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ABSTRACT: A robust medical image processing system depends upon a variety of aspects, including a proper image enhancement, and 
an optimal segmentation. An algorithm was proposed in this paper to facilitate the implementation of these two steps. First a Magnetic 
Resonance (MR) image is enhanced via spatial domain filtering and its contrast is improved, next, the image is segmented using fuzzy 
C-mean clustering, then the region of interest which might be the tumor or edema, is detected and delineated. The key advantage of this 
image processing pipeline is the simultaneous use of features computed from the intensity properties of the image in a cascading pattern 
which makes the computation self-contained. Performance evaluation of the proposed algorithm was carried out on brain images from 
different MRI’s and the algorithm proved to be successful, comparing it with other dedicated applications. 
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RESUMEN: Un sistema de procesamiento de imágenes médicas robusto depende de una variedad de aspectos, incluyendo una mejora 
apropiada de la imagen, y una segmentación óptima. En este artículo se propone un algoritmo para facilitar la implementación de estos dos 
pasos. En primer lugar, una imagen de resonancia magnética (RM) se mejora vía filtrado en el dominio espacial y también se mejora su 
contraste, luego, la imagen se segmenta utilizando el agrupamiento difuso “fuzzy C-means” (FCM), posteriormente, la región de interés, 
que puede ser el tumor o edema, se detecta y delinea. La ventaja clave de esta canalización de procesamiento de imagen es el uso simultáneo 
de características calculadas a partir de las propiedades de intensidad de la imagen en un patrón en cascada que hace que el cálculo sea 
auto-contenido. La evaluación del rendimiento del algoritmo propuesto se llevó a cabo en imágenes cerebrales de diferentes sistemas de 
resonancia magnética, el algoritmo desarrollado probó ser exitoso en comparación a otras aplicaciones relacionadas.

Palabras clave: IRM (Imagen de Resonancia Magnética), Región de interés, Segmentación, Algoritmo de agrupamiento.

1. INTRODUCTION

For every person diagnosed with brain tumor, their life 
expectancy decreases by 22 years on average. Due to their 
location, i.e., at the center of thought, physical function 
and emotion, brain tumors are difficult to diagnose and 
treat, and as a result, their death toll both in adults and 
children is highly disturbing. In many case, brain tumors, 
like any other type of cancer are a result of uncontrolled 
growth of brain cells, which may spread across the brain 
if not taken care of. For this reason, timely diagnosis and 

steady monitoring are imperative. As part of oncologic 
imaging, computer-aided diagnosis of these unhealthy 
tissues is not only of high interest in serial treatment 
monitoring of disease burden (i.e.,the impact this health 
problem may have in terms of financial cost, mortality, 
morbidity etc), but is also getting popular in many 
image guided surgical approaches. Using T1 weighted 
MR images which are obtained after administration of 
a contrast agent (gadolinium), our proposed algorithm, 
focuses on identifying brain structures, i.e., white matter, 
gray matter, cerebral spinal fluid, and then, it detects any 
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abnormal region that always stands out due to its intensity 
spectrum; and with limited user interaction, the algorithm 
uses predefined parameters quantifying this region of 
interest (ROI) intensity to delineate it with higher precision 
thus facilitating subsequent treatment processes. Most of 
medical imaging modalities obtain images of gray scale 
intensities, including MRI’s. It turns out that these images 
have noise, artifacts, poor resolution and contrast due 
to instrument and reconstruction algorithm limitations 
or even patient movement; this makes auto diagnosis 
a challenging task, and the algorithm’s advantages and 
disadvantages may vary depending on the properties of the 
image under examination. Due to the image deterioration 
factors mentioned above, it’s hard to develop a standard 
approach capable of working with all MR brain images 
[1]. For this reason, tradeoffs have always been present in 
computer-aided diagnosis systems. However, comparing 
our fuzzy clustering-based method to other methods like 
classifier, region growing, neural networks, deformable 
model-based systems, a big advantage of our approach is 
recognized especially when it comes to dealing with the 
adverse factors mentioned [2]. 

