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ABSTRACT: This paper presents a distributed genetic algorithm with dynamic determination of the migration 
period. The algorithm is especially well suited for the on line estimation of a fuzzy identification system parameters, 
using heterogeneous clusters. The results of the optimization of a TSK (Takagi-Sugeno-Kang) system for the 
identification of a biotechnological (fermentative) process including the solution’s quality and speedup analysis are 
presented. Comparative results using static and dynamic migration periods on the genetic algorithm are also 
presented. 
 
KEYWORDS: on-line identification, Takagi-Sugeno-Kang fuzzy model, distributed genetic algorithm, cluster. 

 
RESUMEN: El presente trabajo, propone un tipo de algoritmo genético distribuido con determinación dinámica del 
período migratorio el cual se adapta especialmente para la determinación en línea de los parámetros de un sistema de 
identificación difusa y su implementación en clusters heterogéneos. Se presentan los resultados de la optimización de 
un sistema Takagi-Sugeno-Kang (TSK) para la identificación de un proceso biotecnológico (fermentativo). Se 
incluyen el análisis de la calidad de la solución, la aceleración que se obtiene al agregar nodos al cluster y la 
comparación del desempeño del algoritmo usando un periodo migratorio estático y dinámico. 
 
PALABRAS CLAVE: identificación en línea, modelo borroso Takagi-Sugeno-Kang, algoritmo genético 
distribuido, clusters. 
 
 
1.    INTRODUCTION  
 
The present work addresses two main aspects: the 
collaborative use of a specially adapted Distributed 
Genetic Algorithm [1] that runs on a low-cost 
parallel architecture known as a cluster; and a TSK 
fuzzy system [2] to solve a highly non-linear 
identification problem. 
 
 

When combining fuzzy systems and genetic 
algorithms a synergy is created in which, as 
expressed by Zadeh [3], the main 
contribution of fuzzy logic is what may be 
called the calculus of fuzzy if-then rules, 
while genetic algorithms provide a 
methodology  of systematized random search  
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inspired by evolutionary processes in living species 
and proposed originally by John H. Holland [4]. 
One of our main motivations is the use of a low-cost 
parallel architecture that will allow us to address 
problems that demand a high computational cost 
without the need of acquiring parallel computers 
(shared memory) [5] that are too expensive for most 
educative and other scientific institutions at present.  
Distributed genetic algorithms, also known as 
coarse-grained genetic algorithms and island model 
parallel genetic algorithms, are currently studied as 
one of the more scalable forms of parallel genetic 
algorithms [1,6,7]. 
 
These types of algorithms have been addressed 
having in mind the special limitations of the 
computer clusters when compared with parallel 
computers, particularly, the low inter-processor 
bandwidth. 
 
Currently one of the most popular ways for 
parameter estimation in fuzzy systems is by means 
of artificial neural networks (ANN), however, by 
exploring alternatives for their implementation on 
computer clusters (distributed memory) [8,9] we 
find that due to the nature of the training process of 
the ANN when computing the new weights for a 
neuron, the precedent layers must be known. It turns 
to be complicated to limit the amount of data to be 
transferred between processors, which is the main 
bottleneck.  
 
 
2. THE FUZZY MODEL’S STRUCTURE 
 
Lets assume a TSK model with two input variables, 
x and s with three partitions each, gbell membership 
functions and lineal output functions. 
The rule base for such a model has the following 
structure: 
 

ThenissandisxIf ktjt ΦΦ  

(1) 
 

 
With j varying from 1 up to the number of  fuzzy 
sets that divide xt (three on our case) k varying form 
1 up to the number of fuzzy sets that divide  st (three 
on our case) and i varying from 1 to the number of 
fuzzy rules n on the rule base (nine on our case). 

The gbell functions are of the form: 
 

(2) 
 
 

 
The predicted model´s output is given by: 

 
 
 

(3) 
 
 
 

Where the degree in which each rule is 
fulfilled is calculated using the T operator, 
(usually the product). 

