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ABSTRACT: In this work a Visual SLAM system (Simultaneous Localization and Mapping) that performs in real time, building 
feature-based maps and estimating the camera trajectory is presented. The camera is carried by a person that moves it smoothly with 
six degrees of freedom in indoor environments. The features correspond to high quality corners parametrized with inverse depth 
representation. They are detected inside regions of interest and an occupancy criterion is applied in order to avoid feature agglomeration. 
The association process is developed using active search. The final representation is made in a three-dimensional environment.

Keywords: Localization, mapping, EKF, monocular camera, inverse depth, real time, 6DOF, active search.

RESUMEN: En este trabajo se presenta el desarrollo de un sistema de SLAM Visual (Simultaneous Localization and Mapping) 
que se desempeña en tiempo real, construyendo mapas basados en puntos característicos y estimando la trayectoria de la cámara. 
La cámara es transportada por una persona que la mueve suavemente con seis grados de libertad en entornos interiores. Los 
puntos característicos corresponden a esquinas  de alta calidad parametrizados con el inverso de su profundidad. Estos son 
detectados dentro de regiones de interés y se aplica un criterio de ocupación  con el fin de evitar aglomeración de características. El 
proceso de asociación se desarrolla usando búsqueda activa. La representación final se realiza en un entorno tridimensional.

Palabras Clave: Localización, mapeo, EKF, cámara monocular, inverso de la profundidad, tiempo real, 6DOF, búsqueda activa. 

1.  INTRODUCTION

Before carrying out tasks such as navigation, path 
planning, and object and place recognition, a totally 
autonomous mobile robot must interpret the information 
obtained by its sensors and then estimate its position 
and the position of environmental features. The 
simultaneous localization and map building algorithms 
face both problems at the same time [1], and they have 
been the focus of attention of the research community 
on mobile robotics during the last two decades.

The system described in this article is able to estimate 
the camera position, which is carried by a person or by 

a mobile platform, and to represent the trajectory that 
it makes. The system creates a three-dimensional map 
composed of the camera model and spatial points that 
represent object corners in the environment. Moreover, it 
can be adapted to different mobile platforms -terrestrial, 
aquatic, and aerial- because it is portable and has six 
degrees of freedom that reduce motion restrictions. The 
system is of great importance when GPS information is 
not available and in applications where is not practical 
to carry heavy and bulky sensors such as object tracking 
and mapping of environments in rescue operations.

Section 2 defines the schema of the Visual SLAM 
system and the general methodology used in this 
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work. Section 3 presents outstanding projects about 
Visual SLAM. Sections 4 and 5 explain how the key 
points were detected and how the radial distortion 
was corrected, respectively. Sections 6, 7, 8 and 9 
present the parametrization process with the inverse 
depth of the features, the constant velocity model, the 
prediction of feature location in the image plane and 
the data association, respectively. Finally, the results 
and conclusions obtained in this work are presented.

2.  VISUAL SLAM

Recently, the use of visual sensors has generated great 
interest in the research field of SLAM due to the large 
amount of texture information provided by these 
sensors of the objects found in a scene [2-4]. Moreover, 
cameras are compact, accurate, and much cheaper than 
laser sensors. 

Implementations such as the ones developed by 
Castellanos [5] and Davison [6] proved the EKF 
(Extended Kalman Filter) in the building of small 
maps in SLAM systems with stereo vision, working in 
real time at 5 Hz. The system was able to build three-
dimensional maps and to control a mobile robot. Jung 
and Lacroix [7] developed an autonomous system for 
mapping terrains using stereo vision as the only sensor 
and the standard EKF. Saez [8] presented a SLAM 
system with stereo vision for six degrees of freedom 
movements and indoor environments.

Some SLAM systems that use a monocular camera 
have proved to be viable in small environments; the 
most outstanding systems are the ones designed by 
Bailey [9], Kwok [10] and Lemaire [11]. Most of them 
are essentially EKF-SLAM systems and only change 
the initialization techniques and the kind of interest 
points extracted from the images (Harris corners, Shi 
and Tomasi corners, SIFT features, or any mixture of 
them). The works of Civera [12], Tully [13], Clemente 
[14] and Marzorati [15] show a tendency to use 
monocular cameras, inverse depth parametrization, and 
to perform in real time. The sub-mapping techniques, 
such as the ones depevoped by Bosse [16], Leonard 
[17], Paz [18] and Piniés [19], allow the system to 
achieve a performance in long trajectories.

