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Abstract 
Density Classification Task (DCT) is a well-known problem, where the main goal is to build a cellular automaton whose local rule gives 
rise to emergent global coordination. We describe the methods used to identify new cellular automata that solve this problem. Our approach 
identifies both the neighborhood and its stochastic rule using a dataset of initial configurations that covers in a predefined way the full 
range of densities in DCT. We compare our results with some models currently available in the field. In some cases, our models show 
better performance than the best solution reported in the literature, with efficacy of 0.842 for datasets with uniform distribution around the 
critical density. Tests were carried out in datasets of diverse lattice sizes and sampling conditions. Finally, by a statistical non-parametric 
test, we demonstrate that there are no significant differences between our identified cellular automata and the best-known model. 
 
Keywords: automated model design; computational framework; machine learning; genetic algorithm; Friedman test; Nemenyi’s post-hoc 
test. 

 
 

Minando autómatas celulares estocásticos para resolver el problema 
de clasificación de densidad en dos dimensiones 

 
Resumen 
La Tarea de Clasificación de Densidad (TCD) es un problema bien conocido, donde el objetivo principal es construir un autómata celular 
cuya regla local dé lugar a una coordinación global emergente. Describimos los métodos utilizados para identificar nuevos autómatas 
celulares que resuelven este problema. Nuestro enfoque identifica tanto la vecindad como su regla estocástica utilizando un conjunto de 
datos de configuraciones iniciales que cubre de manera predefinida el rango completo de densidades en TCD. Comparamos nuestros 
resultados con algunos modelos disponibles actualmente en el campo. En algunos casos, nuestros modelos muestran un mejor rendimiento 
que la mejor solución informada en la literatura, con una eficacia de 0.842 para conjuntos de datos con distribución uniforme alrededor de 
la densidad crítica. Las pruebas se llevaron a cabo en conjuntos de datos de diversos tamaños de malla y condiciones de muestreo. 
Finalmente, mediante una prueba estadística no paramétrica demostramos que no hay diferencias significativas entre nuestros autómatas 
celulares identificados y el modelo más conocido. 
 
Palabras clave: diseño automatizado de modelos; framework computacional; aprendizaje de máquina; algoritmo genético; test de 
Friedman; test post-hoc de Nemenyi. 

 
 
 

1.  Introduction 
 
Density Classification Task (DCT) for cellular automata 

(CAs) in two dimensions (2D), consists in achieving a 
global configuration of all 0’s or all 1’s if an initial 
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configuration contains more 0’s (density ρ<0.5) or more 1’s 
(ρ>0.5), respectively. In the case of equal density, there is 
no solution, and therefore lattices with an odd number of 
cells are usually used. Researchers can use lattices with an 
even number of cells, but they must consider that there is 
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the possibility of global configurations with no solution 
(ρ=0.5). A global configuration is a 2D matrix of n rows by 
m columns. At first glance, the problem appears simple, but 
in the CA paradigm, it is difficult to find a rule that solves 
the problem, because of the lack of global control. CA state 
transitions change the state of single cells of the matrix 
according to the previous state of some surrounding cells in 
a predefined neighborhood without considering the whole 
global configuration. CAs achieve global consensus 
through dynamic emergent behavior, i.e., information 
transmission for the whole lattice. For a detailed description 
of DCT, interested readers can review [1]. 

CA models [2] offer a simple and expressive 
representation language. When a modeler builds a CA 
model, the knowledge about the phenomenon under study 
is fundamental to obtain a reasonable representation of the 
desired behavior [3]. In the specific case of DCT, due to the 
lack of knowledge of the details of the dynamic mechanism 
at the local level, it obligates human modelers to rely on 
heuristic approaches. It is very hard for them to design local 
transition states that give origin to global coordination, 
without a concrete understanding of the global mechanism 
that harmonizes local neighborhoods towards a correct 
fixed point. This setting supports the use of machine 
learning for CA identification [4]. Many approaches in CA 
identification fail to offer a definitive solution, since they 
must work with restricted techniques, to apply 
computational methods effectively. However, recently 
significant progress has been made on creating 
methodologies and algorithms that address the problem of 
CA identification [5]. 

