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Abstract 
The errors of calculation of the availability may bring as a consequence mistakes in the decision making in operational systems 
management. For this reason, the objective of this paper is to evaluate the efficacy of the current equations for the calculation of the 
availability of series and parallel systems. For that purpose, the non-manufactured production calculated by these equations was compared 
with the real non-manufactured production which is a function of the down time of each component. These calculations constituted the 
deterministic model used in the simulations through Monte Carlo method, for which the statistical software R was used. The results were 
evaluated by the Kolmogorov Smirnov normality test with the modification of Lilliefors. The comparison of means to evaluate the efficacy 
of the current equations were performed using the t statistic; for this the data were previously approximated to the normal distribution by 
the central limit theorem. 

Keywords: availability; down time; series systems; parallel systems; non-manufactured products. 

Análisis de la eficacia de las ecuaciones de la disponibilidad 
operacional de sistemas en serie y paralelo 

Resumen 
Los errores de cálculo de la disponibilidad pueden traer como consecuencia equivocaciones en la toma de decisiones en la gestión de 
sistemas operacionales. Por tal motivo el objetivo del presente trabajo es evaluar la eficacia de las ecuaciones vigentes para el cálculo de 
la disponibilidad de sistemas en serie y paralelo, comparando la producción no fabricada calculada mediante estas ecuaciones con la 
producción no fabricada real en función del tiempo de indisponibilidad de cada componente. Estos cálculos constituyeron el modelo 
determinista utilizado en las simulaciones mediante el método Monte Carlo que se ejecutaron empleado el software estadístico R. Los 
resultados fueron evaluados con el test de normalidad de Kolmogorov Smirnov con la modificación de Lilliefors. La comparación de 
medias para evaluar la eficacia de las ecuaciones vigentes se realizó utilizando el estadístico t; para esto previamente se aproximó los datos 
a la distribución normal mediante el teorema de límite central. 

Palabras clave: disponibilidad; tiempo de indisponibilidad; sistemas en serie; sistemas en paralelo; productos no fabricados. 

1. Introduction

From the beginning of the study of the probability of
repairable component failures, until now, operational 
availability is considered as the capacity of a component to 
fulfill its function when required [1-4]. This indicator 
originated because operational systems cannot guarantee 
100% of the continuous flow of their operation, due to 
interruptions that occur as a result of the occurrence of 

How to cite: Hernández-Dávila, E.S., Granizo, J.A., Santillán-Gallegos, M. and Haro-Medina, M., Analysis of the efficacy of operational availability equations on series and 
parallel systems. DYNA, 85(207), pp. 269-277, Octubre - Diciembre, 2018.

unforeseen failures or the execution of preventive 
maintenance activities; therefore, they cannot fulfill their 
function during all the required time. 

For this reason, availability is one of the most important 
indicators for decision making within operational and 
maintenance management [3,5], frequently used in the 
planning of the operation of productive and services systems. 

Depending of system operational capacity, a small variation 
in availability represent very important variations in the 
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operational consequences. For example, commonly in 
production systems, a small decrease in availability represents 
a considerable reduction in production [6]. So, the calculation 
of availability must have a high degree of accuracy. 

The problem is that the calculation of the availability of a 
single component that is done by dividing the real operating 
time for the desired operating time [1,4] is consistent; but for 
series and parallel systems, the current calculation method [7-
9] is analogous to that of reliability [10]; even though the 
availability and reliability are totally different. 

Reliability is a purely stochastic process, which indicates 
the probability of satisfactory operation [3,11], whose value 
starts in one after the start-up or immediately after the repair and 
tends to zero when time tends to infinity; while, at the time the 
fault occurs and while it lasts, it takes the value of zero. 

On the other hand, the operational availability is 
eminently deterministic, whose value in conjunction with 
other indicators measures the performance of the component 
during the analyzed time period; therefore, it expresses the 
result of events that occurred, and that for no reason is 
probabilistic. For this reason, the current equations for the 
calculation of the availability on series and parallel systems 
are questionable; however, these equations are widely used 
both in scientific research [12-14] and in the production of 
books [15,16]. 

The objective of this research is to evaluate these 
equations by analyzing the quantity of products that the 
system stops manufacturing due to the unavailability of each 
of its components, in order to know its level of precision and 
its calculation error. In order to do so, three operational 
models have been designed with two components each of 
equal operational capacity; set up in series, active parallel and 
passive parallel, respectively. 

