
Dyna, Año 76, Nro. 159, pp. 77-83. Medellín, Septiembre de 2009. ISSN 0012-7353

FINDING FUZZY IDENTIFICATION SYSTEM PARAMETERS
USING A NEW DYNAMIC MIGRATION PERIOD-BASED

DISTRIBUTED GENETIC ALGORITHM

DETERMINANDO LOS PARÁMETROS DE UN SISTEMA DE
IDENTIFICACIÓN DIFUSA USANDO UN NUEVO ALGORITMO

GENÉTICO DISTRIBUIDO BASADO EN PERIODO
MIGRATORIO DINÁMICO

MARCO ANTONIO CASTRO

Departamento de Sistemas y Computación, Instituto Tecnológico de La Paz, Cuba, mcastroliera@acm.org

FRANCISCO HERRERA
Departamento de Automática y Sistemas Computacionales, Universidad Central “Martha Abreu” de Las Villas, Cuba

herrera@uclv.edu.cu

Recibido para revisar agosto 27 de 2008, aceptado enero 23 de 2009, versión final febrero 20 de 2009

ABSTRACT: This paper presents a distributed genetic algorithm with dynamic determination of the migration
period. The algorithm is especially well suited for the on line estimation of a fuzzy identification system parameters,
using heterogeneous clusters. The results of the optimization of a TSK (Takagi-Sugeno-Kang) system for the
identification of a biotechnological (fermentative) process including the solution’s quality and speedup analysis are
presented. Comparative results using static and dynamic migration periods on the genetic algorithm are also
presented.

KEYWORDS: on-line identification, Takagi-Sugeno-Kang fuzzy model, distributed genetic algorithm, cluster.

RESUMEN: El presente trabajo, propone un tipo de algoritmo genético distribuido con determinación dinámica del
período migratorio el cual se adapta especialmente para la determinación en línea de los parámetros de un sistema de
identificación difusa y su implementación en clusters heterogéneos. Se presentan los resultados de la optimización de
un sistema Takagi-Sugeno-Kang (TSK) para la identificación de un proceso biotecnológico (fermentativo). Se
incluyen el análisis de la calidad de la solución, la aceleración que se obtiene al agregar nodos al cluster y la
comparación del desempeño del algoritmo usando un periodo migratorio estático y dinámico.

PALABRAS CLAVE: identificación en línea, modelo borroso Takagi-Sugeno-Kang, algoritmo genético
distribuido, clusters.

1. INTRODUCTION

The present work addresses two main aspects: the
collaborative use of a specially adapted Distributed
Genetic Algorithm [1] that runs on a low-cost
parallel architecture known as a cluster; and a TSK
fuzzy system [2] to solve a highly non-linear
identification problem.

When combining fuzzy systems and genetic
algorithms a synergy is created in which, as
expressed by Zadeh [3], the main
contribution of fuzzy logic is what may be
called the calculus of fuzzy if-then rules,
while genetic algorithms provide a
methodology of systematized random search

Castro y Herrera 78

β

α

γ
γβα 2

2
1

1
),,,(

−
+

=Φ
x

x

))(),((tktji sxTh ΦΦ=

6

)12)((
6

)12)((

44

22

minmax
min

minmax
min

−−
+=

−−
+=

==

==

kss
s

jxx
x

k

j

kj

kj

γ

γ

ββ

αα

inspired by evolutionary processes in living species
and proposed originally by John H. Holland [4].
One of our main motivations is the use of a low-cost
parallel architecture that will allow us to address
problems that demand a high computational cost
without the need of acquiring parallel computers
(shared memory) [5] that are too expensive for most
educative and other scientific institutions at present.
Distributed genetic algorithms, also known as
coarse-grained genetic algorithms and island model
parallel genetic algorithms, are currently studied as
one of the more scalable forms of parallel genetic
algorithms [1,6,7].

These types of algorithms have been addressed
having in mind the special limitations of the
computer clusters when compared with parallel
computers, particularly, the low inter-processor
bandwidth.

Currently one of the most popular ways for
parameter estimation in fuzzy systems is by means
of artificial neural networks (ANN), however, by
exploring alternatives for their implementation on
computer clusters (distributed memory) [8,9] we
find that due to the nature of the training process of
the ANN when computing the new weights for a
neuron, the precedent layers must be known. It turns
to be complicated to limit the amount of data to be
transferred between processors, which is the main
bottleneck.

2. THE FUZZY MODEL’S STRUCTURE

Lets assume a TSK model with two input variables,
x and s with three partitions each, gbell membership
functions and lineal output functions.
The rule base for such a model has the following
structure:

ThenissandisxIf ktjt ΦΦ

(1)

With j varying from 1 up to the number of fuzzy
sets that divide xt (three on our case) k varying form
1 up to the number of fuzzy sets that divide st (three
on our case) and i varying from 1 to the number of
fuzzy rules n on the rule base (nine on our case).