In machine learning, DCT is an inverse problem: for 
each Initial Configuration (IC), we know the final 
configuration (FC), and the task is to find the neighborhood 
and the rule that evolves the IC towards the FC. A common 
strategy for this inverse problem is to define a neighborhood 
and search for the rule that solves the problem in that 
neighborhood.  

The more common approach to solving 2D DCT is using 
evolutive algorithms. Below, we describe some 
representative solutions to 2D DCT. The measure used to 
evaluate performance in DCT is accuracy, commonly 
denoted as efficacy. In [6], a genetic algorithm (GA) 
searches for CA rules in the von Newmann neighborhood 
and is tested over 100 ICs with uniform distribution and 
lattice size of 13 x 13 cells, attaining an accuracy around 
0.7. Authors claim that neighborhoods of greater size 
increase the search space without improving accuracy. In 
[7], a benchmark between three models based on different 
approaches is described. A GA identifies a set of models 
with a search space restricted to a Moore neighborhood of 
radius 1. The second approach provides a non-uniform CA 
based on a majority vote rule whose neighborhood includes 
the cell to be updated plus two randomly picked cells in a 
radius r (e.g., r=10). The third is an adapted version on 2D 
of GKL model [8]. 2D GKL outperforms the other 
benchmark models. The limitations of the identified models 
emerge from restrictions due to the selected neighborhood 

of radius one as in [6]. An approach based on the 
representation of CA rules by finite state machines (FSM), 
evolved by an evolutionary algorithm achieves an accuracy 
of 0.884 on a test dataset of 1,000 ICs drawn from a 
binomial distribution [9]. 

The importance of the training dataset is evaluated in 
[10,11], where a simple GA with elitism evaluates CAs 
performance against datasets of ICs drawn from uniform 
and Gaussian distributions. Each dataset is modified when 
the GA reaches a specific accuracy. When the GA starts 
with a uniform distribution, later it replaces a proportion of 
ICs by ICs drawn from a Gaussian distribution. When it 
starts with a Gaussian distribution, the GA increases the 
lattice size (target size 20 x 20 or 21 x 21), or it successively 
decreases a gap around ρ = 0.5 until it becomes ±0.02. The 
range [0.48, 0.52] is excluded. Datasets with uniform 
distribution show better performance when used 
independently of machine learning search process. One of 
the best CA models for 2D DCT was derived in [12] using 
a two-tier evolutionary approach. This model has a Moore 
neighborhood of radius one and reaches an accuracy 0.8327 
when tested on a dataset of 1,000,000 ICs drawn from a 
uniform distribution. 

Although we focus on machine learning approaches, we 
can mention some interesting results for heuristically 
designed CA models. Human-designed CAs for 2D DCT, 
such as Toom’s [12], Reynaga’s [12], Moore-majority [13] 
and von Newmann-majority [13] models are based on 
heuristics. In these cases, the rules implement a heuristic 
based on majority, i.e., if there are more 1’s in the 
neighborhood of a cell, then the next state is “1” else the 
next state is “0”. Reported efficacy accuracy in 2D DCT for 
a heuristic CA is reported around 0.87 [7], using a non-
standard metric. However, this measure is not comparable 
to the usual results reported in the literature because it is 
defined and used for this approach specifically. To compare 
quantitative results the conditions to take into account are 
the size of the lattice, the distribution of each initial 
configuration (IC), and the size of the neighborhood [14]. 

