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Bearing capacity and settlement prediction of multi-edge
skirted footings resting on sand

Capacidad de carga y predicción de asentamiento de zapatas
bordeadas de bordes múltiples que descansan sobre arena

Tammineni Gnananandarao1, Vishwas Nandkishor Khatri2, Rakesh Kumar Dutta 3

ABSTRACT
This paper presents the application of artificial neural networks (ANN) and multivariable regression analysis (MRA) to predict the bearing
capacity and the settlement of multi-edge skirted footings on sand. Respectively, these parameters are defined in terms of the bearing
capacity ratio (BCR) of skirted to unskirted footing and the settlement reduction factor (SRF), the ratio of the difference in settlement
of unskirted and skirted footing to the settlement of unskirted footing at a given pressure. The model equations for the prediction of
the BCR and the SRF of the regular shaped footing were first developed using the available data collected from the literature. These
equations were later modified to predict the BCR and the SRF of the multi-edge skirted footing, for which the data were generated by
conducting a small scale laboratory test. The input parameters chosen to develop ANN models were the angle of internal friction (𝜙)
and skirt depth (𝐷𝑠) to the width of the footing (B) ratio for the prediction of the BCR; as for the SRF one additional input parameter
was considered: normal stress (𝜎). The architecture for the developed ANN models was 2-2-1 and 3-2-1 for the BCR and the SRF,
respectively. The R2 for the multi-edge skirted footings was in the range of 0,940-0,977 for the ANN model and 0,827-0,934 for the
regression analysis. Similarly, the R2 for the SRF prediction might have been 0,913-0,985 for the ANN model and 0,739-0,932 for the
regression analysis. It was revealed that the predicted BCR and SRF for the multi-edge skirted footings with the use of ANN is superior to
MRA. Furthermore, the results of the sensitivity analysis indicate that both the BCR and the SRF of the multi-edge skirted footings are
mostly affected by skirt depth, followed by the friction angle of the sand.

Keywords: square/circular skirted footings, multi-edged skirted footings, bearing capacity ratio, settlement reduction factor, artificial
neural networks, multivariable regression analysis

RESUMEN
Este documento presenta la aplicación de redes neuronales artificiales (ANN) y el análisis de regresión multivariable (MRA) para predecir la
capacidad de carga y el asentamiento de las zapatas bordeadas de bordes múltiples en arena. Estos parámetros se definen, respectivamente,
en términos de la relación de capacidad de carga (BCR) de carga de la zapata con zócalo y sin zócalo y el factor de reducción de
asentamiento (SRF), la razón de la diferencia en la solución de zócalo sin zócalo y zapatas bordeadas para el asentamiento de zapatas sin
falda a una presión determinada. Las ecuaciones modelo para predecir la BCR y el SRF de la zapata de forma regular se desarrollaron
primero utilizando los datos disponibles recopilados de la literatura. Estas ecuaciones se modificaron posteriormente para predecir la
BCR y el SRF de la zapata bordeada de bordes multiples, para la cual se generaron los datos mediante la realización de una prueba de
laboratorio a pequeña escala. Los parámetros de entrada elegidos para desarrollar modelos ANN fueron el ángulo de fricción interna
(𝜙), la profundidad del faldón (𝐷𝑠) al ancho de la relación de zapata (B) para la predicción del BCR; en cuanto al SRF, se consideró un
parámetro de entrada adicional: la tensión normal (𝜎). La arquitectura para los modelos ANN desarrollados fue 2-2-1 y 3-2-1 para la BCR
y el SRF, respectivamente. El R2 para las zapatas bordeadas de bordes múltiples estuvo en el rango de 0,940-0,977 para el modelo ANN y
0,827-0,934 para el análisis de regresión. De manera similar, el R2 para la predicción del SRF pudo haber sido de 0,913-0,985 para el
modelo ANN y 0,739-0,932 para el análisis de regresión. Se reveló que la BCR predicha y el SRF para las zapatas con borde de múltiples
bordes con el uso de ANN es superior al MRA. Además, los resultados del análisis de sensibilidad indican que tanto el BCR como el SRF de
las zapatas bordeadas de bordes múltiples se ven más afectados por la profundidad de la falda, seguida del ángulo de fricción de la arena.

Palabras clave: zapatas de zócalo cuadradas/circulares, zapatas bordeadas de bordes múltiples, relación de capacidad de carga,
factor de reducción de liquidación, redes neuronales artificiales, análisis de regresión multivariable
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Introduction
The prediction of the bearing capacity and the footing
settlement with a reasonable accuracy is required in the
field of foundation design and affects the overall economy of
a project. For this purpose, the bearing capacity equations
for conventional footings such as strip, square, circular, and
rectangular were well established and are available in the
literature. However, different, unconventional geometries for
shallow footings were sometimes required for the economy
and architectural matters. Numerical analysis using FLAC
3D software was carried out by Ghazavi and Mokhtari
(2008) to observe the failure behavior of the sand beneath
multi-edge shallow footings. The laboratory tests were
performed by Davarci, B., Ornek, M., and Turedi, Y. (2014)
on multi-edge footings and reported that the performance
of such footings was better than that of square ones of the
same width. Furthermore, for these types of footings, no
bearing capacity and settlement equations were available
in the literature. Hence, the researchers had to resort to
experimental research, but generating this kind of data is
very expensive. An alternative approach could be building a
mathematical model to understand the relationships between
the various parameters by calibrating and fitting the generated
experimental data. To this effect, the power of ANN
to store, learn and capture the complicated relationships
between multiple parameters without any prior assumptions
is the best choice in determining the bearing capacity ratio
and the settlement reduction factor. Hence, the paper
presents the application of ANN to model such parameters
in unconventional multi-edge skirted footings on the sand.