3.  SCHEMA OF OUR SLAM SYSTEM 

Figure 1. Schema of the SLAM system

The SLAM system involves many processes that work 
together in sequential way as is shown in Fig. 1. The 
probabilistic core is the EKF that alternates between a 
prediction step and an update step. Every process has 
inputs and outputs that are in a chain that ends up in 
a state estimate. In the next sections, these variables 
and their functions in the whole process are explained.

4.  CORNER DETECTION

The system begins getting information of the 
environment through key points; in this work the 
corners are obtained with the Harris detector, supported 
by OpenCV. The image is split in 36 region of interest 
and for each region the Harris detector is applied, 
returning the best corner. From them, the corners with 
their minimum eigenvalue over a given threshold are 
chosen and only five of them are initialized, the best 
corners. At the beginning all the regions are empty, but 
after the first iteration, an occupancy algorithm must 
be used in order to avoid agglomeration of corners 
and therefore, wrong associations.  In this step the 
coordinates of the five best corners are stored, the 
regions where they were found and a patch of 15x15 
pixels around each corner.

4.1.  Occupancy Algorithm

This criterion defines empty and occupied regions of 
interest. Only empty regions can be used to initialize a 
new feature. Moreover, when a region becomes empty 
because both the feature was deleted or the feature 
moves to another region, 20 time steps must pass in 
order to consider this region available to be occupied 
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again. This technique allows the features to be well 
distributed over the image plane.

5.  CORRECTION OF RADIAL DISTORTION 

The corner coordinates have radial distortion that 
affects the location of the pixels and this displacement 
grows as the pixel nears the image boundary.  The 
model that describes this distortion is shown in (1). 

	
		  (1)

where k1 and k2 are the coefficients of radial distortion, 
r is the radius, xn and yn are the normalized coordinates. 
This model allows the system to include radial 
distortion. However, the opposite process is needed 
(remove radial distortion) and there is no analytical 
function that does this. Therefore, a numerical method 
is employed, the Newton Raphson method, that use the 
expression (2) and its derivative in order to calculate an 
approximation of the radius without distortion.

	 (2)

Given the radius r, the principal point (Cx,Cy) and the 
image coordinates with distortion (ud,vd), the image 
coordinates without distortion (u, v) can be computed 
using the expressions (3) and (4). Hereafter the corners 
will be called features.

		  	 (3)

			   (4)

6.  FEATURE INITIALIZATION

This step consists in the corner parametrization and 
its inclusion to the state vector. The explanation 
of the corner parametrization using inverse depth 
representation and the addition of features in the state 
vector will be presented in this section.

6.1. Inverse Depth Representation

A significant limitation of the initial approaches of 
Davison [2] and others was that the systems could 

only use features close to the camera and that had great 
parallax during the motion. This problem limited the 
robot navigation (or the camera navigation) to indoors. 
Montiel [20] proposed a technique to initialize features 
using the inverse distance between the feature and the 
camera where it was seen for first time. This technique 
allows the system to work with both close and distant 
features from the moment they are detected. The distant 
features are used to improve the motion estimation, 
acting initially as an orientation reference. These 
features are common in outdoor environments.

The coordinates (u, v) are used in the back projection 
model, obtaining normalized coordinates xn and yn:
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where f is the focal length and (cx,cy) is the principal 
point. The normalized coordinates give information 
about the ray hc that passes through the optical center 
of the camera and the point in the world whose image 
coordinates are (ud, vd). The ray can be defined by the 
angles θ and Φ, the azimuth and the elevation angles 
respectively:

)(tan 1
nx−=θ        )(tan 1

ny−=φ 		  (6)

The camera state is defined with six parameters:

][ iiiwcai Xy ρφθ= 			   (7)

The vector Xwca = [xwc ywc zwc]
T corresponds to the 

camera location, in Cartesian coordinates, from where 
the features were seen for first time, θi is the azimuth 
angle, ϕi is the elevation angle and ρi = 1/di is the inverse 
distance between the camera position and the feature.

6.2.  Addition of Features to the State Vector

The state vector stores the information of the camera 
and outstanding features:
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where rw corresponds to the three cartesian coordinates 
of the camera location, ψw is the camera orientation in 
Roll, Pitch, Yaw angles [ψx, ψy, ψz]

T , vw is the linear 
velocity of the camera and ωc is the angular velocity 
with respect to the camera frame. The vector Y (k) 
contains the information of the environment, organized 
by set of features taken from different camera locations:

T
n kykyKY ])(...)([)( 1= 			   (10)

where each feature yi was defined in equation (7).  
A feature initialized remains in the state vector for 
the whole execution if this overcomes the following 
criterion: the feature must be seen at least 17 times in 
the first 20 iterations, from the time it was detected. If 
certain feature overcomes this criterion, it will not be 
deleted from the state vector and will be predicted in 
every iteration.

