
Dyna, year 80, Nro. 182, pp. 50-57. Medellin, December, 2013. ISSN 0012-7353

REVEALING NON-ALPHABETICAL GUISES OF SPAM-TRIGGER
VOCABLES

RECONOCIMIENTO DE VARIANTES ENMASCARADAS DE
VOCABLOS DESENCADENADORES DE CORREO INDESEADO

SERGIO A. ROJAS-GALEANO
PhD., Assistant Professor, Universidad Distrital, Colombia. srojas@udistrital.edu.co

Received for review August 23 th, 2012, accepted June 14th, 2013, final version July, 2 th, 2013

ABSTRACT: Unsolicited bulk email (spam) nowadays accounts for nearly 75% of daily email traffic, a figure that speaks strongly for the
need of finding better protection mechanisms against its dissemination. A clever trick recently exploited by email spammers in order to
circumvent textual-based filters, involves obfuscation of black-listed words with visually equivalent text substitutions from non-alphabetic
symbols, in such a way it still conveys the semantics of the original word to the human eye (e.g. masking viagra as v1@gr@ or as v-i-a-
g-r-a). In this paper we discuss how a simple-yet-effective adaptation of a classical algorithm for string matching may meet this stylish
challenge to effectively reveal the similarity between genuine spam-trigger terms with their disguised alpha-numeric variants.

KEYWORDS: Uncovering of spam vocables, approximate string matching algorithm.

RESUMEN: El 75% del correo electrónico que se transmite hoy en día, corresponde a mensajes masivos no solicitados (comúnmente denominados
spam), lo que evidencia la necesidad de continuar fortaleciendo los mecanismos de protección contra su propagación. Uno de los tretas más
ingeniosas utilizadas últimamente por los spammers para sobrepasar los filtros basados en comparación de texto, es el enmascaramiento de las
palabras vedadas mediante substituciones con símbolos no alfabéticos, de manera que aún visualmente logren transmitir la semántica del término
original (por ejemplo, enmascarando viagra como v1@gr@ o como v-i-a-g-r-a). En este artículo se discute una técnica simple pero efectiva para
contrarrestar esta sutil trampa, que consiste en la adaptación de un algoritmo reconocido de apareamiento de textos para revelar efectivamente la
similitud existente entre vocablos desencadenadores de filtros spam y variantes alfanuméricas enmascaradas.

PALABRAS CLAVE: Desenmascaramiento de vocablos spam, algoritmo de apareamiento aproximado de texto.

1. INTRODUCTION

Electronic mail (email) is nowadays one of the most popular
communication mediums utilized to exchange information
at a corporate or personal level. Indiscriminate abuse of
the system has led to what is commonly known as spam:
unsolicited bulk email intended to broadcast commercial
advertisement free of charge or to mislead people to visit
illegal or suspicious Web pages. This improper practice
is a real burden to the operating cost of the system;
according to Barracuda Central (www.barracudacentral.
org, last visited: 21-June-2013), a privately held company
specialised in email traffic monitoring, almost 75% of
an average 600M emails sent daily is spam. The topics
of spam messages range from pharmaceutics to lotteries
to replicas to illegal advertisement to pornography, just
to name a few. These numbers reveal the magnitude of
the problem, and although filters are becoming stronger
in stopping spam [1-5], spammer’s efforts have likewise
grown in sophistication.

One of the latest tactics involves masking filter-triggering
words by substituting letters with visually equivalent non-
alphabetic symbols that are still easily recognized by the
naked eye. Some examples of this type of masking are
shown in Table 1. Such type of encoding is reminiscent
of first-order (i.e. one symbol) internet slang ciphering
largely popular in forums, instant and text messaging, and
hacker’s newsboards (e.g. leet speak [6], chatspeak [7,
8], text-talk [9]). Table 2 shows a non-exhaustive list of
substitution ASCII-code symbols for the English alphabet.