Background
There have been several studies with ANN in the geotechnical
engineering, such as those related to bearing capacity and the
settlement of regular shaped footings in different mediums
(Kalinli, Acar, and Gunduz, 2011; Marto, Hajihassani, and
Momeni, 2014; Ziaee, Sadrossadat, Alavi, and Shadmehri,
2015; Nazir et al., 2015a; Rezaei, Nazir, and Momeni, 2016;
Momeni, Armaghani, Fatemi, and Nazir, 2017; Khudier,
2018). The bearing capacity of the footing on sand was
predicted by Kalinli et al. (2011) using ANN based on 97
datasets by varying the footing width, embedment depth,
geometry, unit weight of sand, and the friction angle of the
cohesionless soil. On similar lines with Kalinli et al. (2011),
other researchers have explored the application of ANN on
the prediction of the bearing capacity of footings resting on
sand and rock. The list of these references with the scope of
their work, type of material, type of data collected, settlement
to width ratio, data set, and input parameter is shown in
Table 1.

Note that, for the references listed in Table 1, the dataset in
various cases ranged between 75 and 150. Similarly, some
papers predicted the ultimate bearing capacity and settlement
of the piles using experimental data with help from different
soft computing techniques (Nazir, Momeni, Marsono, and
Sohaie, 2013; Nazir et al. 2015b; Momeni et al. 2015a;
Harandizadeh, Armaghani, and Khari, 2019; Chen et al. 2020;

Khari et al. 2020; Yong et al. 2020). Furthermore, the results
obtained from all the studies above indicated that ANN-based
predictive models could be satisfactorily used in predicting
the bearing capacity and the settlement of regular shaped
footings. In the present paper, the data for regular shaped
(square and circular) skirted footings were collected from the
published literature, whereas the data for the multi-edge (T,
Plus, Double box) skirted footings were generated through
experimentation in the laboratory. The data was used during
training, testing, and the predictive phase of ANN models.
Input variables for the bearing capacity ratio were skirt depth
to width ratio of the footing and friction angle of the sand for
ANN modeling. Similarly, to model the settlement reduction
factors, the considered input variables were skirt depth to
width ratio of the footing, friction angle of the sand, and
normal stress. The outputs for these ANN models were
bearing capacity ratio and the settlement reduction factor,
respectively.

Table 1. Dataset and parameters varied in the literature for the
development of ANN model

References Input parameters Type of
material

Type of
data

collected

Output
parameters

Dataset
(No.)

Kalinli et
al. (2011)

Width of the footing,
embedment depth of
the footing, footing
geometry, unit weight
of sand, friction angle
of the cohesionless
soil

Sand Field/laboratory
both

Bearing
capacity

97

Nazir et al.
(2013)

Footing length, foot-
ing width, embedded
depth of the footing,
average vertical effec-
tive stress of the soil
at B/2 below the foot-
ing, friction angle of
the soil, where B is the
width of the footing

Sand Laboratory
only

Bearing
capacity

75

Momeni et
al. (2017)

Width of the footing,
sand friction angle,
unit weight of the
sand, and footing thin-
wall ratio

Sand Laboratory
only

Bearing
capacity

150

Khudier
(2018)

Liquid limit, plastic-
ity index, percent-
age of fines and
sand, optimum mois-
ture content, sulfur
trioxide, total sus-
pended solids, chlo-
rine, and gypsum

Sand Laboratory
only

Bearing
capacity

87

Source: Authors

Experimental Materials and Methods
As mentioned earlier, the data related to the bearing capacity
and the settlement of multi-edge skirted footings on the sand
was generated by performing experiments in the laboratory.
All tests were performed in s tank (700 mm length x 450
mm width x 600 mm depth), which was prepared with a 15
mm thick perspex sheet, stiffened by the mild steel plate as
shown in Figure 1.
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Figure 1. Complete setup of the testing program.
Source: Authors

The 10 mm thick steel footings with plan dimensions 80 mm
x 80 mm were prepared in the shape of a square, T, plus,
and double box, as shown in Figure 2. The skirts with 5
mm thickness and depths between 0,25 B and 1,5 B were
firmly welded to these footings to simulate skirted footings,
as shown in Figure 3.