A nonstandard heuristically designed CA model is 
shown in [15]; it is asynchronous, and its behavior is 
determined by a pair of rules applied according to a 
probability ε. The first rule is designed to drive the lattice 
to a checkerboard pattern on a von Newmann 
neighborhood, and the second one is a majority rule on a 
Moore neighborhood. The accuracy measured on a dataset 
of 1,000 uniformly sampled ICs was close to 0.9. This 
performance is possibly the best reported so far for 2D 
DCT, although uniformly sampled ICs may show higher 
performance. In [16], a heat equation with two critical 
stable points (0 and 1) is adapted to solving DCT. The 
authors claim to have solved perfectly 2D DCT with this 
approach (success ratio of 100%), but missing a description 
of their test dataset it is difficult to verify their analysis. For 
1D DCT the success ratio is 100% in random ICs with ρ 
around 0.5 and lattice size 149 and a vast number of states 
(around 200,000, before discretization). A more recent 
heuristic probabilistic CA is described in [14]. Through the 
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composition of rules 232 y 184, used for 1D DCT, with 
probabilistic rules for 2D in a Moore neighborhood of 
radius 2. Accuracy for this approach is around 1.0 in two 
sets of 1000 ICs, with lattice sizes of 50×50 and 100×100 
and generated by a symmetric Bernoulli distribution. In [17] 
Fatès describe the design of a heuristic stochastic CA that 
solves 1D DCT at an arbitrary precision. Fatès builds his 
CA merging two previous stochastic CAs, and it achieves 
quality around 0.9 in 10000 ICs with a non-standard metric. 
Wolnik et al. [18] describe an alternative solution for 1D 
DCT based on continuous CA. They measured convergence 
in a relaxed way where they accept a classification if the 
simulation converges to a ρ > 0.5 if ρ0 > 0.5 and ρ < 0.5 
otherwise. With this relaxation they claim that its 
continuous CAs can solve any IC. Later on, the same team 
makes a large-scale analysis of their family of continuous 
CAs on all possible ICs of size 23 [19]. 

Andreica and Chira [20] describe an evolutionary search 
approach for 1D DCT that is worth mentioning because the 
algorithm complements the neighborhood definition. They 
define a basic neighborhood of radius r around a cell and 
identify n long-distance neighbors. The authors conclude 
that their approach performance is better than a traditional 
approach that uses a neighborhood comprised of cells close 
to the cell. The reported precision is 0.71 in a data set of 
10000 ICs. 

Our approach searches for both neighborhood and rule, 
achieving an efficacy slightly above state of the art. We 
search the neighborhood of the CA because there is no 
evidence about what is the best DCT solution’s 
neighborhood.  

We find out that DCT is a problem related in several 
ways to real-world problems. One of such problems is 
protein contact map prediction (PCMP) [21]. In PCMP, we 
need to predict a 2D binary matrix that represents the three-
dimensional (3D) structure of a protein. In the same way 
that in DCT, we do not know what are the local interactions 
that allow the protein to achieve a stable spatial 
configuration. We try to extrapolate our approach to DCT 
into PCMP, where we want to obtain a CA that allows 
predicting protein contact maps. 

The rest of the text is structured in the manner outlined as 
follows: Section 2 describes the genetic algorithm used for 
identification of CA models. Section 3 is devoted to 
describing the performance of our proposal. Section 4 
summarizes the results obtained in CA models identification, 
the findings of the research, moreover, provides guidance on 
developing future work in the area. 

 
2.  Materials and methods 

 
Our work is framed in a data mining process, by the task of 

extracting CA models from pairs of IC - FC. This section 
summarizes the results obtained following the Cross Industry 
Standard Process for Data Mining methodology (CRISP-DM) 
[22]. The use of this type of techniques to real-world problems 
has previously been shown to be a data mining problem [23]. 

2.1.  Datasets description 
 
Our proposal uses an approach based on a training dataset 

drawn from a uniform distribution, following previous 
findings (in [12], [10] and [11]) that remark the difficulty to 
learn from ICs near the critical density (ρ = 0.5). However, 
we evaluate our models in an ICs dataset drawn from a 
Binomial distribution, because we can inspect in a detailed 
way the impact of hard test cases. 