Several approaches have been proposed to tackle this
masking manoeuvre; we discuss some of them below.
Most of the many (combinatorial) non-alphabetical
guises for a given spam term would be so infrequent
that they would hardly appear in any filter’s black-list.
Furthermore, maintaining a large black-list covering all
the variants would be unfeasible. An obvious choice to
account for the transliterations induced by Table 2 would
be to perform an inverse mapping of each symbol in the

Dyna 182, 2013 51

disguised word. Unfortunately, this is not a one-to-one
mapping, making it difficult to find the set of rules that
define the exact reversing. A more sophisticated option is
to train a probabilistic generative model (for example, a
Hidden Markov Model) of the genuine spam term and use
it for recognising any of its variants (see [10, 11]). This
technique chooses the hidden sequence of states -in this
case insertion, substitution, deletion- that most probably
explains the observed sequence of symbols of the spam
term variation. The main disadvantage of these methods is
the computational time required to train and use the models,
despite recent optimisations alleviating this issue [12].

Table 1. Examples of first-order substitution masking of
the spam term “viagra”. Substitution site is underlined in

the header row. (Viagra® is a trademark of Pfizer).
viagra viagra viagra viagra viagra viagra

uiagra v1agra vi@gra via9ra viag®a viagrá

úiagra vlagra viägra viaqra viagΩa viagræ

Table 2. A non-exhaustive substitution lists of extended-
ASCII symbols for the 26 letters of the English alphabet.

In this paper we take a different viewpoint and regard the
masking trick as a word-to-word matching application,
that is, the aim is to determine if the disguised and
the genuine spam-trigger vocables coincide. Popular
algorithms to compute string-to-string similarity are
well-known [13-15]. These algorithms were the basis of
subsequent applications in the field of molecular biology
and bioinformatics, where they were adapted to align
sequences of genomic or proteomic molecules from
different organisms in order to compare their similarity
[16, 17]. Motivated by the sequence alignment method,
in the following we describe an application of the string-

to-string matching algorithm for the purposes of detecting
cases of non-alphabetically disguised spam terms.

Notation. Lower-case boldface is used to denote character
strings (e.g. a). Plain font symbols designate characters
or scalar values (e.g. ℜ∈ni,). Capital letters denote
matrices or sets (e.g. D, A). Single subscripts indicate
loci in a string and double subscripts indicate entries of a
matrix. The null character is marked as ‘−’.

2. METHOD

To begin with we recall the classical string-to-string
matching algorithm proposed by Wagner and Fischer
[15] (see Algorithm 1), which is a refined version of
the Levenshtein [14] algorithm to compute the edit
distance between two strings a and b with lengths n
and m, respectively. The edit distance basically scores
the edits (corrections) needed to transform one string
into another, based on an edit cost function δ(∙,∙). Such
a function defines the cost of insertion, deletion or
substitution of two given symbols from the strings.

Algorithm 1. String-to-string edit distance
Input: Strings a = (a1,…, an), b = (b1,…, bm),
 Similarity function δ(∙,∙)
Output: D(i+1,j+1),the edit distance between a and b
1: D(1,1) = 0
2: for (i =1,…,n) do
 D(i+1,1) = D(i,1) + δ(ai, −)
3: for (j =1,…,m) do
 D(1, j+1) = D(1,j) + δ(−, bj)
4: for (i =1,…,n) do
 for (j =1,…,m) do
 D(i+1,j+1) = min (D(i, j+1) + δ(ai, −),

 D(i+1, j) + δ(−, bj),

 D(i, j) + δ(ai, bj))

The algorithm maintains a dissimilarity (distance) matrix
)1()1(+×+ℜ∈ mnD where any entry D(i+1,j+1) holds the edit

distance between the prefix substring a[1:i] and the prefix
substring b[1:j]; the matrix is progressively filled with a
dynamic programming procedure that reuses previously
calculated distances between shorter substrings, until it
gets to the full extent of the input strings.