Figure 2. Plan and a sectional view of various shapes of unskirted and
skirted footings: (a) square, (b) Plus, (c) T shape, (d) Double box.
Source: Authors

Figure 3. Photograph of model footings.
Source: Authors

In the case of rough footings, the sand was pasted to the
base of the footing and also to the inner surfaces of the skirt;
while, as for partly rough footings, a machined surface was
used as it was. Beas river sand was used in this research
and had a specific gravity (2,67), coefficient of uniformity
(𝐶𝑢 = 1,46), coefficient of curvature (𝐶𝑐 = 0,98), and
minimum and maximum dry unit weights of 13,06 kN/m3

and 15,97 kN/m3, respectively. As per IS 1498, the sand was
classified as poorly graded (SP). The consolidated drained
triaxial friction angle of sand at relative densities of 30%,
40%, 50%, and 60% was measured as 36,06◦, 38,64◦, 39,86◦,
and 41,72◦, respectively. It is pertinent to note that due to
the dilatancy effect, the friction angle of sand depends on
the prevalent stress level or confining pressure in the test.
Hence, it is likely that the friction angle developed in the small
scale laboratory test, such as this one, will be much greater
than the mobilized friction angle for the field size footing at
failure with similar loading and soil conditions. Therefore,
the predicted bearing capacity for the field size footing will be
generally higher if extrapolated linearly from the results of the
small-scale laboratory test data. This aspect is referred to as
the size or scale effect on the bearing capacity (Chakraborty
and Kumar 2013; Tang et al. 2014). To study this effect, it
is necessary to carry out the load test with different footing
sizes, which is a cumbersome task, especially with respect to
multi-edge skirted footings. Hence, in the present study, no
attempt has been made to study it. This implies that care is
paramount when extrapolating the results of the present study
for the field size footings. The tank was filled with sand to
achieve the targeted relative density, which was varied from
30% to 60% in this investigation. The sand bed was placed in
the tank in 8 equal 60 mm thick layers. The weight of the sand
in each layer was calculated corresponding to the required
relative density by using the unit weight of the sand and the
volume of the layer. The weighed sand was then poured from
a constant height and was compacted using a wooden 6 N
rammer by giving several blows (obtained using the trial and
error method) to reach the required relative density. It was
ensured that the difference in measured relative densities
was within ±1%. This was achieved by placing four steel
bowls of known volume in each of the layers and measuring
the achieved relative density of sand in them. As shown in
Figure 1, the test on the prepared sand bed was performed
with a strain-controlled loading frame of 50 kN and the
employment of a load cell of 5 kN capacity. Note that,
rather than measuring the pressure below the footing, the
load applied on the top of the footing was recorded with
a data acquisition system. This implies that this measured
load, divided by the plan area of the footing, represents
the magnitude of the average uniform pressure below the
footing. Furthermore, any non-linear variation of normal
stress was not considered (Kumar, 2009). This assumption
is in linewith the literature, wherein the magnitude of the
bearing capacity is defined based on the average uniform
pressure. All the tests were performed using a 0,24 mm/min
strain rate. It was intended that at this low strain rate,
it would be possible to capture the non-linear pressure-
settlement behavior. It was assumed that the measured
penetration depth of the applied load would be a reasonable
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representation of the immediate settlement of the footing.
However, further study is required to confirm this, since it is
beyond the scope of the present work. After the completion
of each test, the pressure-settlement curve was plotted, and,
subsequently, the bearing capacity and the settlement at a
given pressure were calculated. It was anticipated that the
applied load on the skirted footing would be resisted by the
shear resistance mobilized along the skirt-soil interface, along
with the shear strength of the sand. The bearing capacity
of the skirted footing was denoted in terms of the BCR.
Further, the reduction in settlement of the footing, due to the
provision of the skirts, at a given pressure, was expressed in
terms of settlement reduction factor. For the development
of the models (ANN and MRA), for the prediction of the
BCR and the SRF, the data from the literature on square and
circular footings was collected. After the development of the
models for regular-shaped skirted footings, the models were
extended for the prediction of the BCR and the SRF of T, Plus,
and double box shapes by means of simple multiplication
factors. Finally, the ANN and MRA model predictions were
compared to bring out the superiority of the ANN over the
MRA model.

Test Results
Pressure settlement curve and Bearing capacity
variation of footing with skirt depth
The pressure-settlement behavior of the footings (skirted
and unskirted) with different plan shapes corresponding
to a relative density of 30% is shown in Figure 4. It is
pertinent to mention here that the ultimate bearing capacity
was taken with respect to the minimum of the peak pressure
or the pressure corresponding to an 𝑠/𝐵 ratio of 10% on the
pressure settlement curve. The settlement ratio was used for
the calculation of the settlement of the footing. Furthermore,
if a clear peak in the pressure-settlement ratio curve was not
obtained, the ultimate bearing capacity was calculated by
using a double tangent method.

The results obtained in the current study related to the bearing
capacity of the unskirted square footings (partly rough and
completely rough) and were compared with the classical
bearing capacity formula reported by Terzaghi (1943). To
calculate the bearing capacity of the footing, the friction angle
obtained from the triaxial test for different relative densities
was used. This comparison is shown in Table 2.

Table 2. Comparison of bearing capacity values of the square footing
with literature

𝑹𝒅 (%) Present work Terzaghi (1943)

Partly rough Rough

30 65,50 73,30 40,68

40 120,39 153,24 45,09

50 158,53 207,81 53,73

60 228,31 268,93 91,09

Source: Authors

Figure 4. Pressure settlement behavior for footings with partly rough
(a, c, e, g) and rough (b, d, f, h) interfaces for square (a, b), plus (c, d),
double box (e, f), T (g, h) corresponding to a relative density of 30%.
Source: Authors

From this table, it can be seen that the observed bearing
capacity in the present case was higher in comparison to the
one obtained by using Terzaghi’s formula in all circumstances.
This is perhaps due to a higher mobilized friction in the test on
account of the dilatancy of the sand, which is more significant
at a low-stress level; and due to a slight localized densification
of the sand nearby the footing given the applied load. The
study of Figure 4 shows that, irrespective of the plan shape of
the footing, the bearing capacity increases with the increase
in skirt depth. The obtained bearing capacity for unskirted
footings is shown in Table 3.