In this research, we used two datasets, one for training 
CAs with a GA and the other one for assessment of 
performance for the best-identified model and reference 
models. Training and testing ICs have lattice size 21 x 21.  

The training dataset contains 24,000 ICs with uniform 
distribution from ρ=0.3 to ρ=0.7. We arranged ICs in strata 
of similar density following the structure depicted in Fig. 1. 
Each stratum has a different density (ρi). If ρi of stratumi is 
greater than 0.5 is followed by a stratumi+1 of density 1 - ρi. 
Stratumi+2 has density ρi - 0.04, if ρi is greater than 0.5, 
otherwise, ρi + 0.04. For each density stratum there are ten 
bins of 200 ICs, and our GA alternates bins of stratumi and 
stratumi+1 until the ten bins are consumed for training. In this 
way we avoid overfitting, and the models are good enough 
for ICs with majority of 0’s or 1’s indistinctly. Our approach 
for training is based on iterative learning with alternating 
strata [23], when after the strata 11 and 12 the GA restart the 
training with stratum 1. 

The testing dataset contains 100,000 ICs, according to a 
Binomial distribution [10], that allows focusing CA 
evaluation for DCT in the hardest densities. Table 1 shows 
the density distribution in the testing dataset. 

 

 
Figure 1. ICs density distribution for the training dataset. 
Source: The Authors. 
 
 
Table 1.  
Binomial distribution of the test dataset. 

ρ Initial Configurations ρ Initial Configurations 
0.9 14 0.4 24197 
0.8 443 0.3 5399 
0.7 5399 0.2 443 
0.6 24197 0.1 14 
0.5 39894    

Source: The Authors. 
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CA identification, on this paper, is achieved through a GA 
that implements the management of test cases for fitness 
evaluation, forcing adaptability by iterative changes of the 
ICs density. In the following section, we describe details of 
our GA.  

 
2.2.  Genetic algorithm description 

 
We developed our GA using the framework for CA 

identification described in [5]. This framework was 
developed for problems related to protein contact map 
representation as a CA, but in this research, we were able to 
extend its use to 2D DCT. The GA uses in each step 200 ICs 
of similar density for evaluation: the first half is used as a 
source of patterns for the neighborhood, and the second one 
tests the identified CA model. A rule for each CA is obtained 
similarly to pattern mining, where the rules are probabilistic 
according to frequencies observed in the dataset. We selected 
the Matthews correlation coefficient as fitness function 
because thus, we avoid class bias in IC configurations with 
density far from 0.5. The general description of the GA is the 
following.  

Initial Population: 100 random CA models with random 
neighborhoods. The chromosome codifies a possible 
neighborhood of radius 3 (size 49), which means 249 possible 
neighborhoods (CA models). 

Evaluation: Obtain neighborhood patterns’ frequencies 
for one stratum in the training dataset for the population. 
Using the Matthews correlation coefficient, evaluate the 
result of the simulation for another subset of ICs (to avoid 
over-adjustment).  

Test: Continue until reaching a predefined number of 
iterations. 

New population:  
• Selection: Top 3% of elite individuals in the population 

are copied without modification to the next population. 
Tournament of size eight is applied as the selection 
method. 

• Crossover: Uniform two points, rate 0.8. 
• Mutation: Bit inversion, rate 0.02. 
• Accepting: All new offspring are added to the new 

population. 
Population replacement: The new population replaces 

the previous one. 
Stratum replacement: Change data stratumi for the 

stratumi+1 in the training dataset. 
Loop: Repeat the procedure from Evaluation. 
 