The computation of the matrix entries works as follows.
To start with, observe that distances to, and from, the

Rojas-Galeano52

empty string would be stored in the first column and first
row of D respectively. Hence the first loop of the algorithm
fills up the first column of D with the number of deletions
needed to transform the successive prefix substrings of
a into an empty string. Similarly, the second loop fills
up the first row with the number of insertions needed
to build up the successive prefix substrings of b out of
an empty string. The heart of the algorithm is the final
double-nested loop that computes intermediate distances
D(i+1,j+1) or edits needed to transform the substrings with
prefix a[1:i] into that with prefix b[1:j]. This distance is found
as the minimum of three quantities that reuse distances
between shorter prefix substrings previously examined,
namely the distance between a[1:i-1] and b[1:j]. plus the cost
of deletion of symbol ai from a, the distance between a[1:i]
and b[1:j-1] plus the cost of insertion of symbol bj into a,
and lastly, the distance between a[1:i-1] and b[1:j-1] plus the
cost of substitution of ai by bj in a. The cost of insertion,
deletion and substitution is determined by the edit cost
function ℜ→× AA:δ mentioned above, A being the
set of symbols from an admissible alphabet.

Let us come back now to our problem of interest. In order
to reveal the obfuscated spam terms, we need to consider
allowing substitutions of letters from the English alphabet
with symbols from Table 2, plus the occasional deletion
of one symbol or insertion of bogus ornament symbols
disrupting the original term. Our idea is therefore to
use Algorithm 1 with a carefully designed edit cost (or
similarity) function capable of detecting the masking
operations. For this purpose, let us first express the set of
common bogus segmentation characters as:

βS = { ∙, *, ~, |, −, _, :, ; }.

Secondly, let ∆S denote the set of admissible
substitution symbols for a given character ∆ (including
itself); this set is determined by the column of Table 2
indexed by ∆ in the head row (e.g. for the letter ∆ :=
‘l’, Sl = { 1, l, !, /, £, L}). Now, let us define the edit
cost function δ (∙,∙) as:

The rationale of Equation (1) is two-fold. On the
one hand, replacement of a normal character with an
admissible non-alphabetical symbol, or the insertion
of a bogus character separator, should be ignored, in
other words treated as no-cost edits. On the other hand,
insertions as well as deletions or else substitutions with
non-admissible characters should be treated as actual
corrections that incur a cost of one edit.

We observe that the combination of Algorithm 1 with
Equation (1) leads to a plausible method to match a
disguised vocable and its original term. As an example
of the method’s operation, Table 3 shows how a perfect
match is obtained for the similarity between the
vocables “viagra” and “v.1.@.g.r.@”.

Table 3. Resulting distance matrix D for the input strings
a:= “viagra” and b:= “v.1.@.g.r.@” (left column
and top row respectively) computed with Algorithm 1

coupled with Equation (1). The final dissimilarity score
D(7,12) = 0 indicates a perfect match.

The method would be capable of uncovering spam-
filter triggering terms by scanning the email subject
or contents against a list of genuine previously-known
black-words, i.e. a vocabulary of typical spam terms
written in plain lowercase English (notice that capital
letters are included in the admissible substitution sets,
so messages in uppercase will be matched as well).
This can be done as a pre-processing step during email
filtering: instead of searching for vocables with any
exact-match in the black-list, the filter may search
for matches with zero or small edit distance to any
of the entries in the black-list, using the method just
described, thus uncovering their guises.

3. EXPERIMENTS

We experimented with two different datasets as
described below. The focus was in detecting variants
of spam triggering vocables, since these are the main
target intended by spammers to fool filters; thus we

Dyna 182, 2013 53

did not design experiments regarding detection of
non-spamming terms. For all of our experiments we
developed scripts in Octave version 3.2.4 (code and
datasets are available upon request).

3.1. Sanity test

In order to illustrate the potential feasibility of the
method, we conducted a preliminary trial on a list of
186 masked versions of the vocable “viagra”, that
we extracted from the Cockeyed Web bulletin (see
“There are 600,426,974,379,824,381,952 ways to spell
Viagra” by R. Cockerham in: www.cockeyed.com/
lessons/viagra/viagra.html, last visited: 21-June-2013).
As can be seen in the excerpt shown in Table 4, this
test list includes instances of obfuscation caused by
substitution, insertion, deletion and segmentation. In
this experiment we scanned each entry in the list and
compute its distance to the genuine spam term; then we
use the resulting distance matrix to perform sequence
alignment [13, 15]. The findings are described next.