A careful study of this table indicates that, for a given relative
density, irrespective of the interface condition of the footing,
T-shaped footings is provide the highest bearing capacity,
followed by Plus, double box, and square shapes. The
difference in the bearing capacity of the footing is quite
substantial for the lower relative density, i.e., at 𝑅𝑑 = 30%.
It should be noted that, without any skirts, double box and
square-shaped footings are both the same, hence the identical
value of the bearing capacity.
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Table 3. Variation of bearing capacity with relative density for the
different plan shape of footing

𝑹𝒅 (%) Interface
condition

Ultimate bearing capacity (kPa)

Square Plus Double box T

30 Partly rough 65,5 74,29 65,5 77,14

Rough 73,3 91,43 73,3 100

40 Partly rough 120,39 128,57 120,39 131,43

Rough 153,24 160 153,24 165,71

50 Partly rough 158,53 165,71 158,53 168,57

Rough 207,81 210,57 207,81 211,43

60 Partly rough 228,31 231,43 228,31 234,29

Rough 268,93 270 268,93 271,42

Source: Authors

Figure 5. BCR variation for partly (a, c, e, g) and completely (b, d, f, h)
rough footing with skirt depth for plan square (a, b), plus (c, d), double
box (e, f), and T (g, h) for relative density of 30%.
Source: Authors

The variation of the bearing capacity of the skirted footing
(expressed in the form of BCR) with the skirt depth for the
different relative density considering various plan shapes is
shown in Figure 5. In all cases, the BCR for the square and
the multi-edge skirted footings increases with the increase in
skirt depth. The BCR at a relative density of 30% for a partly
rough footing with 𝐷𝑠/𝐵 = 0,25 was observed to be 1,62,

1,67, 1,91, and 2,03 for square, T, plus shape, and double
box shapes, respectively. When the 𝐷𝑠/𝐵 increased to 1,5,
the BCR increased to 3,51, 3,86, 4,43, and 4,64, respectively.
For a given skirt depth, the BCR decreased with the increase
in relative density.

Variation of SRF with skirt depth
The provision of the skirt along the periphery of the footing
increased the bearing capacity and decreased the settlement
below the footing. The settlement reduction in skirted
footings was defined in a quantitative manner by using a
settlement reduction factor:

SRFSquare/Circle =
𝑠 − 𝑠𝑠𝑘

𝑠
(1)

where, 𝑠 and 𝑠𝑠𝑘 are the settlement of the unskirted and
skirted footings, respectively, corresponding to a given
pressure 𝜎.

Figure 6. SRF Variation for partly (a, c, e, g) and completely (b, d, f, h)
rough footing with skirt depth with different relative densities of sand
for 𝜎 = 100 kPa with a plan square (a, b), plus (c, d), double box (e, f),
and T (g, h) shapes respectively.
Source: Authors
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In the present study, the SRF was calculated at pressures of 25
kPa, 50 kPa, 100 kPa, and 200 kPa. Its variation with the skirt
depth, for the different relative densities, at a pressure of 100
kPa, and for the various plan shape of the footing, is presented
in Figure 6. As anticipated, for a given relative density, the
SRF increased with the increase in skirt depth. In contrast,
for the constant skirt depth value, the SRF decreased with the
increase in relative density for all the plan-shaped footings.
The considerable reduction in the settlement was obtained
for the footing with a rough interface and at 𝐷𝑠/𝐵 = 1,5 and
𝑅𝑑 = 30% as the SRF was observed to be 0,87, 0,83, 0,89,
and 0,86 for square, Plus, double box, and T plan-shaped
footings, respectively. This implies that, at a relative density
of 30%, the reduction in the settlement due to the provision
of the skirts could range between 80% and 90%, which is
quite significant. Thus, skirted footings can be considered as
an alternative ground improvement technique in loose sand
wherein large settlements are often anticipated.

Artificial Neural Network
This work aims to model the neural network architecture to
predict the bearing capacity ratio and settlement reduction
factor for multi-edge footings on sand. However, considering
the data availability on the bearing capacity and the settlement
of the square and circular skirted footings in literature, an
ANN model was first developed, which was applicable for
these shapes. This model was later modified to suit the aim
of this research. Generally, the bearing capacity of non-
cohesive soil is dependent on the friction angle (Meyerhof,
1963; Vesic, 1973). In this study, along with the friction angle,
skirt depth to width of the footing ratio was also used, since
it is considered to affect the bearing capacity. Skirts play a
significant role in improving the bearing capacity, as reported
by some studies (Khatri, Debbarma, Dutta, and Mohanty,
2017; Khatri and Kumar, 2019). Regarding settlement
prediction, normal stress was also plays a role, along with
the friction angle and skirt depth (Al-Aghbari and Dutta,
2008; Al-Aghbari and Mohamedzein, 2018; Gnananandarao,
Dutta, and Khatri, 2020). Hence, to predict BCR, the non-
dimensional skirt depth (𝐷𝑠/𝐵) and friction angle (𝜙) were
considered as input variables. In contrast, the prediction of
SRF requires an additional input of pressure, along with the
variables above.