The results are obtained through the iteration of 5000 
samples of size 250 with the Monte Carlo method, where a 
range of values of the down times of each component are 
entered randomly, in the current equations of the availability 
on series and parallel systems, to later evaluate its 
effectiveness, comparing these results with the t statistic. 

 
2.  Methodology 

 
2.1.  Foundations 

 
With the purpose of using standard nomenclature and to 

have a better understanding of the relationship between the 
times used for the calculation of availability, an adaptation of 
the scheme of the "states of an item" of the EN 13306:2010 
standard was made [17] in terms of the relative times to 
availability, obtaining the simplified scheme of Fig. 1. 

 

 
Figure 1. Relative times to availability. 
Source: Adapted from [17]. 

For the calculation of the individual availability of each 
component, eq. (1) corresponding to technical indicator T2 
provided in standard EN 15341:2007 [18]. In terms of Fig. 1, 
this indicator is expressed as follows: 

 
𝐴𝐴 =

𝑈𝑈𝑈𝑈
𝑅𝑅𝑈𝑈 =

𝑅𝑅𝑈𝑈 − 𝐷𝐷𝑈𝑈
𝑅𝑅𝑈𝑈  (1) 

 
Where 𝐴𝐴 is availability, 𝑈𝑈𝑈𝑈 is up time obtained during the 

required time, 𝐷𝐷𝑈𝑈 is down time obtained during the required 
time and 𝑅𝑅𝑈𝑈 is the required time. 

The amount of production reached on production system 
depends on the intrinsic operating capacity of a certain 
production process under certain operating conditions and the 
total effective time in which that process works without 
failure. This is reflected with the following equation: 

 
𝑄𝑄 = 𝐶𝐶 ∗ 𝑈𝑈𝑈𝑈 (2) 

 
Where 𝑄𝑄 is the production reached and 𝐶𝐶 is the operational 

capacity expressed in items produced by time unit. 
On the other hand, the production not manufactured as a 

consequence of the down time (𝑄𝑄�) is calculated with: 
 

𝑄𝑄� = 𝐶𝐶 ∗ 𝐷𝐷𝑈𝑈 (3) 
 
To express 𝑄𝑄�  in terms of availability, eq. (1) was replaced 

in eq. (3), having as a result: 
 

𝑄𝑄� = 𝐶𝐶 ∗ 𝑅𝑅𝑈𝑈 ∗ (1 − 𝐴𝐴) (4) 
 
Note that the production reached plus the non-

manufactured production as a consequence of the down time 
is the installed capacity (𝑄𝑄0). 

 
2.2.  Models of the systems 

 
The model of series system was delimited with two 

components as illustrated in Fig. 2. This model is characterized 
in that any functional failure of one of its components causes 
the failure of the entire system [5,15]. Therefore, if component 
1 is in a fault state, the system will not be able to operate, 
remaining in a down state, while component 2 remains in the 
stand by state. Analogously, if component 2 is in a fault state, 
the system will not be able to operate either, at which time 
component 1 will be in the stand by state. 

It should be noted that the component that is in the stand 
by state cannot fail because it is not operating; therefore, the 
total sum of the down times of each component, in no case 
can be greater than the required time, otherwise the equation 
(1) and those that are deducted from it, would give negative 
values, which is unreal. 

In the model of the active parallel system indicated in Fig. 
3, the two components operate simultaneously and with the 

 

 
Figure 2. Series system. 
Source: The authors. 
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Figure 3. Parallel system. 
Source: The authors.  

 
 

same operating capacity, although in reality their capacities 
may be different. This model is characterized in that the 
functional failure of one of its components causes the 
decrease in the capacity of the system by half; therefore, the 
parallel system is in a down state only if the two components 
fail at the same time [5,15]. 

The model of passive parallel system was also 
represented with the two components of Fig. 3. This model is 
characterized by when component 1 fails, component 2 
comes into operation, which is the one configured in passive 
parallel; Thus; as long as the two components do not fail at 
the same time, the system will continue to operate [15]. In 
this model the two components also have the same 
operational capacity. 