Table 4. An excerpt of the viagra test set.

Table 5. Histogram of edit distances of the masked
spam term variants contained in the viagra dataset.

Table 6. The ten detected variants with distance equal to
or greater than 2 in the in the viagra dataset (obfuscated

on top of alignment to the genuine term).

The distribution of edit distances to the genuine word
“viagra” on this test set is shown in Table 5. This
results show that the algorithm matched perfectly 80%
of the examined instances (150 variants).

A closer inspection of the 10 cases with a distance equal
to or greater than 2 is given in Table 6. It is worth noting
that most of these cases are nevertheless correctly aligned
to the genuine spam word (8 out of 10). The variant found
with a highest distance of 3 (and wrong alignment as
well) was “ViaVErga”, which in our opinion, would be
hardly recognizable by the human eye as the intended
spam word. In fact, this variant would convey a different
semantic in a language like Spanish. From a practical
point of view, a spam filter would define a low threshold
in the similarity score computed with our method, for
example a distance less than or equal to 2, to activate
the blocking mechanism. Such a threshold would have
obtained 99% sensitivity in this viagra test list.

3.2. Extended test

After validation of the sanity test, a broader experiment
was conducted to further study the empirical behaviour
of the described method.

For this purpose we visited a number of spam-related
web forums and gathered a list of 100 common spam-
filter triggering sentences. Then we built a dataset
comprising 100 automatically generated obfuscated
variants for each spam-trigger sentence with a
corruption rate 10 ≤≤ p . Thus, a character ∆ in the
sentence was kept unaltered with probability p−1
; otherwise with probability 4p it was exposed to
one of the following edits: substitution with one of its
admissible characters of Table 2, random substitution
with any other character, replication (insertion of up
to 10 occurrences of the same character), or insertion
of up to 5 bogus repeated characters from the list βS .

We remark that the random substitution edit operation
introduces noise that is meant to have an adverse effect
on our matching method. An excerpt of this spam-
obfuscated list is shown in Table 7.

The performance of the method in this setting
was estimated as follows. We generated datasets
as explained above, for a range of values for

}5.0,4.0,3.0,2.0,1.0{∈p . One experiment was run
for each dataset. Each of the hundred canonical spam
sentences was compared against its hundred variants
and the average edit distance 100

1}ˆ{ =iid was recorded,
where i denotes the index of the canonical sentence in
the dataset. Then we summarized these results in the
average distance histogram shown in Figure 1.

Rojas-Galeano54

Figure 1. Average distance histogram in the obfuscated
datasets for different values of p.

We found that for small corruption rates (}2.0,1.0{∈p)
the method recognised more than 90% of the obfuscated
variants, obtaining an edit distance 2ˆ ≤id (see the darker
bottom regions of the two leftmost bars in Figure 1).

On the other hand, higher corruption rates required higher
distance thresholds for a 90+% recognition success:

3ˆ ≤id for }4.0,3.0{∈p , and 4ˆ ≤id for 5.0=p . The
latter is nonetheless noteworthy considering that the noise
induced with such rate can achieve up to 12% of random
substitutions, an obfuscation level that mostly loses its
deception factor to the human eye, as it is exemplified in
the rightmost column of Table 7.

In this sense one would expect that in order to be effective
the obfuscation tactic would be carried out by spammers
using the lowest corruption rates. Nonetheless, it is
interesting that if a threshold on the edit distance of 4ˆ ≤id
were defined to block a suspicious (candidate spam)
sentence, the method would have obtained ≈97% accuracy
in this test, regardless of corruption rate or sentence length.

Further evidence of the latter claim was given by the
following analysis. We first measured the average
length 100

1}ˆ{ =iil of the corrupted sentences, that is, the
average number of characters of the one hundred
variants generated per each sentence i.

Next we computed the set of ratios
i

i

l
d
ˆ
ˆ

 for each test list

generated with different values of p. This ratio gives us
an indication of the proportion of average edits needed
to transform the variants to its canonical form, with
respect to their average lengths.