7.  MOTION MODEL

The camera is connected to a laptop and is carried by a 
mobile robot or by a person. A program on the laptop 
determines the trajectory and builds a map with well 
distributed features in real time. The camera moves 
freely in three dimensions in an unknown environment. 
A constant linear and angular velocity model is used. 
The motion model allows the system to estimate the 
state transition in order to predict the camera position 
in the next time step before getting a new observation 
of the environment. The motion model is a non-linear 
function that only affects the camera state because 
the features are assumed to be static. The following 
transition function is used to pass from the state xk to 
the state xk+1:

			   (11)

The vector W(k) represents a zero-mean Gaussian noise 
with covariance Q that affects the linear and angular 
velocities of the camera to detect small changes in the 
model:










∆
∆

=
)(
)(

)(
kw
kv

kW c

w

				    (12)

The camera state xc evolves according to the 
following expression:	
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Where Ec
w is a matrix that transforms angular velocities 

with respect to the camera frame to equivalent angular 
velocities in the world frame.

8.  PREDICTION OF THE FEATURE LOCATION

 
Figure 2. Feature observed from the initial and current 

camera location

This process consists in predicting the feature location 
in the next image, without making a new observation. 
Figure 2 provides a graphical representation of the 
vectors of the camera and feature location.

The vector tfvi represents the camera location from 
where a feature i was observed for first time. The 
vector defined by m, the unitary vector of the bearing 
of the feature i when this feature was seen for the first 
time, this represents the feature location with respect 
to the vector tfvi.  The sum of these vectors is equal to 
vector feati

w, the feature location with respect to the 
world frame.

The vector tw represents the current camera position, 
estimated with the motion model described in section 
7. The difference of tw and feati

w is equal to the vector 
hw. This vector has to be transformed to the camera 
frame, obtaining hc. The equation used to predict the 
azimuth and elevation angles of a feature is based on 
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the components of the vector hc, [hcx, hcy, hcz]:
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The coordinates (u, v) are calculated from the 
normalized coordinates xn and yn:

xn cfxu += *      yn cfyv += * 		  (15)

9.  DATA ASSOCIATION

The location in the image plane (ui, vi) where the features 
feati will be observed, for i = 1, 2, 3, ..., n, is predicted 
together with the innovation covariance matrix Si. This 
matrix defines an elliptical zone of uncertainty where 
there is high probability to re-observe the feature. 
In this zone a correlation algorithm is executed, 
comparing the distribution of the digital levels of the 
pixels. The location that shows the strongest similarity 
will be taken as the equivalent point to the central pixel 
of a corner patch and will be the observed position of 
the feature from the new camera position.

 
Figure 3. Prediction of the feature location in the image 
plane (red points). The ellipses represent the prediction 

uncertainty.

In Fig. 3 the predictions of feature locations (red points) 
into the image plane are shown. The blue ellipses 
indicate failed correlations and therefore, there is no 
new observation. The green ellipses indicate successful 
correlations and the new observation is drawn in blue. 

The yellow point corresponds to a new observation that 
was parametrized and included into the state vector. 
This new feature is over an empty and available region 
and its distance to any other feature is more than 30 
pixels. 

A joint compatibility test based on the Mahalanobis 
distance is carried out to deal with spurious associations 
between observations and predicted features that come 
from dynamic objects in the mapped environment.

When the uncertainty of a feature increases so much, 
the search zone is too big and it is not suitable to 
develop the correlation process. In this case this 
prediction is not used, but the feature is not deleted, it 
remains in the state vector.

Finally, the difference between the observed feature 
(blue point) and predicted feature (red point) is the 
innovation vector and it is used by the Extended 
Kalman Filter to update the joint state camera-features. 
This vector moves the estimated position in the 
direction in which it is reduced.

10.  RESULTS 

Figure 4. Hand held camera

The experiments were developed with the Logitech Pro 
9000 camera connected to a HP laptop with a 2.2 GHz 
AMD Dual-core processor. The camera was carried 
by a person (Fig. 4) that moves it smoothly with six 
degrees of freedom, in unknown environments. 
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10.1.  Open Trajectory in Indoor environments

Figure 5. Laboratory of PSI group

The first experiment was performed in the Laboratory 
of the Perception and Smart Systems Group. It is a 
small room with glass walls, chairs, and desks with 
monitors, printers, CPUs, among other things (Fig. 5). 
Some corners over the walls belong to reflections and 
produce failed correlations (blue ellipses in Fig. 3) so 
most of them are rejected by the high quality features 
criterion. 