 
2.3.  Deterministic model 

 
The deterministic model for the simulation using the 

Monte Carlo method was based on the current equations for 
calculating the availability of series and parallel systems, in 
order to determine the non-manufactured production as a 
consequence of the down time (eq. 4); and with the real 
reached production calculated with eq. (3). For which, the 
current equation for calculation of the availability on series 
systems is the following [8]: 

 

𝐴𝐴𝑠𝑠 = �𝐴𝐴𝑠𝑠𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= ��
𝑅𝑅𝑈𝑈 − 𝐷𝐷𝑈𝑈𝑠𝑠𝑠𝑠𝑖𝑖

𝑅𝑅𝑈𝑈 �
𝑛𝑛

𝑖𝑖=1

 (5) 

 
Where 𝐴𝐴𝑠𝑠 is the availability on series system, 𝐴𝐴𝑠𝑠𝑠𝑠𝑖𝑖 is the 

availability of 𝑖𝑖th series component, 𝐷𝐷𝑈𝑈𝑠𝑠𝑠𝑠𝑖𝑖 is the down time 
of 𝑖𝑖th series component and 𝑛𝑛 is the total number of series 
components. 

The non-manufactured production as down time 
consequence of series systems was obtained by replacing the 
eq. (5) in eq. (4): 

 

𝑄𝑄�𝑠𝑠 = 𝐶𝐶𝑠𝑠 ∗ 𝑅𝑅𝑈𝑈 ∗ �1 −��
𝑅𝑅𝑈𝑈 − 𝐷𝐷𝑈𝑈𝑠𝑠𝑠𝑠𝑖𝑖

𝑅𝑅𝑈𝑈 �
𝑛𝑛

𝑖𝑖=1

� (6) 

 
Where  𝑄𝑄�𝑠𝑠 is the non-manufactured production as down 

time consequence on series system and 𝐶𝐶𝑠𝑠 is the operational 
capacity on series system. 

The real reached production of the series system of Fig. 2 
was determined by eq. (3), and considering that, from the 
point of view of availability, a serial system behaves as if it 
were a single operating unit (equipment, device); in such 

virtue, the down time of this operative unit is equal to the sum 
of the individual down times of its components. 

 

𝑄𝑄�𝑅𝑅𝑠𝑠 = 𝐶𝐶𝑠𝑠 ∗�𝐷𝐷𝑈𝑈𝑠𝑠𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (7) 

 
Where 𝑄𝑄�𝑅𝑅𝑠𝑠 is the real non-manufactured production as a 

result of the down time on series system and  ∑ 𝐷𝐷𝑈𝑈𝑠𝑠𝑠𝑠𝑖𝑖
𝑛𝑛
𝑖𝑖=1  is 

the total down time on serial system achieved during the 
required time. 

The current equation for calculating the availability on 
parallel systems, both active and passive, is following [8]: 

 

𝐴𝐴𝑝𝑝 = 1 −��1 − 𝐴𝐴𝑝𝑝𝑠𝑠𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

= 1 −��
𝐷𝐷𝑈𝑈𝑝𝑝𝑠𝑠𝑖𝑖
𝑅𝑅𝑈𝑈 �

𝑛𝑛

𝑖𝑖=1

 (8) 

 
Where 𝐴𝐴𝑝𝑝 is the availability of active or passive parallel 

system, 𝐴𝐴𝑝𝑝𝑠𝑠𝑖𝑖   is the availability of 𝑖𝑖th active or passive 
parallel component, 𝐷𝐷𝑈𝑈𝑝𝑝𝑠𝑠𝑖𝑖 is the down time of 𝑖𝑖th active or 
passive parallel component and 𝑛𝑛 is the total number of 
parallel components. 

The non-manufactured production as a consequence of 
the down time on active or passive parallel systems was 
obtained by replacing eq. (8) in eq. (4): 

 

𝑄𝑄�𝑝𝑝 = 𝐶𝐶𝑝𝑝 ∗ 𝑅𝑅𝑈𝑈(1−𝑛𝑛) ∗�𝐷𝐷𝑈𝑈𝑝𝑝𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (9) 

 
Where 𝑄𝑄�𝑝𝑝 is the non-manufactured production as result 

of down time on active or passive parallel system, 𝐶𝐶𝑝𝑝 is the 
operational capacity on active or passive parallel system and  
𝐷𝐷𝑈𝑈𝑝𝑝𝑠𝑠𝑖𝑖 is the down time of 𝑖𝑖th component on active or passive 
parallel system. 