2.3.  Genetic algorithm individual 
 
An individual in our GA is a CA with its neighborhood 

and rule. The chromosome encodes the CA’s neighborhood. 
We restrict the neighborhood to a maximum local Moore 
neighborhood of radius 3, so the search space has a size of 
249 different CAs. We consider that there is not enough 
evidence about what is the right neighborhood for DCT, so 
by deciding a neighborhood we are making a strong  

 
Figure 2. GA individual evaluation process. 
Source: The Authors. 
 
 
assumption about the solution. Despite almost every machine 
learning approach for 2D DCT selects typical neighborhoods 
we allow our GA to explore a vast space of neighborhoods, 
looking for the best solution for DCT. In Fig. 2, we describe 
the process for evaluation of each CA in the population of the 
GA. In the first iteration, the GA assigns CA’s neighborhood 
randomly and after that using recombination and mutation of 
CAs with the best performance in the previous iteration. 

 
2.4.  Baseline models 

 
We have chosen two CA models as a starting point of 

reference. The results for this pair of models allow us to 
understand some typical characteristics of models that solve 
DCT. The first one (Toom’s model) is a simple CA that has 
a small neighborhood (only three cells), and the rule decides 
the next state by majority vote [15]. Fig. 3.a) shows Toom’s 
neighborhood, central cell, east cell and north cell. Although 
this model has low accuracy around the critical density (ρ = 
0.5±0.1), for easy test cases the performance is near to perfect 
(see Table 2). 

The second baseline model is Reynaga’s CA (see  Fig. 
3.b). This model’s neighborhood is a restricted version of von 
Newmann neighborhood but takes only three cells into 
account, depending on whether the central cell is in state 0 or 
state 1. The next state is defined by the majority, when central 
cell state is 0 neighbor cells are C-S-W (central, south, west), 
in the other case neighbors are C-N-E (central, north, east). 
Reynaga’s CA performance is almost identical to Toom’s 
CA, i.e., almost perfect for easy ICs, bad for ρ = 0.5±0.1. 

 
 

 
Figure 3. a) Toom’s model neighborhood. b) Reynaga’s model 
neighborhood 
Source: The Authors. 
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2.5.  Benchmark model 
 
The best model reported by Woltz and de Oliveira [12] is 

the CA that we are going to use for comparisons. From here 
on we will call it WdO (according to authors’ last names). 
WdO was found using an evolutive approach, its 
neighborhood is Moore radius one (Fig. 4.a), and the rule is 
standard. WdO is the first ranked model reported in Table 2 
in the source paper [12]. The efficacy achieved by WdO in a 
test of one million ICs, uniformly distributed, was 0.8327, 
and since its publication was regarded as the best solution for 
2D DCT.  

 
3.  Results 

 
Cumulative and moving averages are used to measure GA 

behavior and assessing the stop conditions, since the 
evaluation function of the best individual is not directly 
comparable, given that from one generation to another the 
dataset varies. The high variability originated by the frequent 
change of training data does not conduce to convergence 
from a GA iteration but for iteration on the full training set. 
We describe the best CAs below. 

 
3.1.  Best Identified models 

 
The neighborhood of the best CA identified by our GA 

(named DT01, according to authors’ last names and model 
version) is shown in Fig. 4.b). A remarkable characteristic of 
this neighborhood is that the state of the cell to be updated 
(cell marked with dashes in Fig. 4.b) is not considered to 
determine its next state: The local dynamics for DT01 depend 
on the surrounding cells in the neighborhood, but not of the 
cell itself, which is uncommon in most of the previously 
proposed models. This kind of topology is a typical machine 
learning design. DT01 has 2048 rules (11 cells in the 
neighborhood, 211 patterns), and for all rules majority of 
states determine the higher probability of transition (more 1s 
then most probable state 1, 0 otherwise). 

 

 
Figure 4. Models’ neighborhoods. 
Source: The Authors. 

 
Figure 5. DT01 application examples on different ICs. Black cells 
represent estate ‘1’, and white cells state ‘0’. Transitions are shown from 
left to right. a) ρ0 = 0.43; b) ρ0 = 0.45; c) ρ0 = 0.53; d) ρ0 = 0.54; e) ρ0 = 
0.54. 
Source: The Authors. 