The gbell functions are of the form:

(2)

The predicted model´s output is given by:

(3)

Where the degree in which each rule is
fulfilled is calculated using the T operator,
(usually the product).

(4)

3. TWO PHASE STRATEGY

The optimization process was divided into
two stages; the first stage aims to find a set of
coefficients (ai0, ai1, ai2) for the consequent
part of the fuzzy rules set that minimize the
total error calculated as:

(5)

Where n is the total training samples number,
xc is the model´s calculated output, and xm
the system´s measured output.
To conduct the first part of the optimization,
fixed parameters were chosen for the
generalized bell membership functions to
create fuzzy sets that evenly divide the input
variable space, for the assumed model case:

(6)

The second stage of the optimization process
aims to find a set of membership-function

∑
=

−
n

s

ss xmxc
1

titiiti saxaax 210)1(++=+

∑

∑

=

=

+

+ =
n

i

i

n

i

tii

t

h

xh

x

1

1
)1(

)1(

Dyna 159, 2009 79

parameters that minimize the maximum error given
by:

(7)

The above mentioned parameters are used to find
the output functions coefficients that minimize the
resulting model’s total error given by (5).
For the second part of the optimization problem the
best set of coefficients is fixed to try to find a set of
parameters for the membership functions that
minimizes the maximum prediction error given by
(7).

4. HETEROGENEOUS CLUSTERS

We define a heterogeneous cluster as one in which
the involved nodes have different architectures and
processing speeds.
If the applied algorithm assumes a homogeneous
cluster (one in which all the nodes have
approximately the same computational power), and
assigns the same amount of work load to each task,
when the algorithm is executed on a heterogeneous
cluster, the nodes with a higher computational
power will have to wait until those that are slower
have finished their processing before being able to
perform migration, resulting on undesirable dead
times on the faster nodes.
The chosen alternative to minimize this
disadvantage is to dynamically determine the
migration period for each sub-population in
dependence of its execution time.
Figures 1 and 2 show the master and slave task
portions of the new proposed algorithm.

Create P sub-populations

for i = 1 to P

 send parameters to sub-population i

for i = 1 to GMAX/MP

 for j = 1 to MR

 for k = 1 to P

 receive T and MR individuals from k

 calculate average execution time TP

 for k = 1 to P

 send MR individuals from k to P-(k+1)

 MP = MP*(TP/T[k])

 if MP > MPMAX

 MP = MPMAX

 Send the new MP to P-(k+1)

Display the individual with higher aptitude as

the solution of the optimization problem

Figure 1. Master task

receive parameters from master

generate randomly initial population

number of cycles C = GMAX/MP

for k=1 to C

 for i=1 to MP

 selection

 crossover

 mutation

 g=g+1

 send T and the MR best-fitted

 individuals to the master

 receive MR individuals from the

 master

 replace the MR worst-fitted

 individuals with the received ones

 receive the new MP

Figure 2. Slave task

With this new approach those sub-
populations with an execution time below the
average perform more iterations of the GA
before the next migration, while those with a
higher than average execution time perform
fewer iterations.
This strategy progressively evens the
execution times of all the sub-populations, so
the waiting times decrease.

5. THE FERMENTATIVE PROCESS

To carry out a fermentative process a
quantity of microorganisms (biomass) are
suspended in a food rich medium
(substratum).
This kind of process presents a highly non-
lineal behavior that responds to a dynamic
system following the general structure [10]:

(8)

where X is the vector formed by the two state
variables [x,s], u is the input variable (Sin),
and b is the constant dilution rate D.
We deal with a model with three input
variables xt, st, and sin that represent the
biomass, substrate, and input substrate
concentration at instant t respectively. The
model must determine the amount of biomass
on the next instant (t+1).
For those processes like the studied case,
where sin remains constant, the terms ai0 and
ai3sin can be consolidated, giving us a
simplified form of the rule base as given by
(1).

),,max(11 nn xmxcxmxc −− K

buXf
dt

dX
+=)(

Castro y Herrera 80

Input variables x and s were divided into three fuzzy
sets giving us a total of nine different fuzzy rules on
the base. This mean we have to find a total of 18
parameters for the antecedent part of the rules and
27 coefficients for the consequent part.
The chromosome uses real representation on a 3 by
9 matrix that corresponds to the 3 output coefficients
that each of the 9 lineal output functions requires.
490 samples were processed in total, taken from 10
different fermentative processes with different initial
conditions.