The real production reached on active parallel system was 
determined considering that, in this case, each of the 
components delivers its production quota individually, in 
such a way that the production reached by the system is equal 
to the sum of productions reached for each of its components. 
Similarly, non-manufactured production as a result of the 
down time on active parallel system is equal to the sum of the 
non-manufactured production of each of its components. 

 

𝑄𝑄�𝑅𝑅𝑅𝑅𝑝𝑝 = �𝑄𝑄�𝑅𝑅𝑝𝑝𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (10) 

 
Where 𝑄𝑄�𝑅𝑅𝑅𝑅𝑝𝑝 is the real non-manufactured production as a 

result of the down time on active parallel system and 𝑄𝑄�𝑅𝑅𝑝𝑝𝑠𝑠𝑖𝑖 is 
the real non-manufactured production as a result of the down 
time of 𝑖𝑖th active parallel component. 

The real non-manufactured production as a result of the 
down time on active parallel system may be expressed in 
terms of the down time by replacing the eq (2) in eq. (10): 

 

𝑄𝑄�𝑅𝑅𝑅𝑅𝑝𝑝 = ��𝐶𝐶𝑅𝑅𝑝𝑝𝑠𝑠𝑖𝑖 ∗ 𝐷𝐷𝑈𝑈𝑅𝑅𝑝𝑝𝑠𝑠𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 (11) 
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Where 𝐶𝐶𝑅𝑅𝑝𝑝𝑠𝑠𝑖𝑖 is the operational capacity of 𝑖𝑖th active 
parallel component. 

In order to determine the real reached production on 
passive parallel system, it was considered that, in these 
systems, one of the components operates actively, while the 
other one is in stand by state, entering into operation only if 
the active component suffers an operational failure, 
preventing production from falling. Consequently, non-
manufactured products will be generated only if the two 
components are simultaneously in a down state; Thus: 

 
𝑄𝑄�𝑅𝑅𝑝𝑝𝑝𝑝 = 𝐶𝐶𝑝𝑝𝑝𝑝 ∗ 𝐷𝐷𝑈𝑈𝑝𝑝𝑝𝑝 (12) 

 
Where 𝑄𝑄�𝑅𝑅𝑝𝑝𝑝𝑝 is the real non-manufactured production as a 

result of down time on passive parallel system, 𝐶𝐶𝑝𝑝𝑝𝑝 is the 
operational capacity on passive parallel system and 𝐷𝐷𝑈𝑈𝑝𝑝𝑝𝑝  is 
the simultaneous down time of the two components. 

 
2.4.  Monte Carlo method 

 
In all the deterministic model equations (eqs. 6, 7, 9, 11 and 

12), 40 hours were pondered for the required time, since this is 
the total number of hours that is completed from Monday to 
Friday with a normal working time of 8 hours daily. 

In accordance with the characteristics of series systems 
exposed in the section "Models of the systems ", it was 
established that in the stochastic process 20 hours were 
generated as the maximum random value for the down time of 
components 1 and 2, so as not to create the possibility that in 
some iteration the total sum of the down times of eq. (7) exceed 
required time equal to 40 hours. 

Extending this condition for all deterministic models, it was 
established that the random entries of down times of 
components 1 and 2 must be in range of 0 to 20 hours. 

To facilitate the processing of the data, the operational 
capacity of each of the three modeled systems was pondered at 
100 units per hour. 

The simulations were elaborated using algorithms of Figs. 
4 and 5, where the stochastic process was developed with the 
random generation of the down times on series and parallel 
systems (𝐷𝐷𝑈𝑈𝑠𝑠𝑠𝑠𝑖𝑖, 𝐷𝐷𝑈𝑈𝑅𝑅𝑝𝑝𝑠𝑠𝑖𝑖 and 𝐷𝐷𝑈𝑈𝑝𝑝𝑝𝑝), while the deterministic 
model was satisfied with the calculations of the non-
manufactured production with eqs. (6), (7), (9), (11) and (12). 

To guarantee that the random generation of stochastic 
process down times may covers the range from 0 to 20 hours, 
five thousand iterations were performed; while for the 
comparison of the results of the equations to be analyzed and 
because many data may be generated with the Monte Carlo 
method, the central limit theorem with 5000 samples of size 
250 (Fig. 5) was used to obtain a good approximation [19]. 

