$ y las formas modales obtenidas a partir de las constantes C_1 a C_4 de la Ecuación (8).

Modelo de Disco Anular con Soporte Elástico

Ahora se considera el disco anular de radio exterior *a* con un apoyo elástico formado por resortes distribuidos uniformemente alrededor de su borde interior, como se

muestra en la Figura 2. La solución en dirección radial es la misma que se expone en la Ecuación (2). Se tienen los resortes de rigidez distribuida k_w que se opone a la traslación en la dirección *z* en todo el contorno de radio *b*, y la rigidez distribuida k_{ψ} que se opone a la flexión en todo el contorno de radio *b*. Las condiciones de frontera relativas a la fuerza cortante y momento flexionante de las Ecuaciones (4) y (5) cambian por las que se presentan en las Ecuaciones (21) y (22).

Las condiciones de frontera referentes al contorno libre que se muestran en las Ecuaciones (6) y (7) permanecen válidas.

Figura 2. Plato anular con aristas externa libre e interna con soporte elástico.

III. RESULTADOS

La Tabla 1 muestra los valores de los parámetros adimensionales de las frecuencias naturales $y_{m,n}^2$ para diferentes relaciones de radio interno *b*-radio externo *a*, diámetros *m* y círculos *n* modales obtenidos aquí y por las referencias para el modelo clásico de disco anular con aristas externa libre interna empotrada. Debajo de cada parámetro está el valor en porcentaje de la diferencia entre los valores de las referencias y los del presente trabajo. En todos los casos de esta Tabla 1 se observa una similitud aceptable (%) entre los resultados aquí obtenidos [Pres.] y los de las referencias.

TABLA 1

Parámetros Adimensionales de las Frecuencias Naturales $y_{m,n}^2$ para Disco Anular con Arista Externa Libre e Interna Empotrada

		[Dep.]			т		
	n	[KEF.]	0.1	0.3	0.5	0.7	0.9
		Pres.	4.262	6.701	13.089	37.069	344.761
		[13]	4.237	6.66	13.024	36.953	345
		%	0.586	0.611	0.4966	0.3129	0.069
		[5]	4.235	6.739	13.05	36.6	
		%	0.6375	0.567	0.2979	1.2652	
0	1	[14]			13.1		
		%			0.084		
		[15]	4.23	6.66	13.0	37	
		%	0.7565	0.6118	0.6799	0.1861	
		[7]		6.66	13.024	36.953	
		%		0.6118	0.4966	0.3129	
		Pres.	25.346	42.721	85.1793	240.081	2189.52
		[1]	25.262	42.614	85.032		
		%	0.3314	0.2504	0.1729		
0	2	[3]	25.3	42.6	85.1	239	
		%	0.1814	0.2832	0.093	0.4502	
		[7]	25.3	42.6	85.1	239	
		%	0.1814	0.2832	0.093	0.4502	
		Pres.	3.479	6.56	13.313	37.566	345.743
		[5]	3.482		13.3	37.498	345.0
		%	0.0862		0.0976	0.181	0.2148
1	1	[7]			13.3		
		%			0.0976		
		[15]		6.552	13.29	37.5	
		%		0.1219	0.1727	0.1756	
		Pres.	27.725	44.7059	86.82	241.489	2190.77
1	2	[5]	27.3	44.6	86.7	241	2189
		%	1.5329	0.2368	0.1382	0.2024	0.08

En las Tablas 2 y 3 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{0,1}^2$ y $\gamma_{0,2}^2$ para diferentes combinaciones de rigideces k_w y k_ψ y en el disco anular con relación b/a = 0.1. (De las Tablas 2 a la 21, los datos corresponden al disco anular con arista externa libre e interna soportada por resortes k_w y k_ψ).