2. METHODOLOGY

2.1 Preprocessing

Medical images are often deteriorated by noise due to 
various sources of interference and other phenomena 
that affect the measurement processes in imaging 
and data acquisition systems. The nature of the 
physiological system under investigation may also 
diminish the contrast and the visibility of details [3]. 
Thus, pre-processing helps in generating enhanced 
versions of the original image that demonstrate certain 
features in manner that is better in some sense as 
compared to their appearance in the original image. 
Depending on the nature and quality of the original 
image, different methods are used to enhance the 
visibility of the image, among them, filtering, histogram 
equalization, intensity scaling, compensation for 
nonlinear characteristics, etc. In the methodology 
proposed, spatial filtering and histogram equalization 
were adopted because they turned out to be effective 
in dealing with most of the problems that show up in 
the post-acquisition phase, and this is the right way to 
tackle the issue since other types of artifacts are best 
taken care of during the acquisition process [4].

2.1.1.  Filtering

In the proposed algorithm, filtering was carried out in the 
spatial domain using a Laplacian Filter. The Laplacian 
operator is an example of a second order method of 
enhancement. The Laplacian proved to be good at 
finding the fine detail in an MRI image in a much better 
way compared to other spatial filters like the median, 
Gaussian, gradient or fuzzy filters, because it sharpens 
the image in a manner that portrays the heterogeneity of 
the image components in a much clearer view, and this 
is thanks to the fact that it is a second derivative operator 
that works successfully on heterogeneous images like 
MR images [5]. This filter is implemented by applying a 
Laplacian to an image f(x, y) as follows:
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Commonly used digital approximations of the second 
derivative are:
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After this transformation we obtain a sharper image 
with a higher degree of heterogeneity better suited for 
further processing.

2.1.2.  Histogram equalization

Another way to improve the quality of MR images was 
through the enhancement of their contrast. This is a 
very important aspect for subsequent processing phases, 
because it produces images that have the same contrast, 
hence ensuring a consistent response from the detection 
algorithm. This adjustment was carried out using histogram 
equalization technique, because it is fully automatic, can 
cover the entire gray scale which means there is no loss 
of information, and is based on information that can be 
extracted directly from the given image without the need 
for further parameter specification.

Suppose the intensity levels are continuous quantities 
normalized to the range [0, 1] and let ( )rp r denote 
the probability density function (PDF) of the intensity 
levels in a given MRI image, where the subscript is 
used for differentiating between the PDFs of the input 
and output images[5]. Suppose that we perform the 
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following transformation on the input levels to obtain 
output (processed) intensity levels s,

( ) ( )
0

r

rs T r p w dw= = ∫ ,			   (3)

where w is a dummy variable of integration and r is 
in the range [0, L-1], we define L being the gray scale 
intensity levels, with r=0 representing black and r=L-1 
representing white. It can be shown that the PDF of the 
output levels is uniform, that is,

( )
1 0 1
0s

for s
p s

otherwise
≤ ≤

= 


.		  (4)

In other words, the preceding transformation generates 
an image whose intensity levels are equally likely, and 
in addition covers the entire range [0, 1]. The net result 
of this intensity-level equalization process is an image 
with increased dynamic range, which will tend to have 
a higher contrast, and when applied to the MR image, 
the sharpness increases  and our detection stage will 
be more efficient since we will be dealing with images 
whose contrast has increased. 

2.2.  Segmentation

The principal goal of the segmentation process is to 
partition an image into regions (also called classes 
or subsets) that are homogeneous with respect to one 
or more characteristics or features [3]. In medical 
imaging, the segmentation step is important for 
feature extraction, image measurement and display, 
classification of image pixels into anatomical regions or 
pathological regions such as cancer (tumor in our case), 
tissue deformities, among others. There are a number 
of methods used for this classification task, and each 
of them maybe selected depending on the application 
and the type of image to be dealt with. In our case, the 
most preferable was fuzzy classification due to reasons 
that will become clear in the next sections.   