 
 
DT01 is a fast converging CA for DCT, i.e., a fixed point 

is reached in less than 50 simulation steps. Fig. 5 shows 
examples of fast converging simulations; all the examples 
converge to a fixed point in less than ten simulation steps.  

DT02 is a CA that includes nine cells in its neighborhood 
( Fig. 4.c)) and similarly to DT01, the cell to be updated is 
not included. This was one of the reasons for which we 
choose to find out the neighborhood, apparently in our 
approach the DCT local update depends only on the density 
around the cell and not in the state of the cell. 

DT03 is another one of our best models; its neighborhood 
contains 12 cells. In our preliminary tests DT03 achieved the 
best performance. However, we want to make in-depth 
comparisons between models before drawing conclusions. 
We describe our assessments in the following sections.  

 
3.2.  Quality assessment 

 
We assessed the quality of our models on the testing 

dataset of 100,000 ICs, and the results are compared with 
those of Toom’s and Reynaga’s models. In Table 2 we show 
the efficacies of Toom, Reynaga, WdO and our three models. 
For each density bin with 0.4 ≤ ρ and ρ ≥ 0.6 the classification 
is almost perfect. From this fact we can note that for 
comparisons we just need to consider ICs with ρ close to 0.5 
and that the other bins that are in Table 2 can be considered 
trivial because even simpler models as Toom and Reynaga 
achieve the best efficacy. DT01 exceeds benchmark models 
in the average accuracy, being the performance for the three 
models similar for ρ values over 0.6 and below 0.4. The 
remarkable difference is observed for the bin of ρ around 0.5, 
where Toom and Reynaga models show and efficacy close to 
a random classification. WdO and our three models' 
performance are similar to the one reported in for WdO [12]. 
DT03 shows efficacy of 0.84 vs. 0.831 of WdO, maybe 
someone can conclude that DT03 is the best model, but we 
believe just a test on a dataset is insufficient to draw 
conclusions.  In the following section we are going to carry 
on more tests and draw conclusions based on statistical tests. 
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Table 2.  
Quality measurement for DT01 and benchmark models on the testing dataset. 

ρ ICs Efficacy 
Toom Reyna-ga WdO DT01 DT02 DT03 

0.9 14 1.000 1.000 1.000 1.000 1.000 1.000 
0.8 443 1.000 1.000 1.000 1.000 1.000 1.000 
0.7 5399 1.000 1.000 1.000 1.000 1.000 1.000 
0.6 24197 0.967 0.989 1.000 1.000 1.000 1.000 
0.5 39894 0.487 0.466 0.831 0.826 0.799 0.840 
0.4 24197 0.965 0.987 1.000 1.000 1.000 1.000 
0.3 5399 1.000 1.000 1.000 1.000 1.000 1.000 
0.2 443 1.000 1.000 1.000 1.000 1.000 1.000 
0.1 14 1.000 1.000 1.000 1.000 1.000 1.000 

Average 0.779 0.781 0.933 0.931 0.920 0.936 
Source: The authors. 
 
 
3.3.  Statistical comparison 

 
In machine learning, and specifically in DCT, it is hard to 

find out statistically significant comparison of approaches. 
The standard comparison involves the use of a quality 
measure such as efficacy and several datasets, and the authors 
draw conclusions about which approach is better than the 
others based on the maximum count of times that an approach 
excels the others. The main issue with this style of 
comparison is that sometimes, the differences are so small 
that are negligible. In this section we try to draw conclusions 
about the performance of WdO and our three models using 
non-parametric statistical tests for multiple comparisons. 

We apply the Friedman non-parametric test [24] that 
computes the average ranking of each model, then test the 
null hypothesis that all CA perform equally. If the null 
hypothesis is rejected, then the Friedman test allows us to 
conclude that the differences in efficacy are statistically 
significant. 