6. GENETIC ALGORITHM PARAMETERS

Note that by varying the γβα ,, parameters we
vary the shape and position of the membership
functions for the fuzzy sets that divide the input
variables thus we obtain different initial membership
functions within the ranges described by (9).
The chosen parameters for the first phase were:

• Search ranges:

(9)

• Population Size MU=600.
• Maximum generations GMAX=160.
• Tournament selection with tournament size

Z=2.
• Crossing probability PC=0.7

• Uniform crossing parameter λ generated on
(0,1).

• Uniform mutation, with mutation probability
PM=0.2.

• Search ranges: [-7,7] for ai0, [-4,4] for ai1 and
[-2,2] for ai2.

• Migration period MP=20.
• Maximum migration period MPMAX=30.
• Migration rate MR=2.
The chosen parameters for the second phase were:
• Population Size IMU=300.
• Maximum generations IGMAX=60.
• Tournament selection with tournament size

IZ=2.

• Crossing probability IPC=0.7

• Uniform crossing parameter λ
generated on (0,1).

• Uniform mutation, with mutation
probability IPM=0.2.

• Migration period IMP=20.
• Maximum migration period

IMPMAX=30.
• Migration rate IMR=2.

7. RESULTS

Several test where conducted to measure the
quality of the obtained models, as well as the
execution time behavior under different
conditions.
The sample size for each set of conditions
was 200 runs of the algorithm and where
conducted on a heterogeneous parallel virtual
machine with a
fast-Ethernet switch and two types of nodes:

Type a) Pentium IV@2.8 GHz with 1024

KB cache and 512 MB DDR2
RAM@400 MHz

Type b) Pentium IV@2.0 GHz with 512 KB
cache and 512 MB DDR2
RAM@266 MHz

7.1 Quality of the solution

Table 1 shows the error behavior with
various sub-population numbers, where:

Table 1. Error behavior
SP ATE AE AME
4 17.14927 0.03499 0.13239
8 14.61365 0.02982 0.11224

12 13.78273 0.02812 0.10273
16 13.57023 0.02769 0.10423
18 12.92027 0.02636 0.09917

• SP is the number of sub-populations.
• ATE the average total error.
• AE the average per-sample error.
• AME the average maximum error.

The average execution time with the fore-
mentioned parameters and a heterogeneous

6

)(

6

)12)((
6

)(

6

)12)((

1414

1212

minmaxminmax
min

minmaxminmax
min

sskss
s

xxjxx
x

k

j

kj

kj

−
±

−−
+=

−
±

−−
+=

±=±=

±=±=

γ

γ

ββ

αα

Dyna 159, 2009 81

18 nodes cluster was 220 seconds (using a node for
each sub-population).
Figure 3 plots the prediction error of a typical model
generated with 4 sub-populations, figure 4 shows a

comparison of the predicted and measured
outputs and figure 5 plots the prediction error
of a typical model generated with 18 sub-
populations.

Figure 3. Prediction error, 4 sub-populations

Figure 4. Prediction error 18 sub-populations

Figure 5. Prediction quality, 18 sub-populations

7.2 Execution times

To achieve lower run-times, while maintaining
reasonably good solutions the following
parameters were modified:

• Population Size MU=400.
• Maximum generations GMAX=120.

• Migration period MP=15.
• Maximum migration period MPMAX=20.
• Population Size IMU=200.
• Maximum generations IGMAX=30.
• Migration period IMP=15.
• Maximum migration period IMPMAX=20.

Castro y Herrera 82

2

22

d

SZ
n a=

n

SZ
d a

22

=

Over 1000 tests with 18 sub-populations, an
estimated average total error of 14.81098 that
represents an average per-sample error of 0.03023
was obtained; the estimated average maximum error
was 0.08609.
Expression 10 is used to estimate the size of a
sample when determining means over infinite
populations.

(10)

Where n is the size of the sample, S2 is the estimated
variance of the population and d is half the
amplitude of the confidence interval. Using a Za
value of 2.576, that corresponds to a 99% certainty
level we can determine d using expression (11).

(11)

Table 2. Confidence intervals

ATE AE AME
M 14.81098 0.03023 0.08609
S2 8.30321 0.00003 0.00071
d ±0.23473 ±0.00048 ±0.00217

The execution times obtained using a cluster of 9
type (a) nodes are shown on table 3.

Table 3. Homogeneous cluster

Nodes
Execution time

(seconds)
Speedup

1 879 1.00
2 453 1.94
3 340 2.59
6 177 4.97
9 109 8.06

Figure 6 shows the comparative speedup against
lineal acceleration under the above mentioned
conditions.