2.2.1.  Fuzzy C-mean Clustering

One of the well-established concepts in image 
segmentation is pixel classification. This concept 
assumes that the pixels in each subclass (tissue) have 
nearly constant intensities, which is true for anatomical 
structures with similar physiological properties [3]. 

This applies to structures like White Matter (WM), 
Gray Matter (GM), or the Cerebral Spinal Fluid (CSF) 
that are found in the brain. This is also true for the 
unhealthy tissues like tumors because the cells that 
make up these tissues present similar physiological 
properties, thus uniformly responding to the BO field 
and the Radio-frequency system of the MRI. And for 
this reason, they always stand out in the classification 
process, since their intensity spectrum differs from the 
rest of other tissues; in this regard, any tissues in the 
MR image whose intensity spectrum differs from the 
WM, GM and CSF spectra and is spatially found in 
one of these tissues’ locations will always be treated as 
a region of interest that catches the doctor’s attention. 
This explains why our diagnosis methodology seeks to 
sort out all the tissues that show up in the MR brain image 
using an adaptive classification method, that is, a method 
that is capable of estimating the centroid and bounds of each 
tissue in an adaptive fashion. It was proved that the right tool 
for this identification process would be fuzzy classification 
as a clustering technique since it classifies pixels in their 
respective clusters [6] bearing in mind the variability of 
gray value along with pixel statistical uncertainty due to 
the randomness [7].

We can now define a family of fuzzy partition matrices 
Mfc, for the classification involving c classes (clusters) 
and n data points (pixels):
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where U fcM∈


is a fuzzy c-partition, ikµ is the 

membership value that the k-th pixel has in the i-th 
cluster, with i= 1, 2,…,c, and k = 1, 2,…,n; c being the 
number of clusters, and n the number of pixels, and 

ikµ must have the following restrictions:

( ) [ ]0,1
iik A kxµ µ= ∈ ,			   (6)
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with A being a family of fuzzy sets, and x, the data 
sample. It follows from the overlapping character of 
the classes and the infinite number of membership 
values possible for describing class membership that 
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the cardinality of Mfc is also infinity, that is, 
fcMη = ∞

[8].

To describe a method to determine the fuzzy c-partition 
matrix U



 for grouping a collection of n data sets (i.e., 

n pixels that quantify the corresponding intensities of 
our MR image) into c classes (i.e., c brain tissues 
including our ROI), we define an energy function Jm 
for a fuzzy c-partition [8],
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with dik representing the Euclidean distance between 
the i-th cluster center and the k-th pixel (data point in 
m space or k-th pixel’s intensity); and the parameter v

is a vector of cluster centers. Another parameter 
introduced in (8) is w, called a weighting parameter 
whose value has a range [1, )w∈ ∞ . This parameter 
controls the amount of fuzziness in the classification 
process.

Furthermore, in (9) appears iv  which is the i-th cluster 
center, and is described by m features (m coordinates) 
that can be arranged in vector form, that is,

1 2{ , ,.... }i i i imv v v=v . 

Each of the cluster centers mentioned above can be 
calculated in the following manner: 
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where j is a variable on the feature space, that is, j = 1, 
2, . . .,m. and i, k define the cluster and pixel number 
respectively. 

It should be pointed out that the function Jm can have a 
large number of values, the smallest one associated with 
the best clustering or in our case, the best detection. 
Because of the large number of possible values (now 
infinite due to the infinite cardinality of fuzzy sets) we 
seek to find the best possible, or optimum, solution 

without resorting to an exhaustive, or expensive, 
search.