TABLA 2
PARÁMETROS ADIMENSIONALES DE LAS FRECUENCIAS
NATURALES v_a^2 , $b/a = 0.1$

<i>k</i> _w (N/m 10 ²)	$k_{\psi}({ m Nm}\;10^2)$							
	0.1	0.25	0.5	1	10	100		
0.1	5.2277	4.8105	4.7124	4.6689	4.6326	4.6291		
0.25	4.9926	4.5844	4.4899	4.4482	4.4133	4.4100		
0.5	4.9128	4.5084	4.4152	4.3742	4.3399	4.3366		
1	4.8726	4.4703	4.3779	4.3372	4.3032	4.3000		
10	4.8364	4.4360	4.3443	4.3039	4.2702	4.2670		
100	4.8328	4.4326	4.3409	4.3005	4.2669	4.2637		

TABLA 3 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{0,2}^2, b/a = 0.1$

<i>k</i> _w (N/m 10 ²)	$k_{\psi}(\text{Nm 10}^2)$							
	0.1	0.25	0.5	1	10	100		
0.1	28.8128	27.7664	27.4749	27.3383	27.2202	27.2087		
0.25	27.6502	26.6381	26.3598	26.2299	26.1179	26.1069		
0.5	27.2444	26.2488	25.9763	25.8493	25.7399	25.7292		
1	27.0385	26.0522	25.7829	25.6574	25.5493	25.5388		
10	26.8517	25.8743	25.6079	25.4839	25.3771	25.3667		
100	26.8329	25.8565	25.5904	25.4665	25.3599	25.3495		

En las Tablas 4 y 5 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{1,1}^2$ y $\gamma_{1,2}^2$ para diferentes combinaciones de rigideces k_w y k_ψ en el disco anular con relación b/a = 0.1.

TABLA 4 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{1,1}^2$, b/a = 0.1

	1,1							
<i>k</i> _w (N/m 10 ²)	$k_{\psi}({ m Nm}\;10^2)$							
	0.1	0.25	0.5	1	10	100		
0.1	12.5707	12.5689	12.5685	12.5684	12.5682	12.5682		
0.25	6.8790	6.7123	6.6834	6.6715	6.6619	6.6609		
0.5	5.4030	4.8565	4.7640	4.7265	4.6967	4.6939		
1	5.0110	4.2256	4.0813	4.0221	3.9748	3.9703		
10	4.7988	3.8531	3.6667	3.5888	3.5260	3.5200		
100	4.7825	3.8242	3.6343	3.5548	3.4905	3.4844		

TABLA 5 Parámetros Adimensionales de las Frecuencias Naturales $y_{1,2}^2$, b/a = 0.1

<i>k</i> _w (N/m 10 ²)	k_{ψ} (Nm 10 ²)							
	0.1	0.25	0.5	1	10	100		
0.1	34.5677	33.6762	33.4371	33.3264	33.2314	33.2221		
0.25	30.9772	29.9492	29.6816	29.5588	29.4540	29.4438		
0.5	30.0420	29.0092	28.7430	28.6212	28.5174	28.5073		
1	29.6261	28.5965	28.3322	28.2115	28.1087	28.0987		
10	29.2799	28.2553	27.9933	27.8738	27.7721	27.7622		
100	29.2466	28.2227	27.9610	27.8416	27.7400	27.7301		

En las Tablas 6 y 7 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{0,1}^2$ y $\gamma_{0,2}^2$ para diferentes combinaciones de rigideces k_w y k_ψ en el disco anular con relación b/a = 0.3.

TABLA 6 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{0,1}^2, \ b/a = 0.3$

<i>k</i> _w (N/m 10 ²)	k_{ψ} (Nm 10 ²)							
	0.1	0.25	0.5	1	10	100		
0.1	8.3651	7.7742	7.6011	7.5186	7.4465	7.4394		
0.25	7.8933	7.3230	7.1575	7.0789	7.0103	7.0036		
0.5	7.7276	7.1666	7.0043	6.9273	6.8602	6.8536		
1	7.6433	7.0874	6.9269	6.8508	6.7845	6.7779		
10	7.5667	7.0157	6.8569	6.7815	6.7160	6.7095		
100	7.5590	7.0086	6.8498	6.7746	6.7091	6.7027		