 
(4) 

 
 
 
3. TWO PHASE STRATEGY  
 
The optimization process was divided into 
two stages; the first stage aims to find a set of 
coefficients (ai0, ai1, ai2) for the consequent 
part of the fuzzy rules set that minimize the 
total error calculated as: 

 
(5) 

  
Where n is the total training samples number, 
xc is the model´s calculated output, and xm 
the system´s measured output. 
To conduct the first part of the optimization, 
fixed parameters were chosen for the 
generalized bell membership functions to 
create fuzzy sets that evenly divide the input 
variable space, for the assumed model case:  

 
 

(6) 
 
 
 
 
 

The second stage of the optimization process 
aims to find a set of membership-function 
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parameters that minimize the maximum error given 
by: 

 
(7) 

 
The above mentioned parameters are used to find 
the output functions coefficients that minimize the 
resulting model’s total error given by (5). 
For the second part of the optimization problem the 
best set of coefficients is fixed to try to find a set of 
parameters for the membership functions that 
minimizes the maximum prediction error given by 
(7). 
 
 
4.      HETEROGENEOUS CLUSTERS 
 
We define a heterogeneous cluster as one in which 
the involved nodes have different architectures and 
processing speeds. 
If the applied algorithm assumes a homogeneous 
cluster (one in which all the nodes have 
approximately the same computational power), and 
assigns the same amount of work load to each task, 
when the algorithm is executed on a heterogeneous 
cluster, the nodes with a higher computational 
power will have to wait until those that are slower 
have finished their processing before being able to 
perform migration, resulting on undesirable dead 
times on the faster nodes. 
The chosen alternative to minimize this 
disadvantage is to dynamically determine the 
migration period for each sub-population in 
dependence of its execution time.  
Figures 1 and 2 show the master and slave task 
portions of the new proposed algorithm. 
 
Create P sub-populations 

for i = 1 to P 

  send parameters to sub-population i 

for i = 1 to GMAX/MP 

  for j = 1 to MR 

    for k = 1 to P 

      receive T and MR individuals from k 

    calculate average execution time TP 

    for k = 1 to P 

      send MR individuals from k to P-(k+1) 

    MP = MP*(TP/T[k]) 

    if MP > MPMAX  

      MP = MPMAX 

    Send the new MP to P-(k+1)        

Display the individual with higher aptitude as 

the solution of the optimization problem 

Figure 1. Master task 
 

 

receive parameters from master 

generate randomly initial population 

number of cycles C = GMAX/MP  

for k=1 to C 

  for i=1 to MP 

     selection 

     crossover 

     mutation 

     g=g+1 

  send T and the MR best-fitted     

  individuals to the master  

  receive MR individuals from the  

  master 

  replace the MR worst-fitted  

  individuals with the received ones 

  receive the new MP 

Figure 2. Slave task 
 
With this new approach those sub-
populations with an execution time below the 
average perform more iterations of the GA 
before the next migration, while those with a 
higher than average execution time perform 
fewer iterations. 
This strategy progressively evens the 
execution times of all the sub-populations, so 
the waiting times decrease. 
 
 
5.      THE FERMENTATIVE PROCESS 
 
To carry out a fermentative process a 
quantity of microorganisms (biomass) are 
suspended in a food rich medium 
(substratum). 
This kind of process presents a highly non-
lineal behavior that responds to a dynamic 
system following the general structure [10]: 

 
(8) 

 
where X is the vector formed by the two state 
variables [x,s], u is the input variable (Sin), 
and b is the constant dilution rate D. 
We deal with a model with three input 
variables xt, st, and sin that represent the 
biomass, substrate, and input substrate 
concentration at instant t respectively. The 
model must determine the amount of biomass 
on the next instant (t+1). 
For those processes like the studied case, 
where sin remains constant, the terms ai0 and 
ai3sin can be consolidated, giving us a 
simplified form of the rule base as given by 
(1). 
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Input variables x and s were divided into three fuzzy 
sets giving us a total of nine different fuzzy rules on 
the base. This mean we have to find a total of 18 
parameters for the antecedent part of the rules and 
27 coefficients for the consequent part.  
The chromosome uses real representation on a 3 by 
9 matrix that corresponds to the 3 output coefficients 
that each of the 9 lineal output functions requires. 
490 samples were processed in total, taken from 10 
different fermentative processes with different initial 
conditions.  
 