The statistical software R, version 3.5.1 was used to 
obtain the data and for its subsequent analysis. 

 
3.  Results and analysis 

 
Before the statistical treatment of the data, it is important 

to make a comparison of the current and real equations of the 
series and parallel systems, this is done through the three-
dimensional graphs of Fig. 6, where the dependent variable  

 
Figure 4. Algorithm for simulation through Monte Carlo method. 
Source: The authors. 

 
 

is the non-manufactured products which is represented on the 
z axis; while the independent variables are defined by the 
down times 1 and 2 corresponding to the x and y axes 
respectively. 

In Fig. 6 it may be observed that in all cases there is a 
positive tendency that starts from the origin; however, 
when the down time reaches 20 hours, the non-
manufactured production differs between current and real 
methods. In order to have a better appreciation of these 
differences, the non-manufactured production is tabulated 
in Tables 1, 2 and 3 when the down times are extreme (0 
and 20 hours). 

As indicated in Table 1, on series system, half the 
required time (20 hours) the component 1 fails and the 
other half (20 hours) fails the component 2, giving a total 
of 40 hours, but the system did not operate during this 
time. Therefore, the non-manufactured production is equal 
to the nominal production (4000 units), as indicated in eq. 
(7). However, with the current equation, 3000 non- 
manufactured units were obtained, which suggests that, 
although the system did not operate at any time, 1000 units 
were manufactured. Result that is impossible to obtain in 
reality. 
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Figure 5. Algorithm for simulation through the Monte Carlo method for the 
analysis using the central limit theorem. 
Source: The authors. 

 
 

Table 1. 
Non-manufactured production of the series system. 

𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄𝟏𝟏 
[hours] 

𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄𝟐𝟐 
[hours] 

𝑸𝑸�𝒄𝒄 
eq. (6) 
[units] 

𝑸𝑸�𝑹𝑹𝒄𝒄 
eq. (7) 
[units] 

0 0 0 0 
0 20 2000 2000 

20 0 2000 2000 
20 20 3000 4000 

Source: The authors. 
 
 
For the active parallel system to have a capacity of 100 

units per hour (which is the initial condition of the 
simulation), each component has to operate with a capacity 
of 50 units per hour. If in the half of the required time, the 
component 1 fails and component 2 fails in the other half of 
required time, the system operates only whit one component 
at a time, which means that its capacity is reduced by half, 
generating a non-manufactured production of 2000 units, as 
indicated in the last row of Table 2 with eq. (11) 

While with the eq. (9), the non-manufactured production 
is less than the real one; but the most remarkable thing occurs 
when only one of the two active parallel component has a 
down time equal zero, the non-manufactured production is 
not generated, reaching the nominal production; although, 
only one component is operated; thus, eq (9) does not fit as 
expected. 

 

 
Figure 6. Graphical comparison of current and real functions of series and 
parallel systems. 
Source: The authors. 

 
 
Concerning passive parallel systems, their components 

operate one at a time. In no case operate both at the same 
time, since the component 2 is a backup, coming into 
operation, only when the first has failed. These systems are 
the most reliable, generating non-manufactured production 
when the main component fails at the same time that the 
backup component is inoperative (eq. (12) of Table 3). 

On the other hand, eq. (9) admits down times without any 
condition, enabling the generation of non-manufactured 
production when the two components fail at different time 
points. So, the eq. (9) neither fits as expected in these 
systems. 
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Table 2. 
Non-manufactured production of the active parallel system. 

𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄𝒄𝒄𝟏𝟏 
[hours] 

𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄𝒄𝒄𝟐𝟐 
[hours] 

𝑸𝑸�𝒄𝒄 
eq. (9) 
[units] 

𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄 
eq. (11) 
[units] 

0 0 0 0 
0 20 0 1000 

20 0 0 1000 
20 20 1000 2000 

Source: The authors. 
 
 

Table 3. 
Non-manufactured production of the passive parallel systems. 

𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄𝟏𝟏 
[hours] 

𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄𝟐𝟐 
[hours] 

𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄 
[hours] 

𝑸𝑸�𝒄𝒄 
eq. (9) 
[units] 

𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄 
eq. (12) 
[units] 

0 0 - 0 - 
0 20 - 0 - 

20 0 - 0 - 
20 20 - 1000 - 
- - 0 - 0 
- - 20 - 2000 

Source: The authors. 
 