TABLA 7 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{0,2}^2, b/a = 0.3$

<i>k</i> _w (N/m 10 ²)	$k_{\psi}(\text{Nm 10}^2)$							
	0.1	0.25	0.5	1	10	100		
0.1	50.2493	48.7577	48.3037	48.0842	47.8910	47.8719		
0.25	47.3355	45.8509	45.4061	45.1924	45.0048	44.9863		
0.5	46.1925	44.7314	44.2963	44.0877	43.9048	43.8867		
1	45.5884	44.1441	43.7155	43.5101	43.3303	43.3125		
10	45.0265	43.6007	43.1788	42.9768	42.8000	42.7826		
100	44.9694	43.5456	43.1244	42.9228	42.7464	42.7290		

En las Tablas 8 y 9 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{1,1}^2$ y $\gamma_{1,2}^2$ para diferentes combinaciones de rigideces k_w y k_ψ en el disco anular con relación b/a = 0.3.

TABLA 8 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{1,1}^2$, b/a = 0.3

$k_w(N/m)$	$k_{\psi}(Nm\ 10^2)$							
102)	0.1	0.25	0.5	1	10	100		
0.1	9.4769	8.8517	8.6725	8.5878	8.5141	8.5069		
0.25	8.3069	7.6559	7.4716	7.3848	7.3096	7.3022		
0.5	7.9274	7.2748	7.0908	7.0042	6.9293	6.9219		
1	7.7426	7.0905	6.9070	6.8207	6.7460	6.7387		
10	7.5797	6.9289	6.7460	6.6601	6.5858	6.5785		
100	7.5636	6.9130	6.7302	6.6443	6.5700	6.5627		

TABLA 9 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{1,2}^2, b/a = 0.3$

<i>k</i> _w (N/m 10 ²)	$k_{\psi}({ m Nm}\;10^2)$							
	0.1	0.25	0.5	1	10	100		
0.1	52.9231	51.4628	51.0206	50.8073	50.6197	50.6012		
0.25	49.5595	48.0997	47.6656	47.4576	47.2752	47.2573		
0.5	48.2615	46.8283	46.4051	46.2028	46.0257	46.0082		
1	47.5824	46.1689	45.7530	45.5544	45.3806	45.3635		
10	46.9558	45.5638	45.1556	44.9608	44.7905	44.7737		
100	46.8924	45.5028	45.0953	44.9009	44.7311	44.7143		

En las Tablas 10 y 11 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{0,1}^2$ y $\gamma_{0,2}^2$ para diferentes combinaciones de rigideces k_w y k_ψ en el disco anular con relación b/a = 0.5.

TABLA 10 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{0,1}^2, b/a = 0.5$

<i>k</i> _w (N/m 10 ²)	$k_{\psi}({ m Nm}\;10^2)$							
	0.1	0.25	0.5	1	10	100		
0.1	16.9547	15.8085	15.4579	15.2882	15.1387	15.1239		
0.25	15.7190	14.6089	14.2735	14.1118	13.9697	13.9556		
0.5	15.2543	14.1672	13.8401	13.6826	13.5443	13.5306		
1	15.0126	13.9393	13.6170	13.4620	13.3259	13.3124		
10	14.7901	13.7306	13.4131	13.2604	13.1264	13.1132		
100	14.7676	13.7096	13.3925	13.2401	13.1063	13.0931		

TABLA 11 Parámetros Adimensionales de las Frecuencias Naturales $\gamma^2_{0,2}, b/a = 0.5$

$k_w(N/m)$	$k_{\psi}({ m Nm}\;10^2)$							
102)	0.1	0.25	0.5	1	10	100		
0.1	104.8303	102.2243	101.4100	101.0128	100.6609	100.6260		
0.25	97.3198	94.5348	93.6803	93.2662	92.9008	92.8647		
0.5	93.7362	90.9541	90.1085	89.7001	89.3405	89.3049		
1	91.6903	88.9359	88.1033	87.7019	87.3488	87.3140		
10	89.6975	86.9880	86.1731	85.7809	85.4363	85.4023		
100	89.4903	86.7864	85.9737	85.5826	85.2390	85.2050		

En las Tablas 12 y 13 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{1,1}^2$ y $\gamma_{1,2}^2$ para diferentes combinaciones de rigideces k_w y k_ψ en el disco anular con relación b/a = 0.5.