The optimum fuzzy c-partition will be the smallest of 
the partitions described in (8), that is,

( ) ( )* * *U , min U,
fc

m M
J J=v v

 

.			   (11)

As with many optimization processes, the solution 
to (11) cannot be guaranteed to be a global optimum 
because of its fuzziness in nature. What we seek is 
the best solution available within a prespecified level 
of accuracy. To get to this, an iterative optimization 
algorithm proved to be the best option [8].The steps 
of this algorithm are as follows:

1.  Fix c (2 ≤ c < n) and select a value for parameter w 
depending on the degree of fuzziness of the images 
to be processed (w>1). Initialize the partition matrix,

(0)U


. Each step in this algorithm will be labeled r, 

where r = 0, 1, 2, .…It should be noted that c was 
chosen to be equal to 4, referring to Cerebral Spinal 
fluid, White matter, Gray matter and region of 
interest, i.e. tumor/edema.

2.  Calculate the c centers { }( )r
iv for each step.

3.  Update the partition matrix for the r-th step, ( )U r



, 
as follows:
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and,
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then stop, otherwise set  r=r+1 and return to step 2.

The parameters ( )U r



and ( 1)U r+



represent the partition 
matrix for the rth and the (r+1)th steps respectively, as it 
was mentioned in step 1 and 3 of the algorithm. And the 
parameter Lε represents a prescribed level of accuracy 
that is used to determine whether the solution is good 
enough to stop the algorithm. This comparison of a 
matrix norm || of two successive fuzzy partitions to a 
prescribed level of accuracy, εL, is due to the restrictions 
of (11). 

In step 3, there is a considerable amount of logic 
involved in (12)–(16). Equation (12) is straightforward 
enough, except when the variable djk is zero. Since this 
variable is in the denominator of a fraction, the 
operation is undefined mathematically, and computer 
calculations are abruptly halted. So the parameters Ik 
and  Ik



 comprise a bookkeeping system to handle 
situations when some of the distance measures, dij, are 
zero, or extremely small in a computational sense. If a 
zero value is detected, (13) sets the membership for 
that partition value to be zero. Equations (14) and (15) 
describe the bookkeeping parameters Ik and Ik



, 
respectively, for each of the classes. Equation (16) 
simply says that all the nonzero partition elements in 
each column of the fuzzy classification partition, U



 
sum to unity [9], [10].

2.2.2.  Level set methods

Level set methods (LSM) seek to define the active 
contours of ROI through the evolution of a numerical 
level set equation, which is actually a Hamilton-Jacobi 
equation [11], [12]:
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0 ( , )x yφ where F represents comprehensive forces, 

including internal forces from the interface geometry 
like mean curvature, contour length, area and external 
forces from image gradient. φ is the level set function 
and,  0 ( , )x yφ  is the initial contour. A complete level 
set equation can actually be written as:
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with,
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Equation (19) is an edge indication function that 
regularizes F in order to stop level set evolution near 
the optimal solution [13]. The constants , , andµ λ ν  
control the individual contribution of the terms above 
and they are tuned using trial by error method, and 
they vary from case to case. In our experiment these 
values varied from (0.01 to 0.3), (0.1 to 7), (-2 to 2) 
respectively.

Basically, the terms ( , )gξ φ  attracts the level set 
function towards the variation boundary, and ( )ζ φ           
forces the function to approach the genuine signed 
distance function automatically. And the Dirac function 
is computed as follows [14]:

0,
( ) 1 1 cos

2

x
x x xα

α
δ π α

α α

 >
=    + ≤     

,		  (21)

whereα is a constant regulating the Dirac function 
and is tuned using trial by error method . The 
interface defined as ( )tΓ  can be determined by 
tracking the values of level set function according to 
the conditions,( , , ) 0....( , ), inside ( )

( , , ) 0....( , ), at ( )
( , , ) 0....( , ), outside ( )

t x y x y t
t x y x y t
t x y x y t

φ
φ
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< Γ
 = Γ
 > Γ

.		 (22)



Vianney-Kinani et al / Dyna, year 81, no. 183, pp. 148-157, February, 2014. 153

The steps of the proposed algorithm are shown in 
figure 1 below. 