Figure 6. Speedup

The following times were obtained using the
non-adaptive version of the algorithm on a
heterogeneous cluster:

Table 4. Heterogeneous cluster non-adaptive
version

Nodes
a) b)

Execution time
 (seconds)

Speedup

 1 2448 1.00
 2 1252 1.96
 3 846 2.91
 6 422 5.80

1 8 279 8.77
10 8 141 17.36

The obtained execution times show that type
a) nodes are much faster than type b) ones
but the algorithm shows a quasi-lineal
speedup behavior, because it considers every
node as equal to the rest, therefore it is
unable to take advantage of the faster nodes
added on the later stages to the cluster (in fact
we can observe comparing tables 3 and 4,
that 9 nodes of type b ran faster than 18
mixed nodes). On the other hand, the
adaptive version of the algorithm produced
the following execution times:

Table 5. Heterogeneous cluster adaptive version
Nodes

(a) (b)
Execution time
 (seconds)

Speedup

 1 2454 1.00
 2 1253 1.96
 3 852 2.88
 6 404 6.07

1 8 243 10.10
10 8 100 24.54

It is clear that, when adding faster nodes to
an existing cluster, this version of the
algorithm is able to exploit their higher
computational power unlike the non adaptive
version.
Figure 7 shows the comparative speedup of
both algorithms against a lineal acceleration.

Figure 7. Speedup

Dyna 159, 2009 83

8. CONCLUSIONS

The proposed algorithm is able to generate adequate
solutions for the identification problem.
The presented results show that the quality of the
solution improves as the number of sub-populations
increase; it is also evident that low execution times
can be maintained while increasing the amount of
sub-populations by adding nodes to the cluster.
The speedup tests for up to 18 nodes clusters show
that, at least for this amount of processors, the
algorithm can be scaled without considerable loss of
performance.
It can be observed that when we add faster nodes to
a cluster, hyper-lineal accelerations are obtained
with the adaptive version of the algorithm whereas
the non-adaptive version achieves only quasi-lineal
speedups since it cannot take advantage of the faster
nodes added to the cluster.
The algorithm can be easily adapted for the
parametric optimization of different TSK Fuzzy
models; the scope of application is vast but limited
by the amount of data that needs to be exchanged
between sub-populations for models with a very
large number of parameters and large number of
sub-populations.
However, these limitations can be reduced with the
advent of new networking technologies such as
gigabit- Ethernet.
The real limit for the number of sub-populations that
the algorithm can exploit on fast-Ethernet networks
for this specific problem remains to be empirically
found, since for the moment on test runs with 18
nodes and up to 36 sub-populations that limit was
not reached.
Source code of the application written in C for
GNU/Linux and PVM 3.4 is available at [11].

REFERENCES

[1] NOWOSTAWSKI, M. Y P. RICARDO,
“Parallel Genetic Algorithm Taxonomy”. Third

International Conference of Knowledge-Based

Intelligent Information Engineering Systems, 1999.

[2] CORDÓN, O., ET AL., “Genetic fuzzy
systems : evolutionary tuning and learning of fuzzy
knowledge bases” 2001, Singapore: World
Scientific. xxv, 462.

[3] ZADEH, L.A., Foreword, en
“Genetic fuzzy systems: evolutionary tuning
and learning of fuzzy knowledge bases”, O.
Cordon, et al., Editors. 2001.

[4] HOLLAND, J.H., “Adaptation in
Natural and Artificial Systems” (1975) 6 ed.
2001, Michigan: MIT Press. 205.

[5] MATTSON, TIMOTHY G. ET AL.,
“Patterns for Parallel Programming” 2008,
Addison Wesley. 355.

[6] ALBA, E. y J.M. TOYA, “Analyzing
Synchronous and Asyncrhonous Parallel
Distributed Genetic Algorithms” Future

Generation Computer Systems, 2001. 17(4):
p. 451-465.

[7] ALBA, E. AND M. TOMASSINI,
“Parallelism and Evolutionary Algorithms”.
IEEE Transactions on Evolutionary

Computation, 2002. 6(5): p. 443-462.

[8] CRISTEA T. AND OKAMOTO T.
"Parallelization methods for Neural Networks
on different environments: Advantages and
Disadvantages", Australian Journal for
Intelligent Information Processing Systems,
Elsevier IS/2, Special Issue on Information
Systems, Authors, 1999.

[9] SUNDARARAJAN N. AND
SARATCHANDRAN P. “Parallel
Architectures for Artificial Neural Networks:
Paradigms and Implementations”, 1998,
Wiley-IEEE Computer Society Press, pp409.

[10] HERRERA FERNÁNDEZ, F., ET
AL. “Aplicación de las Técnicas de la
Inteligencia Artificial en un Proceso
Biotecnológico de Reproducción Celular
(Embriogénesis Somática)”. 2003,
Universidad Central "Marta Abreu" de Las
Villas: Santa Clara, Libre. p. 38.

[11] CASTRO LIERA, MARCO A.
http://sistemas.itlp.edu.mx/castroga/biomasa-
full.tgz. biomass model generator source
code 2006, Instituto Tecnológico de La Paz.