TABLA 12 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{1,p}^2$, b/a = 0.5

$k_w(N/m)$	k_{ψ} (Nm 10 ²)								
102)	0.1	0.25	0.5	1	10	100			
0.1	18.0074	16.8436	16.4896	16.3186	16.1680	16.1531			
0.25	16.3225	15.1770	14.8333	14.6681	14.5231	14.5087			
0.5	15.6948	14.5701	14.2344	14.0732	13.9319	13.9179			
1	15.3710	14.2599	13.9290	13.7703	13.6312	13.6175			
10	15.0748	13.9779	13.6518	13.4956	13.3587	13.3452			
100	15.0449	13.9495	13.6240	13.4680	13.3313	13.3179			

TABLA 13 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{1,2}^2, b/a = 0.5$

<i>k</i> _w (N/m 10 ²)	$k_{\psi}({ m Nm}\;10^2)$								
	0.1	0.25	0.5	1	10	100			
0.1	106.8751	104.2969	103.4922	103.0999	102.7523	102.7179			
0.25	99.1430	96.3793	95.5326	95.1225	94.7608	94.7250			
0.5	95.4513	92.6915	91.8542	91.4500	91.0943	91.0591			
1	93.3459	90.6157	89.7921	89.3952	89.0463	89.0118			
10	91.2980	88.6154	87.8102	87.4230	87.0829	87.0493			
100	91.0853	88.4086	87.6057	87.2196	86.8805	86.8471			

En las Tablas 14 y 15 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{0,1}^2$ y $\gamma_{0,2}^2$ respectivamente para diferentes combinaciones de rigideces k_w y k_ψ en el disco anular con relación b/a = 0.7.

TABLA 14 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{0,1}^2, b/a = 0.7$

<i>k</i> _w (N/m 10 ²)	$k_{\psi}({ m Nm}\;10^2)$							
	0.1	0.25	0.5	1	10	100		
0.1	51.0910	47.9903	47.0175	46.5422	46.1208	46.0789		
0.25	46.2711	43.1672	42.2090	41.7435	41.3322	41.2915		
0.5	44.1378	41.1009	40.1700	39.7189	39.3210	39.2816		
1	42.9617	39.9791	39.0683	38.6275	38.2388	38.2004		
10	41.8423	38.9224	38.0336	37.6039	37.2253	37.1878		
100	41.7273	38.8145	37.9280	37.4995	37.1220	37.0847		

TABLA 15 Parámetros Adimensionales de las Frecuencias Naturales $y_{0,2}^2$, b/a = 0.7

<i>k_w</i> (N/m 10 ²)	$k_{\psi}({ m Nm}\;10^2)$								
	0.1	0.25	0.5	1	10	100			
0.1	310.8493	304.7809	302.8570	301.9132	301.0741	300.9907			
0.25	288.7834	281.6257	279.3869	278.2942	277.3258	277.2297			
0.5	274.0642	266.5446	264.2217	263.0932	262.0959	261.9971			
1	264.0772	256.5091	254.1926	253.0708	252.0815	251.9836			
10	253.1951	245.7593	243.5058	242.4183	241.4612	241.3666			
100	252.0012	244.5913	242.3480	241.2658	240.3136	240.2195			

En las Tablas 16 y 17 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{1,1}^2$ y $\gamma_{1,2}^2$ para diferentes combinaciones de rigideces k_w y k_ψ en el disco anular con relación b/a = 0.7.