The difficult job in the ANN model development is to
determine the number of hidden layers and their neurons.
The accuracy of the network model is dependent on the
initially assigned weights and other associated parameters,
as well as its architecture. However, until now, there is no
defined technique to achieve the optimal architecture and
parameter settings for an ANN model. Therefore, researchers
have to follow the time-consuming trial and error approach.
However, ANN have a disadvantage, such as being stuck in
local minima and slow learning rates (Marto et al. 2014).
Still, this technique is popular in Geotechnical applications.

Network Structure Preparation and Data Set Used
The performance of an artificial neural network entirely
depends on its structure. The first step in its creation is
to fix the number of hidden layers and hidden layer nodes.
Generally, a rule of thumb has been adopted for choosing the
hidden layer (one in this case) and the neurons in the hidden
layer, which is 2/3 of the size of the input variables (Shahin,
Maier, and Jaksa, 2002; Dutta et al. 2015b; Rezaei et al. 2016;
Dutta, Rani, and Gnananandarao, 2018; Gnananandarao,
Dutta, and Khatri, 2018). Considering this, the number of
hidden layers and the hidden layer nodes were 1 and 2,
respectively. The chosen ANN architecture for the prediction
of the BCR and the SRF is shown in Figure 7.

Figure 7. Artificial neural network diagram for (a) BCR and (b) SRF.
Source: Authors

The next difficult task is to fix the number of epochs. An
excess number leads to overfitting of the data, whereas a low
number leads to poor prediction. The statistical parameter
(mean square error) was calculated between the actual and
the predicted value corresponding to different epochs. The
lowest mean squared error corresponding to an epoch is
chosen to develop the neural network model. By following the
procedure above, 100 and 450 were selected as the number
of epochs for the BCR and the SRF, respectively. Finally, in
this study, 2-2-1 and 3-2-1 structures for developing the ANN
model were chosen for the BCR and the SRF, respectively.
A total of 43 and 131 model experimental data points were
collected from the literature (Prasanth and Kumar, 2017;
Momeni et al. 2015a; Al-Aghbari, 2002; Al-Aghbari, 2007;
Eid, Alansari, Odeh, Nasr, and Sadek, 2009) to predict these
parameters in regular shaped skirted footings (square and
circular).

Furthermore, an additional 94 and 266 data points were
collected from the author’s experimental work reported
elsewhere (Gnananandarao, Khatri, and Dutta, 2018). Hence
the total data points used for modeling were 137 and 397
for the BCR and the SRF, respectively. The data for the other
regular shaped footings (rectangular and strip) were excluded
due to scarcity in the literature. The range of the various input
parameters for which the developed model is applicable is
also presented in Table 4.
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Table 4. Details of parameters used in ANN and regression models for
BCR and SRF

Parameters Minimum value Maximum value

The angle of internal friction (𝜙)
(Deg.)

32,50 42,9

Skirt depth to width of the footing
ratios (𝐷𝑠 /B)

0 2

Bearing capacity of the skirted
footing to bearing capacity of
unskirted footing ratio (BCR)

1 7,8

Normal stress (𝜎) (kPa) 25 200

Settlement of skirted footing to
settlement of unskirted footing
ratio (SRF)

0,06 1

Source: Authors

To check the generalization capability of the model, about
70% and 30% of the data from the total data were respectively
selected randomly for training and testing purposes. After
its development, the model for these regular-shaped skirted
footings was modified to account for the shape of multi-
edge skirted footings with the introduction of multiplication
factors. These factors were obtained by dividing the BCR/SRF
of multi-edge footings with those of the predicted BCR/SRF in
regular-shaped footings from the model. The multiplication
factor for the BCR and the SRF was termed as 𝐹mbcr and 𝐹msrf,
respectively. A total of 120 and 450 data on the BCR and the
SRF of T, Plus, and double-box-shaped skirted footings were
taken from the present experimentation. These data points
were used to calculate the average multiplication factors to
predict the BCR and the SRF of multi-edge skirted footings.

Activation Function Selection, Performance Measure,
and Sensitivity Analysis
Artificial neural networks make use of various activation
functions to create a relationship between the input and
the output variables at each neuron layer. These functions
are generally mathematical expressions and are used to
produce the outputs. The different activation functions
used were linear, threshold, threshold symmetric, sigmoid,
sigmoid stepwise, sigmoid symmetric, sigmoid symmetric
stepwise, gaussian, gaussian symmetric, gaussian stepwise,
elliot, elliot symmetric, linear piece, linear piece symmetric,
sin symmetric, cos symmetric, sin, and cos. All of these are
available in the open-source Agiel neural network software.
To choose the best activation function among these 18
functions, a comparison was made with various performance
measures such as the coefficient of determination (R2),
variance account for (VAF), mean square error (MSE), root
mean square error (RMSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE).