For the analysis in this section, we are going to use five 
datasets with ρ ∈ (0.5,0.52] ∪ [0.48,0.5) and n × n lattices 
with n ∈ [21,41,61,81,101]. In each dataset, 10,000 ICs have 
majority 1s, and 10,000 ICs have majority 0s. The density 
range grants that we are focusing our analysis exclusively in 
the hardest cases of DCT. In Table 3 we display the efficacy 
for each model. If we analyze the efficacy in Table 3 in the 
typical way the first apparent conclusion is that DT01 excels 
WdO because the first is the better in three datasets vs. one 
dataset for the latter. Additionally, the average efficacy is 
greater for DT01. 

In this test, we can note divergence from results in Table 
2, where DT03 achieved the best efficacy, but in Table 2, we 
can see that it is the best just for the dataset of 21 × 21 lattices. 
 
Table 3.  
Efficacy for WdO, DT01, DT02, and DT03 around the critical density ρ=0.5. 

Dataset Efficacy 
WdO DT01 DT02 DT03 

21 × 21 0.738 0.742 0.702 0.760 
41 × 41 0.801 0.799 0.781 0.783 
61 × 61 0.841 0.854 0.841 0.833 
81 × 81 0.879 0.890 0.874 0.864 

101 × 101 0.913 0.923 0.912 0.903 
Average 0.834 0.842 0.822 0.828 

Source: The Authors. 
 

We compare test results using the Friedman non-
parametric test, and the Friedman statistic (FF) was 6.84. 

The critical values for FF are: 6.36 at α = 0.1; 7.8 at α = 
0.05; 9.96 at α = 0.01. Therefore, we can reject the null 
hypothesis that all the CAs performed equally at a 
significance level 0.1. Now, we need to test which CA 
surpasses with statistical significance, with another. To 
accomplish this we can use Nemenyi’s post-hoc test 
described in [24]. Nemenyi’s test defines a critical difference 
(CD) between the average rankings, and we can conclude that 
models that overcome the CD have significantly different 
efficacy. In  Fig. 6 we display Nemenyi’s CDs for the four 
CAs. The bar for each CA indicates its CD and each model 
that its average ranking does not overlap with others performs 
significantly better. In  Fig. 6, DT01 excels DT02 and DT03, 
but not WdO. WdO is not significantly better than any other 
CA because its CD overlaps with all the other models. In 
conclusion, we can say that at a significance level of 0.1, 
DT01 is the best CA in our test. However, at higher 
significance the four tested CAs perform equally.  

 

 
Figure 1. Nemenyi’s critical difference for efficacy. Stars indicate the 
average rank of each CA. 
Source: The Authors. 
 
 
Table 4.  
Matthews Correlation Coefficient for WdO, DT01, DT02, and DT03 around 
the critical density ρ=0.5. 

Dataset Matthews Correlation Coefficient 
WdO DT01 DT02 DT03 

21 × 21 0.475 0.485 0.405 0.519 
41 × 41 0.602 0.599 0.564 0.566 
61 × 61 0.681 0.708 0.684 0.668 
81 × 81 0.758 0.781 0.750 0.730 
101 × 101 0.826 0.846 0.827 0.807 
Average 0.668 0.684 0.646 0.658 

Source: The Authors. 
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What happens if we used different performance 
measures? We can use the Matthews Correlation Coefficient 
that is able to capture differences in classifiers that are biased 
towards one of the classes in the test. For DCT, we have two 
classes: ICs with majority of 0’s or majority of 1’s. In Table 
4, we show the results for the four CAs using the same 
datasets in Table 3. The direct comparison of scores in Table 
4 gives us similar results than for efficacy, but the scores are 
lowest, showing that there is bias towards the classification 
of majority of 0’s or 1’s. 