TABLA 16 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{1,1}^2$, b/a = 0.7

$k_w(N/m)$	$k_{\psi}({ m Nm}\;10^2)$							
10 ²)	0.1	0.25	0.5	1	10	100		
0.1	52.3657	49.2823	48.3164	47.8448	47.4267	47.3852		
0.25	47.1591	44.0500	43.0920	42.6270	42.2163	42.1756		
0.5	44.8453	41.7996	40.8681	40.4171	40.0194	39.9801		
1	43.5698	40.5784	39.6670	39.2263	38.8380	38.7996		
10	42.3569	39.4293	38.5403	38.1110	37.7329	37.6956		
100	42.2324	39.3120	38.4255	37.9974	37.6205	37.5832		

TABLA 17 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{1,2}^2, b/a = 0.7$

	<i>k</i> _w (N/m 10 ²)	$k_{\psi}({ m Nm}\;10^2)$								
		0.1	0.25	0.5	1	10	100			
	0.1	312.5214	306.4748	304.5583	303.6183	302.7825	302.6994			
	0.25	290.3662	283.2270	280.9945	279.9050	278.9395	278.8437			
	0.5	275.5681	268.0656	265.7487	264.6233	263.6287	263.5302			
	1	265.5225	257.9722	255.6620	254.5434	253.5570	253.4594			
	10	254.5757	247.1602	244.9138	243.8299	242.8761	242.7818			
	100	253.3748	245.9856	243.7496	242.6711	241.7222	241.6284			

En las Tablas 18 y 19 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{0,1}^2$ y $\gamma_{0,2}^2$ respectivamente para diferentes combinaciones de rigideces k_w y k_{ψ} en el disco anular con relación b/a = 0.9.

TABLA 18 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{0,1}^2$, b/a = 0.9

k _w (N/m	$k_{\psi}(\text{Nm 10}^2)$								
10 ²)	0.1	0.25	0.5	1	10	100			
0.1	532.1587	508.2088	500.5468	496.7749	493.4136	443.0792			
0.25	484.8360	458.0952	449.6172	445.4585	441.7611	441.3937			
0.5	448.3709	420.7466	412.0906	407.8633	404.1154	403.7435			
1	421.3481	393.9390	385.4351	381.2967	377.6355	377.2726			
10	390.2725	364.0459	355.9950	352.0911	348.6449	348.3038			
100	386.7941	360.7587	352.7749	348.9050	345.4894	345.1514			

TABLA 19 Parámetros Adimensionales de las Frecuencias Naturales $y_{0,2}^2$, b/a = 0.9

$k_w(N/m$	$k_{\psi}(m Nm~10^2)$								
102)	0.1	0.25	0.5	1	10	100			
0.1	2985.510	2943.721	2930.396	2923.843	2918.008	2917.427			
0.25	2875.318	2825.945	2810.231	2802.511	2795.640	2794.957			
0.5	2746.033	2688.779	2670.662	2661.781	2653.888	2653.104			
1	2600.243	2536.419	2516.437	2506.681	2498.034	2497.176			
10	2337.087	2270.240	2249.840	2239.971	2231.272	2230.411			
100	2299.366	2233.105	2212.958	2203.224	2194.651	2193.803			

En las Tablas 20 y 21 se muestran los parámetros adimensionales de las frecuencias naturales $\gamma_{1,1}^2$ y $\gamma_{1,2}^2$ para diferentes combinaciones de rigideces k_w y k_ψ en el disco anular con relación b/a = 0.9.

TABLA 20 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{1,p}^2$, b/a = 0.9

<i>k</i> _w (N/m 10 ²)	$k_{\psi}({ m Nm}\;10^2)$							
	0.1	0.25	0.5	1	10	100		
0.1	533.6824	509.7825	502.1380	498.3750	495.0218	494.6883		
0.25	486.1540	459.4454	450.9789	446.8262	443.1343	442.7675		
0.5	449.4799	421.8731	413.2242	409.0006	405.2561	404.8846		
1	422.2805	394.8822	386.3835	382.2479	378.5894	378.2269		
10	390.9892	364.7731	356.7275	352.8266	349.3833	349.0424		
100	387.4864	361.4620	353.4837	349.6168	346.2042	345.8664		

TABLA 21 Parámetros Adimensionales de las Frecuencias Naturales $\gamma_{1,2}^2$, b/a = 0.9