A surface plot of this measure with respect to the
different values of p is displayed in Figure 2. This plot
reveals that the five surfaces maintain a constant trend,
which in turn indicates that the average number of
corrections needed to recognise the spam variant stays
at a constant proportion to the average length yielded
by their respective corruption rates.

Table 7. An excerpt of the spam-obfuscated test lists. Sentence index (identifier) within the list is indicated in brackets.

Dyna 182, 2013 55

Figure 2. Trend chart of the ratio of average distance to average length in the obfuscated datasets for different values of p.
Indices (identifiers) of the collected one hundred spam-triggering sentences are indicated on the horizontal axis.

It is interesting to note that for most sentences the
proportion

ii ld ˆˆ not only remains constant irrespective
of p, but also is typically smaller than 0.1 (that is,
smaller than 10%). There are only four peaks showing a
greater proportion, those corresponding to the 11th, 12th,
29th and 99th sentences: s11:=“bukkake”, s12:=“call
free”, s29:=“free access pass” and s99:=“xxx”.
This fact is explained by the current difficulty posed
to the method when distinguishing between bogus and
legitimate character repetitions, a common feature in
these four instances. Right now legitimate character
repetitions are accounted as one edit; to see why,
notice that the first occurrence of the repeated letter in
the original term is matched by the algorithm against
the repeated occurrences of the same character in the
variant; the second (and subsequent) repetitions in
the original term are thus accounted as one insertion
yielding a cost of 1 according to Equation (1). As a
consequence, for example in s29, , that is, 41
of the original length . The above rationale can
be extended to the other cases, s99 being particularly
prominent due to its short length.

4. CONCLUSION AND FUTURE WORK

The method we have just described is intended to
counter-attack the clever trick of ciphering spam-
trigger words with spurious character obfuscation
aimed at fooling spam filters. The core of this method
is the edit cost function −Equation (1)− which is
plugged into a classical string matching algorithm.
Such function in fact establishes an equivalence class
for the admissible substitutions and segmentators in
the masking character universe defined in Table 2

augmented with the segmentation characters of the
set βS .

It is worth noting that the method requires no training
before use; it only needs as input a cleaned (canonical)
vocabulary list of spam trigger terms. We believe it
could be valuable if used as a pre-processing step to
uncover obfuscated text inside the contents of an email,
in order to subsequently verify the rectified content
using the current available and emerging spam-filter
technology (as those described in [18] and [19]). It
would be also interesting to refine the algorithm with
sophisticated string-matching kernel machines so as to
incorporate it into state-of-the-art spam filters (some
examples in this direction are proposed in [20]).

We would like to conclude emphasizing on a few
challenges concerning special cases of spam text
obfuscation, currently not solved in the proposed method.
The first one is the discrimination between obfuscation
and genuine letter replication as discussed before
(for example when masking call free►calllll
freeeeee, only the first two “ll” and “ee” should be
accounted as legitimate in the obfuscated sentence). In
this regard, at present the algorithm is unable to match
spurious repetitions with legitimate doubled-letter
words. The second one, a challenge that may pose
difficulties on body text parsing, is the discrimination
of the blank space, which is not only the most common
interword separator but also can be used for visually-
undetected letter segmentation (e.g. sex►s e x).
Yet one more compelling challenge is the transposition
of consecutive letters (e.g. password ►passwrod),
even though the visual deception factor of this tactic

Rojas-Galeano56

is moderate and thus its prevalence is uncommon. In
a different direction, worthy of attention, is the study
of the method when allowing real-valued costs for the
edit operations, to see how they effectively contribute
to solve the obfuscation tactic.

As a final note, equally appealing are practical issues
regarding hardware implementation of the described
techniques, such as the study conducted in [21] and
potential applications in other obfuscation-prone
user-generated content such as text messaging and
social networks posts. We remark that any application
comprising processing of natural written text such
as dialog human-machine-interaction [22], text
morphological analysis [23], or speech synthesis
from textual input [24], could benefit from the method
described here, as it may increase their robustness rates
to spelling mistakes.

REFERENCES

[1] Blanzieri, E. and Bryl, A., A survey of learning-based
techniques of email spam filtering. Artificial Intelligence
Review, 29, pp.63-92, 2008.