FF for scores in Table 4 was 5.88. The critical values for 
FF are: 6.36 at α = 0.1; 7.8 at α = 0.05; 9.96 at α = 0.01. In 
consequence, Friedman's test does not reject the null 
hypothesis, and we can conclude that there are no statistically 
significant differences between the four CAs. Although this 
result is dissimilar to the one we got for efficacy, we conclude 
there are no significant differences between the compared 
models.  

 
4.  Discussion 

 
We proved that our GA was successful in identifying 

several CAs that have success similar to the best-known 
model for 2D DCT. Our reasons for success were three: 1) 
Our search space is not restricted to a predefined local 
neighborhood; for 2D DCT there is no evidence about what 
the appropriate neighborhood is, so we allow that our GA 
finds out the local neighborhood for each candidate CA. 2) 
Our training is done by alternating strata that allow our GA 
to refine the search space covering both classes of ICs and 
iterating over the training set several times to converge a 
solution for DCT. 3) We use Matthews Correlation 
Coefficient to score CAs, so the GA favors those that are less 
biased.  

The maximum neighborhood size for our CAs covers 
11.1% of a lattice of size 21 × 21. Though this proportion is 
large compared the 2% that covers a Moore neighborhood of 
radius 1, our best CAs just cover 2.5% for DT01, 2% for 
DT01, and 2.7% for DT03 in a lattice of size 21 × 21. For a 
lattice of size 101 × 101, our maximum neighborhood size 
covers just 0.5%, making negligible the impact of the size 
that we picked. Moreover, as we increase the size of lattice 
the performance improves (see Tables 3 and 4), so we can 
say that the size of the neighborhood is not the reason that 
makes our CAs successful for 2D DCT. In fact, DT02 has the 
same number of cells as WdO and performed similarly, as 
was probed by the Friedman non-parametric test. 

The typical approach for models’ comparison in DCT and 
several other machine learning related problems, draws 
conclusions from direct comparisons of scores. In this 
research, we find out that this approach lacks statistical 
significance, and that is needed to draw upon tests that allow 
to compare multiple models and derive conclusions based on 
the statistical significance of the results. In our research, our 
CAs can achieve better results than WdO, but these tests 
allow us to conclude that our novel CAs perform similarly as 
WdO on the test datasets. 

In our test with a binomial distribution, we notice that ICs 

with densities over 0.6 and below 0.4 are uninteresting 
because the tested models can perform correctly in this range. 
So, is necessary that researchers exclude this range in 
analysis to get a precise measure of the performance of the 
CA. It is better to restrict the range of densities in the interval 
[0.48, 0.52] so that comparisons allow us to determine when 
a novel CA for DCT is better at the critical density. 

We used Matthews Correlation Coefficient as an 
alternative performance score for DCT.  With it, we can 
improve performance assessment because we can obtain a 
measurement of bias in our classifications. Efficacy assesses 
the proportion of correct classified ICs, while Matthews 
Correlation Coefficient decreases when a class has bias in the 
proportion of correctly predicted ICs. We suggest that an 
analysis that uses both measures can give a better assessment 
of the real performance of CAs in DCT. Additionally, we 
used Matthews Correlation Coefficient as score for CAs in 
our GA, so we prefer models that are more balanced in DCT 
classification. 

 
5.  Conclusion 

 
Our approach successfully identifies CA models for DCT, 

not just improving efficacy, but also showing adequacy and 
usefulness of the architectural framework used. Although our 
identified CA models provide remarkable results in DCT, our 
framework’s methodological success is an important aspect 
that opens the door for new research topics. We already are 
developing a novel approach for contact map prediction 
based on CA identification framework used for DCT. 

Our main goal was to test our architectural framework [5] 
for CA identification. The framework provides design 
patterns for the implementation of metaheuristics and 
predefined services that are extensible and useful for CA 
model identification. Here we show how the framework 
worked for 2D DCT. Upon the results of this work, we are 
working on the topic of CA model identification for protein 
contact map prediction. 
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