Figure 1. Flow diagram of the proposed computer-aided 
diagnosis algorithm.

3.  EXPERIMENTAL RESULTS AND ANALYSIS

The experiments were carried out on MR brain images 
baring different resolutions varying between 1.5 to 
4mm/pixel. The algorithm was implemented using 
MATLAB R2007b (Mathworks), on the Windows 7 
operating system, and 3.00 GHz dual processor; its 
execution time was about 15 seconds which is quite 
acceptable. Another overwhelming advantage was the 
precision to track even the most negligible intensity 
change, which implies that our algorithm could carry 
out a quicker and more reliable diagnosis than a general 
clinician, especially in case of poor quality MR images 

because human eye is unable to trace these changes 
so easily.  

 
Figure 2. Patient 1.Original image.

As mentioned, the original image is preprocessed 
using the methods mentioned in Section 2, and then 
brain structures are categorized into white matter, 
gray matter, cerebral spinal fluid and the unhealthy 
tissue. Then, this tissue is selected and the algorithm 
works to define its contour. To carry out a much more 
reliable segmentation, it is necessary to find the region 
that has minimum energy, i.e., the region where the 
intensity shift is not that sharp. An example was taken 
and displayed in figure 2 where a gray matter region 
measuring 52 levels of intensity (index) is weighed 
against a white matter region in its vicinity measuring 
91 levels of intensity. Taking into account the whole 
image’s intensity spectrum, this intensity difference 
is not that big, and this is confirmed by the negligible 
difference of lightness of the two regions. Our fuzzy 
c-mean clustering should be able to segment this 
neighborhood into 2 different regions, so as to identify 
the expansion of the region of interest.
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Figure 3. Processed images portraying FCM segmentation 
results of patient 1. (a) Original image, (b) brain tumor 
edges, (c) Cerebrospinal fluid (CSF) along with septum 

pellucidum, (d) White matter, (e) tumor area (f) gray matter.

As far as the tissues classification is concerned, one can see 
that in Figure 3, the fuzzy c-mean clustering routine takes in 
an MRI image (a) which was cleaned according to Section 
2.1, processes it, using the classification scheme described 
in 2.2.1, then it outputs five different clusters (b)-(f) that 
correspond to five different types of regions, including 
the ROI. It is obvious that this fuzzy clustering phase is 
capable of detecting even very tiny shifts in intensity levels 
as portrayed on figure 2; this undoubtedly demonstrates 

the sensitivity of the system. This is followed by a ROI 
boundary definition that shows exactly the expansion of 
this region relative to the entire original image.

Figure 4. Comparison of the original image (a) with its 
corresponding processed image (b).

Figure 4 illustrates the final results (in green) of active 
contouring as described in equation (21). These results were 
obtained after 110 iterations. One can see that the image 
(b) portrays the contour of the tumor relative to the other 
tissues, and this delineation is obtained from the results of 
Figure 3(b) previously obtained from FCM segmentation.

 
Figure 5. Patient 2. Original image

Figure 5 illustrates the intensity distribution of a 
different patient’s MR image, with very tiny intensity 
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shift along the tumor edge. However, the FCM should 
detect this transition with accuracy. 

Figure 6. Patient 2 tissue classification, a) original image, 
b) septum pellucidum, c) white matter, d) cranium, e) gray 

matter along with edema, and f) tumor.

In figure 6, patient 2 who is in critical condition is 
diagnosed, as one can see his septum pellucidum was 
shifted upward (b) due to the expansion of edema that 
appears in (e). (c) Shows white matter tissues which 
were reduced because of the edema that spread over. 
Then (d) carries the cranium contour, whereas (e) 
portrays the gray matter intertwined with the edema. 
And (f) illustrates the tumor region. These results were 

obtained after FCM processing of figure 6(a) and, the 
specialist chooses his image of interest so that the level 
set method may give a final result of detection.