 

Table 4. 
Results of the first ten and the last iteration of the simulation. 

n 𝑫𝑫𝑫𝑫𝟏𝟏 𝑫𝑫𝑫𝑫𝟐𝟐 𝑸𝑸�𝒄𝒄 
eq. (6) 

𝑸𝑸�𝑹𝑹𝒄𝒄 
eq. (7) 

𝑸𝑸�𝒄𝒄 
eq. (9) 

𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄 
eq. (11) 

𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄 
eq. (12) 

1 17.6 12.3 2442.7 2980.2 537.6 1490.1 1225.2 
2 15.4 3.3 1742.5 1870.7 128.2 935.4 333.7 
3 5.6 7.3 1186.5 1288.4 101.9 644.2 730.4 
4 10.6 0.8 1116.7 1137.7 21.0 568.9 79.4 
5 19.3 12.6 2576.8 3181.2 604.4 1590.6 1255.4 
6 19.6 2.8 2102.2 2238.2 136.0 1119.1 277.5 
7 1.8 0.9 268.3 272.4 4.1 136.2 89.8 
8 1.4 7.3 849.6 875.5 26.0 437.8 734.0 
9 6.6 2.0 821.3 853.8 32.5 426.9 198.6 

10 7.4 5.8 1209.0 1315.5 106.5 657.7 575.3 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

5000 14.3 14.9 2388.8 2922.3 533.5 1461.1 1493.9 
Source: The authors. 

 
 
So far, significant differences may be observed between 

the real data and those obtained with the current equations; 
but to make a more effective comparison it is necessary to 
analyze a lot of cases. For this purpose, the simulation of the 
algorithm of Fig. 4 is used; in which, the results of the first 
ten and the last iteration are indicated in Table 4, where 𝐷𝐷𝑈𝑈1 
and 𝐷𝐷𝑈𝑈2 are the down times of components 1 and 2 of the 
systems models of Fig. 2 and 3 respectively, those were 
obtained randomly in order to be replaced in eq. (6), (7), (9), 
(11) and (12) in each of the iterations. 

The relative frequency histograms of the results obtained 
in the 5000 iterations are indicated in Fig. 7, where it is 
observed that the data does not seem to have a normal 
distribution, for this reason an analytical normality test is 
carried out using the Kolmogorov Smirnov method with the 
modification of Lilliefors, obtaining as a result that none of 
the variables evaluated are normally distributed, with a 
confidence of 99%, since in each case the p-value of the test 
statistic is less than 0.01 (Table 5). 

Table 5. 
Normality test values of the simulated data. 

Variable D p-valor Normality 

𝑸𝑸�𝒄𝒄 0.058473 2.20E-16< 0.01 No 
𝑸𝑸�𝑹𝑹𝒄𝒄 0.021478 1.76E-16< 0.01 No 
𝑸𝑸�𝒄𝒄 0.128530 2.20E-16< 0.01 No 
𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄 0.021478 1.76E-16< 0.01 No 
𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄 0.060789 2.20E-16< 0.01 No 

Source: The authors. 
 
 

Table 6. 
Values of the ten first and the last sample means. 

n 𝑫𝑫𝑫𝑫𝟏𝟏������ 𝑫𝑫𝑫𝑫𝟐𝟐������ 𝑸𝑸�𝒄𝒄���� 
eq. (6) 

𝑸𝑸�𝑹𝑹𝒄𝒄����� 
eq. (7) 

𝑸𝑸�𝒄𝒄���� 
eq. (9) 

𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄������ 
eq. (11) 

𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄������ 
eq. (12) 

1 10.2 9.6 1751.6 1982.6 231.0 991.3 963.0 
2 10.0 9.8 1728.8 1976.3 247.5 988.2 980.0 
3 9.8 10.3 1754.5 2014.4 259.9 1007.2 1030.9 
4 10.2 9.7 1736.0 1987.7 251.7 993.9 965.4 
5 10.1 9.8 1747.8 1987.1 239.3 993.5 979.4 
6 10.2 10.5 1796.4 2065.0 268.6 1032.5 1046.3 
7 10.6 9.6 1764.2 2019.8 255.6 1009.9 957.6 
8 9.9 10.2 1753.9 2008.0 254.2 1004.0 1021.3 
9 10.2 9.9 1757.0 2012.9 256.0 1006.5 991.1 

10 9.9 10.0 1743.7 1985.0 241.4 992.5 1000.0 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

5000 9.6 9.9 1705.4 1944.0 238.6 972.0 988.7 
Source: The authors. 