Figure 6. Three-dimensional Graphic

Figure 6 show the corners (points), the camera 
(triangular prism) and its trajectory (points connected 
by segments), represented in a three dimensional 
environment, developed with OpenGL. 

Figure 7. Evolution of Inverse depth estimates of three 
features

Figure 7 shows how the inverse depth estimates evolve 
over time. The inverse depth of a feature is initialized 
with a predefined value with respect to the camera 
location when the feature is seen for first time. The 
camera is both rotated and translated and the inverse 
depth estimate converges to a given value after about 
50 iterations. At steady state, the estimates do not vary 
significantly, which means that the map is consistent. 
Finally, these estimates are used to compute the feature 
locations with respect to a global frame.

Figure 8. Evolution of Standard Deviation of Inverse 
Depth Estimates

As time passes, the parallax angles increase, yielding 
better estimates of the inverse depth, which is 
evidenced by a reduction in standard deviation, as can 
be seen in Fig. 8.

Figure 9. Evolution of Standard Deviation of Camera 
Location (X,Y,Z)

As the camera moves, its own pose uncertainty increases 
(Figs. 9 and 10). This fact is due to the errors introduced 
by the motion and observation models and the linear 
approximations made by the EKF. However, something 
very interesting happens when a loop is closed. This fact 
will be seen in the following experiment.
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Figure 10. Evolution of Standard Deviation of Camera 
Bearing around the axis X, Y and Z.

10.2.  Closed Loop in Indoor Environments

 
Figure 11. Closed loop with the camera focusing objects 

over a desk.

This experiment was carried out with the camera 
focusing objects over a desk (Fig. 11), trying to follow 
a square trajectory and to keep a constant distance from 
the camera to the surface of the desk. The scale of the 
trajectory was fixed by hand because it is not observable 
with a monocular camera.

Figure 12. Three-dimensional graphic of a closed loop.

Figure 12 shows the square trajectory and the corners 
represented with OpenGL. 

Figure 13. Evolution of Standard Deviation of Camera 
Location (X,Y,Z) in closed loop

Figure 14. Evolution of Standard Deviation of Camera 
Bearing around the axis X, Y and Z in closed loop.

The camera observes features that were seen in the 
beginning of the mapping and whose location is 
relatively well known. Through these observations 
the uncertainty in camera position (location and 
orientation) is reduced as is shown in Figs. 13 and 14. 
These observations also reduce the uncertainty for other 
features in the map due to the correlation stated in the 
covariance matrix.

10.3.  Computational Cost

The high computational cost is the main limitation in 
systems that perform in real time. This problem has 
been tackled with sub-mapping techniques that allow 
the system to navigate in large environments and to 
reduce the errors due to the linear approximations made 
by the Extended Kalman Filter.
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Figure 15. Total Computational Cost (with ▼) and 
number of features (with +).

Figure 15 depicts the quadratic dependence on the 
number of features in the map. This fact is due to the 
size of the covariance matrix that is used to update the 
state. The matrix operations that involve the covariance 
matrix are computationally expensive and  impose a 
limit of the number of features to 50 in order to perform 
in real time, managing to process at least 10 images per 
second (at the critical point).

11.  CONCLUSIONS 

A Visual SLAM system that works with a monocular 
camera in real time was developed. The core of the 
system relies on the well known incremental Extended 
Kalman Filter such that the positions of camera and a 
feature-based map can be estimated in real time. The 
kind of sensor, the 6 DOF and the probabilistic focus 
used to solve the problem, make it a complex system. 
The results show that the system performs in indoor 
environments in real time if the amount of features is 
under 50, processing from 10 to 20 frames per second. 

The estimated state of the camera has low uncertainty: 
the standard deviation in location is less than 7cm 
(for each coordinate) and in orientation is less than 3 
degrees (for each axis). The inverse depth estimates 
of landmarks converge to a steady state in about 50 
iterations, building consistent maps.

The feature detection is performed using regions of 
interest and an occupancy algorithm is implemented 
to avoid feature agglomeration, achieving high quality 
corners that are well distributed. The elliptical zones 

defined by the innovation covariance matrix allow the 
system to carry out an active search of corner patches, 
optimizing the correlation process. However, the matrix 
operations increase the computational cost and set a 
limit to real time performance. 

An interesting fact was analyzed, with closed loops the 
uncertainty decreases when the camera visits a place 
where it has been before, and recognizes features that 
were seen before. 
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