[2] Carpinter, J. and Hunt, R., Tightening the net: A review of
current and next generation spam filtering tools. Computers
and Security, 25(8), pp.566-578, 2006.

[3] Cormack, G., Email spam filtering: A systematic review.
Found. Trends Inf. Retr., 1, pp.335-455, April 2008.

[4] Meyer, T.A. and Whateley, B., SpamBayes: Effective
open-source, Bayesian-based, email classification system.
In: Proceedings of the First Conference on Email and Anti-
Spam, 2004.

[5] Zhang, L., Zhu, J. and Yao, T., An evaluation of statistical
spam filtering techniques, ACM Transactions on Asian Language
Information Processing (TALIP), 3, pp.243-269, 2004.

[6] Ross, N., Writing in the information age. English Today,
22(3), pp.39-45, 2006.

[7] Crystal, D., E-Mail Essentials: How to Make the Most
of E-Communications, Kogan Page, 2001.

[8] Yunker, F. and Barry, S., Threaded podcasting: The
evolution of on-line learning. In: Proceedings of the
International Conference on e-Learning (Ed. Remenyi, D.),
Academic Conferences Limited, 2006.

[9] Crystal, D., Txtng: The gr8 db8, Oxford University
Press, 2008.

[10] Gordillo, J. and Conde, E., An HMM for detecting spam
mail. Expert Systems with Applications, 33, pp. 667- 682,
2007.

[11] Rigoutsos, I. and Huynh, T., Chung-Kwei: a Pattern-
discovery-based System for the Automatic Identification of
Unsolicited E-mail Messages (SPAM). In: Proceedings of
the First Conference on Email and Anti-Spam, 2004.

[12] Lee, S., Jeong, I. and Choi, S., Dynamically weighted
Hidden Markov Model for spam deobfuscation. In:
IJCAI-07, pp. 2523-2529, 2007.

[13] Kondrak, G., Algorithms for language reconstruction
[PhD thesis]. University of Toronto, 2002.

[14] Levenshtein, V., Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady,
10(8), pp.707-710, 1966.

[15] Wagner, R. and Fischer, M., The string-to-string
correction problem. Journal of the ACM, 21, pp.168-173,
1974.

[16] Needleman, S. and Wunsch, C., A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48(3), pp.443-453, 1970.

[17] Smith, T. and Waterman, M., Identification of common
molecular subsequences. Journal of Molecular Biology,
147(1), pp.195-197, 1981.

[18] Almeida, T. and Yamakami, A., Advances in spam
filtering techniques. In: Computational Intelligence for
Privacy and Security (Eds. Elizondo .et al.), volume 394 of
Studies in Computational Intelligence, pp. 199-214, Springer
Berlin - Heidelberg, 2012.

[19] Caruana, G. and Li, M., A Survey of Emerging
Approaches to Spam Filtering. ACM Computing Surveys,
Vol. 44(2), 2012.

[20] Sculley, D., Wachman, G. and Brodley, C., Spam filtering
using inexact string matching in explicit feature space
with on-line linear classifiers. In: TREC, Volume Special
Publication 500-272 (Eds. Voorhees, E. and Buckland, L.),
National Institute of Standards and Technology (NIST),
2006.

Dyna 182, 2013 57

[21] Tee, H., FPGA unsolicited commercial email inline filter
design using Levenshtein distance algorithm and longest
common subsequence algorithm [MSc. Thesis]. Faculty of
Computer Science and Information Technology, University
of Malaya, 2010.

[22] Zapata, C. and Mesa, J., Los modelos de diálogo y
sus aplicaciones en sistemas de diálogo hombre-máquina:
revisión de la literatura, DYNA, Vol 76 (160), 2009.

[23] Zapata, C. and Mesa, J., Una propuesta para el análisis
morfológico de verbos del español, DYNA, Vol 76(157),
2009.

[24] Rueda, H., Correa, C. and Arguello, H., Design and
development of speech synthesis software for Colombian
spanish applied to communication through mobile devices,
DYNA, Vol 79(173), 2012.