The predictive models with an R2 of 1, VAF of 100%, and MSE,
RMSE, and MAE of zero indicate a perfect model (Hajihassani,
Abdullah, Asteris, and Armaghani, 2019; Huang, Asteris,
Koopialipoor, Armaghani, and Tahir, 2019; Xu, Zhou, Asteris,
Armaghani, and Tahir, 2019). The mathematical formulas

Table 5. Mathematical expressions for the performance measures for
the BCR

Statistical
coefficient

Mathematical expression

Coefficient of deter-
mination (R2)

𝑅2 = 1 −
∑
𝑖 (𝐵𝐶𝑅ℎ𝑝−𝐵𝐶𝑅ℎ𝑡 )2∑
𝑖 (𝐵𝐶𝑅ℎ𝑝−𝐵𝐶𝑅ℎ𝑝 )2

Variance accounts
for (VAF)

VAF =

[
1 −

𝑣𝑎𝑟

(
𝐵𝐶𝑅ℎ𝑡−𝐵𝐶𝑅ℎ𝑝

)
𝑣𝑎𝑟 (𝐵𝐶𝑅ℎ𝑡 )

]
× 100

Mean square error
(MSE)

MSE = 1
𝑛

∑𝑛
𝑖=1 (𝐵𝐶𝑅ℎ𝑡 − 𝐵𝐶𝑅ℎ𝑝)2

Root mean square
error (RMSE)

RMSE =

√︃
1
𝑛

∑𝑛
𝑖=1 (𝐵𝐶𝑅ℎ𝑡 − 𝐵𝐶𝑅ℎ𝑝)2

Mean absolute
error (MAE)

MAE = 1
𝑛

∑𝑛
𝑖=1

��𝐵𝐶𝑅ℎ𝑡 − 𝐵𝐶𝑅ℎ𝑝

��
Mean absolute
percentage error
(MAPE)

MAPE =

[
1
𝑛

∑𝑛
𝑖=1

��� 𝐵𝐶𝑅ℎ𝑡−𝐵𝐶𝑅ℎ𝑝

𝐵𝐶𝑅ℎ𝑡

���] × 100

Note: 𝐵𝐶𝑅ℎ𝑡 , 𝐵𝐶𝑅ℎ𝑝 target and predicted BCR; 𝐵𝐶𝑅ℎ𝑡 ,
𝐵𝐶𝑅ℎ𝑝 : mean of the target and predicted BCR, respectively;
𝑆𝐵𝐶𝑅ℎ𝑡

, 𝑆𝐵𝐶𝑅ℎ𝑝
: standard deviation of the target and predicted

BCR, respectively; 𝑛: number of observations

Source: Authors

for these performance measures (reported by Dutta et al.
2015b; Dutta et al. 2018; Gnananandarao et al. 2019)
are provided in Table 5 for the BCR. In the same table, the
performance measures for the SRF can be written just by
replacing the BCR with the SRF. Based on the best statistical
results, sigmoid symmetric and sigmoid were selected as the
activation functions for the BCR and the SRF, respectively.
The performance measures for these functions in the training
and testing phase are shown in Table 6.

Table 6. Performance measures for the training and testing of data for
BCR and SRF for the best activation function

Parameter
Training Testing

BCR SRF BCR SRF

Activation
function

Sigmoid
symmetric

Sigmoid Sigmoid
Symmetric

Sigmoid

R2 0,96 0,91 0,94 0,93

VAF (%) 91,21 87,62 92,84 89,28

MSE 0,30 0,01 0,36 0,01

RMSE 0,55 0,09 0,60 0,09

MAE 0,36 0,07 0,42 0,06

MAPE 15,97 19,25 17,61 18,90

Source: Authors

The next important step is to choose a learning rate that
analyses the performance of the activation function both for
the training and the testing datasets after fixing the optimal
epochs. The learning rate is vital for understanding any
neural network structure, as it explains the influence of the
errors on the hidden weights and biases. If the learning
rate is low, the values will take a longer time to converge;
otherwise, the model may be overfit to the target value. Thus,
a default value of 0,7 was considered in this study. After
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getting the predicted BCR and the SRF of the regular shaped
footings, using the procedure mentioned above, the next
step was to check the accuracy of the predicted parameters
regarding the target values. It was achieved after minimizing
the errors. The comparison of predicted and the target BCR
and the SRF values during training and testing step is shown
in Figure 8a and b, respectively. This figure indicates that the
coefficient of determination ranges between 0,91 and 0,96,
which implies a good fit.

Furthermore, the sensitivity analysis was performed to know
the direct or the indirect relation between the input and the
output parametersaccording to the method used by Erzin and
Gul (2014). The connection weights and biases obtained in
the neural network were examined to understand the relative
importance of the input and output parameters.

Figure 8. Plot of predicted versus targeted (a) BCR (b) SRF values using
ANN for training and testing.
Source: Authors

The result of the sensitivity analysis is presented in Figure 9,
which suggests that for the prediction of the BCR as well as
SRF, the input variable 𝐷𝑠/𝐵 affects the most that is about
64% and 57%, respectively.

Comparison with multivariable regression analysis
In the present study, apart from the development of ANN
models, additional multivariable regression analyses were

Figure 9. Sensitivity analysis for (a) BCR and (b) SRF.
Source: Authors

carried out to develop expressions for the predictions of
the BCR and the SRF. The forecasts from these expressions
were compared with ANN predictions. On similar lines
with the ANN models, the MRA was first performed on
the data related to regular shaped footings, and later, the
developed expressions were modified for prediction of the
BCR and the SRF of multi-edge footings with the introduction
of multiplication factors such as 𝐹mbcr and 𝐹msrf . To decide
the form of the expression, the BCR of the skirted footing
was compared with the ratio of the bearing capacity of the
embedded footing to the surface footing:

BCRSquare/Circle =
𝛾𝐷𝑠𝑁𝑞𝑠𝑞𝑑𝑞 + 0,5𝐵𝛾𝑁𝛾𝑠𝛾𝑑𝛾

0,5𝐵𝛾𝑁𝛾𝑠𝛾
(2)

therefore,

BCRSquare/Circle =
2𝐷𝑠𝑁𝑞𝑠𝑞𝑑𝑞

𝐵𝑁𝛾𝑠𝛾
+ 𝑑𝛾 (3)

where, 𝑠𝑞 = 𝑠𝛾 = shape factors, and 𝑑𝑞 = 𝑑𝛾 = depth
factors, according to Meyerhof’s bearing capacity theory
(1951, 1963).