 
 
Due to the large amount of data that may be obtained 

through the simulations, it is decided to apply the central 
limit theorem with 5000 samples of size 250, which is 
sufficient for the sample means to be distributed normally. 
The results of the first 10 sample means and the last one is 
indicated in Table 6 and their respective relative frequency 
histograms are shown in Fig. 8, which seem to be normally 
distributed. 

Indeed, the analysis of normality by the Kolmogorov 
Smirnov method with the modification of Lilliefors 
indicated in Table 7, shows that the sample means of the 
variables evaluated from the non-manufactured production 
on series and parallel systems are normally distributed, 
with a 99% confidence, since in each case the p-value of 
the statistic test is greater than 0.01. 

In the statistical comparison by means of the box 
diagrams of Fig. 9. it can be seen that there is a clear 
difference between the results of the non-manufactured 
products calculated with the current equations and the real 
ones on series and parallel systems. This observation must 
be confirmed by using analytical statistical methods. 

Given that, the sample means of the variables have a 
normal distribution, it proceeds to evaluate the efficacy of 
the current equations by means of the parametric statistic t; 
where the 𝐻𝐻0 corresponds to the equality of the sample 
means, which indicates that the current equations are 
effective. The averages of the sample means are indicated 
in Table 8, while the results of this test are shown in Table 
9. 
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Since the p-value obtained with the t statistic is less than 0.01 
for each of the systems (Table 9), the 𝐻𝐻0 is rejected, therefore, 
there is sufficient evidence to demonstrate that the two samples 
have different measures with the 99% confidence in each case, 
which means that the current equations for the calculation of the 
availability on series and parallel systems, give different results 
in comparison with the real ones. 
 
Table 7. 
Results of the normality test of the sample means. 

Variable D p-valor Normality 
𝑸𝑸�𝒄𝒄���� 0.010829 0.1665 > 0,01 Si 
𝑸𝑸�𝑹𝑹𝒄𝒄����� 0.0108250 0.1669 > 0,01 Si 
𝑸𝑸�𝒄𝒄���� 0.0095426 0.3294 > 0,01 Si 
𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄������� 0.0108250 0.1669 > 0,01 Si 
𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄������� 0.0082930 0.5544 > 0,01 Si 

Source: The authors.  

Table 8. 
Averages of the sample means. 

System 𝑸𝑸�  of current equations 𝑸𝑸�  real 

Series 1749.5 1999.3 
Active parallel 249.8 999.7 
Passive parallel 249.8 999.6 

Source: The authors. 
 
 

Table 9. 
Test t results. 

Compared variables t df p-valor 

𝑸𝑸�𝒄𝒄����; 𝑸𝑸�𝑹𝑹𝒄𝒄����� -273.19 9306.2 2.2E-16< 0.01 
𝑸𝑸�𝒄𝒄����; 𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄������� -1808.2 7695.2 2.2E-16< 0.01 
𝑸𝑸�𝒄𝒄����; 𝑸𝑸�𝑹𝑹𝒄𝒄𝒄𝒄������� -1348.6 6410.9 2.2E-16< 0.01 

Source: The authors. 
 
 

 
Figure 7. Relative frequency histograms of the simulated systems. 
Source: The authors. 

 
 

 
 

Figure 8. Relative frequency histograms of the sample means. 
Source: The authors. 
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Figure 9. Box diagrams of the sample means of the results of the non-manufactured products calculated with the current equations and the real ones. 
Source: The authors. 

 
 

4.  Conclusions 
 
The production losses are proportional to the down time 

of each system component, for this reason this calculation 
may be used to deduce an equation that relates the non-
manufactured production with the availability of each 
component of series and parallel system. 

The non-manufactured products resulting from the 
simulations using the Monte Carlo method are not normally 
distributed in the three systems analyzed; however, the 
sample means when applying the central limit theorem are 
distributed normally. They allow to evaluate the data by 
parametric methods. 

The t statistic test that allows to compare of sample means 
distributions, shows that the current equations are ineffective 
with a confidence of 99%. 
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