$k_w(N/m$	$k_{\psi}(\text{Nm 10}^2)$							
102)	0.1	0.25	0.5	1	10	100		
0.1	2986.909	2945.134	2931.814	2925.263	2919.430	2918.850		
0.25	2876.713	2827.355	2811.647	2803.929	2797.060	2796.377		
0.5	2747.410	2690.172	2672.060	2663.181	2655.291	2654.507		
1	2601.583	2537.773	2517.796	2508.043	2499.398	2498.540		
10	2338.324	2271.492	2510.977	2241.231	2232.534	2231.674		
100	2300.586	2234.341	2214.199	2204.468	2195.898	2195.050		

Los resultados aquí mostrados, así como los de las referencias, fueron obtenidos utilizando un coeficiente de Poisson v = 1/3, el cual es un valor típico para el acero. Se presentan en forma tabular para incluir diversas relaciones b/a, rigideces y modos de vibración.

En la Figura 3 se muestran las formas modales para $k_w = 10000$ N/m y diferentes valores de la rigidez a flexión k_ψ en el disco anular con relación b/a = 0.1 en el modo de vibración m = 0, n = 1.

Figura 3. Formas modales del plato anular con soporte elástico para $k_w = 10000$ N/m, variando k_{w^2} m = 0, n = 1.

En la Figura 4 se muestran las formas modales para $k_{\psi} = 10000$ N m y diferentes valores de la rigidez vertical k_w en el disco anular con relación b/a = 0.1 en el modo de vibración m = 0, n = 1. En la Figura 5 se muestran las formas modales para $k_w = 10000$ N/m y diferentes valores de la rigidez a flexión k_{ψ} en el disco anular con relación b/a = 0.1 en el modo de vibración m = 0, n = 2.

Figura 4. Formas modales del plato anular con soporte elástico para $k_{\psi} = 10000$ N m, variando k_{ψ} , m = 0, n = 1.

Figura 5. Formas modales del plato anular con soporte elástico para $k_w = 10000$ N/m, variando k_w , m = 0, n = 2.

En la Figura 6 se muestran las formas modales para $k_{\psi} = 10000$ N m y diferentes valores de la rigidez vertical k_w en el disco anular con relación b/a = 0.1 en el modo de vibración m = 0, n = 2.

Figura 6. Formas modales del plato anular con soporte elástico para $k_{\psi} = 10000$ N m, variando k_{w} , m = 0, n = 2.

IV. CONCLUSIONES

Se presentaron los modelos de vibración libre de platos anulares delgados mediante la teoría de Kirchhoff para los soportes empotrado y elástico. Se obtuvieron los parámetros de frecuencia natural para b/a = 0.1, 0.3, 0.5, 0.7 y 0.9 en ambos modelos. En todos los casos aquí analizados se encontró que la frecuencia fundamental de vibración corresponde al modo axisimétrico de vibración m = 0.

En las Tablas 2 a la 21 se observa que las rigideces k_w y k_ψ tienen un efecto significativo en los parámetros $\gamma_{m,n}^2$ y se puede distinguir que conforme los valores de las rigideces aumentan, los parámetros de frecuencia $\gamma_{m,n}^2$ disminuyen y se acercan a los valores del soporte empotrado que se muestran en la Tabla 1. También se advierte que los valores de $\gamma_{m,n}^2$ en general cambian más a lo largo de una misma columna que en una misma fila, es decir, que

estos valores son más sensibles a los cambios en la rigidez k_w que en la k_ψ para los intervalos de valores presentados en este estudio. Los parámetros de frecuencias naturales aquí mostrados son una base para el análisis de vibraciones libres en discos anulares con sujeción elástica y son aplicables para discos con distintas dimensiones de radios interno y externo.

En las formas modales de las Figuras 3 y 5, donde se mantiene constante la rigidez k_w , se observa cómo la curvatura de estas se incrementa con respecto al incremento en la rigidez k_{ψ} , sin embargo, no se aprecia un desplazamiento en la ubicación del soporte r = 1. Algo distinto ocurre en las formas modales de las Figuras 4 y 6, donde se mantiene constante la rigidez k_{ψ} y a medida que la rigidez k_w disminuye, las formas modales tienden a desplazarse de la ubicación del soporte.