A careful study of Equation (3) suggests that the form of the
expression for the regression analysis can be chosen as

𝐵𝐶𝑅Square/Circle =

(
𝑃

(
𝐷𝑠

𝐵

)
𝑓 (𝜙) +𝑄

)
𝑑𝛾 (4)
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In the expression above, 𝑃 and 𝑄 are constants that will be
obtained through regression analysis, since the 𝑁𝑞/𝑁𝛾 ratio
is dependent on the friction angle, which is replaced with the
function of 𝜙 i.e. 𝑓 (𝜙). The depth factor 𝑑𝛾 is determined as
follows:

𝑑𝛾 = 1 + 0,1
𝐷𝑠

𝐵
tan

(
45 + 𝜙

2

)
(5)

In the present study, the non-linear regression analysis was
carried out by using the Datafit software, version 9,1 (trial
version). The final equation after regression analysis for the
prediction of the BCR is:

𝐵𝐶𝑅Square/Circle =

(
67,2

(
𝐷𝑠

𝐵

)
1
𝜙
+ 0,85

)
𝑑𝛾 (6)

Finally, the BCR of the multi-edge skirted footing can be
related to the BCR given by Equation (6) as:

𝐵𝐶𝑅multi−edge = 𝐵𝐶𝑅square/circular × 𝐹mbcr (7)

where 𝐹mbcr can be calculated by a procedure similar to the
one described in the previous sections. The SRF equation for
the regular shaped footing was obtained after the regression
analysis as:

SRFSquare/Circle = 𝑒 (6,07𝜎−0,93 𝐷𝑠
𝐵

−1,18𝜙+29,78) (8)

Furthermore, the SRF of multi-edge footings is related regular
shaped footings as:

SRFmulti−edge = SRFSquare/Circle × 𝐹msrf (9)

The R2 for Equations (6) and (8) is about 0,87 and 0,84,
respectively, which is acceptable. A comparison between
the BCR and the SRF predictions for the square and the
multi-edge footings with partly rough and completely rough
interfaces obtained from the regression analysis and the ANN
is shown in Figures 10 and 11, respectively. These figures
indicate that the predicted BCR and SRF are almost within
the ±20% of the line of equality. The R2 ranges between
0,940 and 0,977 for the ANN model and 0,827 and 0,934 for
the regression analysis. Furthermore, the study of Figure 11
suggests that the R2 for the SRF prediction may lie between
0,913 and 0,985 for the ANN model and 0,739 and 0,932
for the regression analysis. A comparison of 𝐹mbcr and 𝐹msrf
obtained from the ANN and the regression analysis for the
parameters in question is provided in Table 7. It is quite
noteworthy that these factors are comparable, even though
they were obtained with different methodologies.

Equation for the BCR and the SRF from ANN
The goal of the present study was to develop an equation
for the reliable prediction of the BCR and the SRF of the
regular shaped and multi-edge skirted footings. From the
comparison of the predictions obtained with the ANN and
the regression analyses, it is quite clear that ANN predictions

Table 7. Multiplication factors 𝐹mbcr and 𝐹msrf for prediction of BCR
and SRF for multi-edge footings in ANN and regression models

Plan
shape of
footing

Multiplication factor (𝑭mbcr and 𝑭msrf)
Artificial neural networks Regression Analysis
BCR SRF BCR SRF

Plus 1,03 0,98 1,02 0,99

Double box 1,11 0,89 1,09 0,92

T 1,04 0,97 1,03 0,98

Source: Authors

Figure 10. Comparison of ANN with MRA models after the prediction
of BCR for partly rough (a, c, e, g) and rough (b, d, f, h) interfaces of
square (a, b), plus (c, d), double box (e, f), T (g, h) plan shapes.
Source: Authors

were always superior. Therefore, the equations for predicting
the BCR and the SRF are also presented here.

The ANN model was developed with the optimum number of
epochs (100) using the open-source Agiel software to obtain
the weights and the biases introduced between the hidden
layer and the output layer. The generalized function of the
ANN model for the output (BCR) of the regular shaped skirted
footing is defined by Equation 10:

BCRSquare/Circle = 𝑓

{
𝑏0 +

ℎ∑︁
(𝑘=1)

[
𝑤𝑘 𝑓

(
𝑏ℎ𝑘 +

𝑚∑︁
( 𝑗=1)

𝑤𝑗𝑘𝑋 𝑗

) ]} (10)
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Figure 11. Comparison of ANN model with MRA after the prediction
of SRF for partly rough (a, c, e, g) and rough (b, d, f, h) interfaces of
square (a, b), plus (c, d), double box (e, f), T (g, h) footings.
Source: Authors