Figure 7. Patient 2 final results a) original image  b) 
Tumor contour.

Figure 7 demonstrates two images, one being the input 
image, and the other one being the final processed image, 
where the tumor region is well outlined in spite of a 
cluttered neighborhood, and one can see clearly the high 
sensitivity of the system by comparing the two images. 
The tumor intensity spectrum is not that sharp, yet the 
algorithm can still trace its boundaries with high sensitivity.

Talking about the sensitivity, a quantitative evaluation of 
the performance and reliability of our system was carried 
out by numerically computing both the sensitivity and 
specificity using 75 images. Table 1, shows the results 
of the proposed method as compared to the neurologist’s 
findings. The sensitivity of the system quantifies its ability 
to correctly identify subjects with the disease condition. In 
other words, it is the proportion of true positives (TP) that 
are correctly identified by the system, given by:

Table 1. Comparative results of the diagnostic test
Results 
of the 

proposed 
method

Results of Gold Standard test 
(as determined by the neurologist)

Positive Negative Row Total

Positive 32 
(TP)

2 
(FP)

34 
(TP+FP)

Negative 1 
(FN)

40 
(TN)

41 
(FN+TN)

Column 
Total

33 
(TP+FN)

42 
(FP+TN)

75 
(TP+TN+FP+FN)
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TPSensitivity
TP FN

=
+

	 (23)

where FN represents the false negatives, and (TP+FN) 
represents the total number of subjects with the 
condition. On the other hand, the specificity is the 
ability of a system to correctly identify subjects without 
the condition. In other words, it is the proportion of 
true negatives (TN) that are correctly identified by the 
system:

TNSpecificity
FP TN

=
+

			   (24)

where FP represents the false positives, and (FP+TN) 
represents total number of subjects without the 
condition. Based on the results presented in Table 
1, the sensitivity and specificity of the system is 32/
(32+1)=0.97 and 40/(2+40)=0.95 respectively. 

Finally, another statistic that was used to measure the 
reliability of our system is the accuracy, which is the 
proportion of true results, either true positive or true 
negative, in a population. It measures the degree of 
veracity of a diagnostic test on a condition, and is 
given by:

TP TNaccuracy
TP FP FN TN

+
=

+ + +
		  (25)

with (TP+FP+FN+TN) representing total number of 
subjects in study. Therefore the accuracy is (32+40)/
(32+2+1+40)=0.96 in other words, 96% accurate.

4.  CONCLUSION

The work mainly focused on the development of an 
algorithm that could promptly and accurately diagnose 
brain tumors even in their early stage of growth using 
both statistical and fuzzy methods. This was not an easy 
task due to the poor quality of some of the MR images; 
however, our preprocessing phase alleviated this issue 
significantly, thus facilitating the implementation of 
subsequent processing. A fuzzy c-mean clustering 
was implemented to classify different brain structures 
thereby allowing the detection of unhealthy tissues 
whose intensity span differed from the healthy ones i.e. 
white matter, gray matter, and cerebral spinal fluid. This 
method proved to be quite successful in the 75 cases 
studied; because it could accurately (96% of accuracy) 
process these images irrespective of their resolution. 

Using the controlling parameters generated by this 
clustering phase, a level set method could delineate 
these unhealthy regions, outlining their shape, position 
and expansion. This contour definition is normally the 
hardest task in manual segmentation due to changes 
in intensity as well as manual variations, (i.e., the 
manual segmentation’s low degree of repeatability 
which is always present, even with the most meticulous 
surgeons). It is worth mentioning that an error of 
4% i.e., (100-96% of accuracy) was due to artifacts 
generated by the brain tissues’ heterogeneity, as it was 
proved by two false positives generated during the 
experiment.
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