Para ambas modificaciones de rigideces en el modo m = 0, n = 2 de las Figuras 5 y 6 se observa la existencia de nodos en los cuales aparentemente ningún cambio en las rigideces tiene efecto. Las coordenadas de ambos nodos hacen suponer que su ubicación es aproximadamente la misma que la de los círculos modales, es decir, los valores donde z = 0. Bajo esta premisa se puede decir que los círculos modales permanecen inalterados a cambios en las rigideces al menos para este tipo de discos anulares sin amortiguamiento.

REFERENCIAS

- [1] K. L. Bowers y J. Lund, Eds., Computation and Control IV: Proceedings of the Fourth Bozeman Conference. Bozeman, Montana, EUA: Springer Science & Business Media, 1994.
- ^[2] J. N. Reddy, *Theory and Analysis of Elastic Plates and Shells*. Boca Raton, Florida: CRC Press, 2006.
- [3] W. Weaver Jr., S. P. Timoshenko y D. H. Young, *Vibration Problems in Engineering*, 5.^a ed. Nueva York: John Wiley & Sons, 1990.
- C. Y. Wang, "Fundamental Frequency of a Circular Plate Supported by a Partial Elastic Foundation", *J. Sound Vib.*, vol. 285, nos. 4-5, pp. 1203-1209, 6 ag. 2005.
- ^[5] A. W. Leissa, *Vibration of Plates*. Washington, D.C.: NASA, 1969.

- [6] K. R. Chellapilla y L. B. Rao, "Vibrations of Elastically Restrained Circular Plates Resting on Partial Winkler Foundation", *Open Acoust. J.*, vol. 2, no. 1, pp. 68-74, 2009. DOI: 10.2174/1874837600902010068.
- C. Y. Wang y C. M. Wang, Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates.
 Boca Raton: Florida, CRC Press, 2013.
- [8] P. A. A. Laura, R. H. Gutiérrez, H. C. Sanzi y G. Elvira, "The Lowest Axisymmetric Frequency of Vibration of a Circular Plate Partially Embedded in a Winkler Foundation", *J. Sound Vib.*, vol. 185, no. 5, pp. 915-919, 1995. DOI: 10.1006/jsvi.1995.0429.
- [9] R. Lal y R. Saini, "On Radially Symmetric Vibrations of Functionally Graded Non-Uniform Circular Plate Including Non-Linear Temperature Rise", *Eur. J. Mech.*, vol. 77, sept.-oct. 2019. DOI: 10.1016/j.euromechsol.2019.103796.
- ^[10] L. B. Rao y C. K. Rao, "Vibrations of Circular Plates on Elastic Foundation with Internal Elastic Ring Support and Elastically Restrained Outer Edge", *Vib. Eng.*

Technol. Mach. (VETOMAC-IV), 2007, pp. 17-19. DOI: 10.13140/2.1.3931.6168.

- H. Zhang, R. Zhua, D. Shi y Q. Wang, "A Simplified Plate Theory for Vibration Analysis of Composite Laminated Sector, Annular and Circular Plate", *Thin-Walled Struct.*, vol. 143, oct. 2019. DOI: 10.1016/j.tws.2019.106252.
- [12] P. Hagedorn y A. DasGupta, Vibrations and Waves in Continuous Mechanical Systems. West Sussex PO19 8SQ, England: John Wiley & Sons, 2007. DOI: 10.1002/9780470518434.
- [13] C. Y. Wang y C. M. Wang, Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates. Boca Raton, Florida: CRC Press, 2013.
- [14] K. K. Żur, "Green's Function in Free Axisymmetric Vibration Analysis of Annular Thin Plates with Different Boundary Conditions", *Int. J. Appl. Mech. Eng.*, vol. 20, no. 4, pp. 939-951, 2015. DOI: 10.1515/ijame-2015-0060.
- [15] R. D. Blevins, Formulas for Dynamics, Acoustics and Vibration. Chichester, West Sussex, Reino Unido: John Wiley & Sons, 2015.