𝐴 = −1,18 + 1,43
𝐷𝑠

𝐵
− 1,05𝜙 (11)

𝐵 = 0,50 − 1,29
𝐷𝑠

𝐵
+ 0,10𝜙 (12)

𝐸 = 1,07 + 2,66
(1 + 𝑒−𝐴) − 1

− 2,18
(1 + 𝑒−𝐵) − 1

(13)

BCRSquare/Circle =
2

(1 + 𝑒−𝐸 ) − 1
(14)

The BCRSquare/circle resulting from Equation 14 is between −1
and 1 for the activation function (sigmoid symmetric). Hence,
there is a need for the denormalization of the output to get
the actual value. The denormalized equation is as follows:

BCRSquare/Circle = 0,5
(
BCRSquare/Circle + 1

)(
BCRSquare/Circle(max) − BCRSquare/Circle(min)

)
+ BCRsquare/Circle(min)

(15)

where BCRSquare/Circle(max) and BCRSquare/Circle(min) are the
maximum and the minimum predicted bearing capacity ratios
of regular shaped skirted footings, respectively.

The BCR of multi-edge footings can be obtained by following
Equation (7), which was defined earlier. On similar lines with
the BCR, the SRF can be predicted by following Equations
16-19 as given below:

𝐴 = −0,26 + 0,01𝑠 + 0,07
𝐷𝑠

𝐵
− 0,05𝜙 (16)

𝐵 = −0,13 − 0,01𝑠 + 0,06
𝐷𝑠

𝐵
− 0,03𝜙 (17)

𝐸 = 0,40 + 0,16
1

1 + 𝑒−𝐴
+ 0,17

1
1 + 𝑒−𝐵

(18)

SRFSquare/Circle =
1

1 + 𝑒−𝐸
(19)

The SRFSquare/Circle predicted by Equation (19) ranged between
−1 and 1 for the activation function (sigmoid symmetric).
Hence, there is a need for the denormalization of output
(SRF) to get the actual value. The denormalized equation (20)
is shown below:

SRFSquare/Circle = 0,5
(
SRFSquare/Circle + 1

)(
SRFSquare/Circle(max) − SRFSquare/Circle(min)

)
+ SRFSquare/Circle(min)

(20)

Where SRFSquare/Circle(max) and 𝑆𝑅𝐹Square/Circle(min) are the
maximum and the minimum predicted settlement reduction
factors of regular shaped skirted footings. Furthermore, the
SRF of multi-edge footings is obtained following Equation
(9) and Table 7. The weights and biases between the
hidden layer neurons with input and the output nodes for the
BCRSquare/Circle and the SRFSquare/Circle prediction are provided
in Tables 8 and 9, respectively.

Table 8. Weights and biases between hidden layer neurons with input
and output nodes for BCR prediction

Neurons
Weights (𝑾 𝒋𝒌 ) Biases

𝑫𝒔/𝑩 𝝓 BCR 𝒃𝒉𝒌 𝒃0

Hidden neuron 1 (𝑘 = 1) 1,43 -1,05 1,33 -1,18 1,07

Hidden neuron 2 (𝑘 = 2) -1,29 0,10 -1,09 0,50 –

Source: Authors

Table 9. Weights and biases between hidden layer neurons with input
and output nodes for SRF prediction

Neurons
Weights (𝑾 𝒋𝒌 ) Biases

𝝈 𝑫𝒔/𝑩 𝝓 SRF 𝒃𝒉𝒌 𝒃0

Hidden neuron 1 (𝑘 = 1) 0,01 0,07 -0,05 0,16 -0,26 0,40

Hidden neuron 2 (𝑘 = 2) -0,01 0,06 -0,03 0,17 -0,13 –

Source: Authors

Conclusions
The study carried out in this work showed the feasibility of
using a simple ANN and multivariable regression analysis to
predict the bearing capacity ratio and settlement reduction
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factor of multi-edge skirted footings resting on sand. Based
on the obtained results, the following conclusions can be
drawn:

1. For a given relative density, the non-dimensional
bearing capacity of square/circular and multi-edge
footings was defined in terms of BCR increases with
an increase in depth of the skirt. The BCR of multi-
edge footings was marginally higher than that of its
square/circular counterpart, which is desirable.

2. For a given constant pressure, the reduction in
settlement of skirted footings, expressed in the form
of SRF, increased with the increase in skirt depth.
However, contrary to the observation of BCR, the
SRF of multi-edge footings was marginally smaller in
comparison to regular-shaped skirted footings.

3. The BCR and SRF predicted by using ANN or regression
analyses are in agreement with experimental values,
although ANN provides superior predictions in all
cases.

4. The developed equations can be used to predict the
BCR and SRF of partly rough and completely rough
skirted footings as the predictions are not much affected
by interface roughness.

It is anticipated that the outcome of this study will help in
emphasizing the use of multi-edge skirted footings wherever
possible. Furthermore, the developed equations can be used
to predict the bearing capacity and reduction in settlement of
such footings at a given pressure without conducting the field
tests. Neural network models, in general, cannot provide
reasons and reasoning beyond the model (black boxes) thus
obtained; once a network knows one set of weights, any new
learning results in disastrous forgetting. The suitability of
alternative techniques such as vector supporting machines,
particle swarm optimization, or genetic programming may
also be explored in the future.
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