 
6.      GENETIC ALGORITHM PARAMETERS 
 
Note that by varying the γβα ,,  parameters we 
vary the shape and position of the membership 
functions for the fuzzy sets that divide the input 
variables thus we obtain different initial membership 
functions within the ranges described by (9). 
The chosen parameters for the first phase were: 
 
• Search ranges: 

(9) 
 
 
 
 
 
 
 

• Population Size MU=600. 
• Maximum generations GMAX=160. 
• Tournament selection with tournament size 

Z=2. 
• Crossing probability PC=0.7 

• Uniform crossing parameter λ  generated on 
(0,1). 

• Uniform mutation, with mutation probability 
PM=0.2. 

• Search ranges: [-7,7] for ai0, [-4,4] for ai1 and  
[-2,2] for ai2. 

• Migration period MP=20. 
• Maximum migration period MPMAX=30. 
• Migration rate MR=2. 
The chosen parameters for the second phase were: 
• Population Size IMU=300. 
• Maximum generations IGMAX=60. 
• Tournament selection with tournament size 

IZ=2. 

• Crossing probability IPC=0.7 

• Uniform crossing parameter λ  
generated on (0,1). 

• Uniform mutation, with mutation 
probability IPM=0.2. 

• Migration period IMP=20. 
• Maximum migration period 

IMPMAX=30. 
• Migration rate IMR=2. 
 
 
7.      RESULTS 
 
Several test where conducted to measure the 
quality of the obtained models, as well as the 
execution time behavior under different 
conditions.  
The sample size for each set of conditions 
was 200 runs of the algorithm and where 
conducted on a heterogeneous parallel virtual 
machine with a  
fast-Ethernet switch and two types of nodes: 
 
Type a)  Pentium IV@2.8 GHz with 1024 

KB cache and 512 MB DDR2 
RAM@400 MHz 

Type b) Pentium IV@2.0 GHz with 512 KB 
cache and 512 MB DDR2 
RAM@266 MHz 

7.1      Quality of the solution 

 
Table 1 shows the error behavior with 
various sub-population numbers, where: 
 

Table 1.  Error behavior 
SP ATE AE AME 
4 17.14927 0.03499 0.13239 
8 14.61365 0.02982 0.11224 

12 13.78273 0.02812 0.10273 
16 13.57023 0.02769 0.10423 
18 12.92027 0.02636 0.09917 

 
• SP is the number of sub-populations.  
• ATE the average total error. 
• AE the average per-sample error.  
• AME the average maximum error. 

 
The average execution time with the fore-
mentioned parameters and a heterogeneous 
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18 nodes cluster was 220 seconds (using a node for 
each sub-population). 
Figure 3 plots the prediction error of a typical model 
generated with 4 sub-populations, figure 4 shows a 

comparison of the predicted and measured 
outputs and figure 5 plots the prediction error 
of a typical model generated with 18 sub-
populations. 

 
Figure 3. Prediction error, 4 sub-populations 

 

 

Figure 4. Prediction error 18 sub-populations 

 

 

 

Figure 5. Prediction quality, 18 sub-populations 
 

7.2      Execution times 

 
To achieve lower run-times, while maintaining 
reasonably good solutions the following 
parameters were modified: 
 
• Population Size MU=400. 
• Maximum generations GMAX=120. 

 
 

• Migration period MP=15. 
• Maximum migration period MPMAX=20. 
• Population Size IMU=200. 
• Maximum generations IGMAX=30. 
• Migration period IMP=15. 
• Maximum migration period IMPMAX=20.
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Over 1000 tests with 18 sub-populations, an 
estimated average total error of 14.81098 that 
represents an average per-sample error of 0.03023 
was obtained; the estimated average maximum error 
was 0.08609. 
Expression 10 is used to estimate the size of a 
sample when determining means over infinite 
populations. 

 
 

(10) 
 
Where n is the size of the sample, S2 is the estimated 
variance of the population and d is half the 
amplitude of the confidence interval. Using a Za 
value of 2.576, that corresponds to a 99% certainty 
level we can determine d using expression (11). 
 
 
 

(11) 
 

Table 2. Confidence intervals 
 

ATE AE AME 
M 14.81098 0.03023 0.08609 
S2 8.30321 0.00003 0.00071 
d ±0.23473 ±0.00048 ±0.00217 

 
The execution times obtained using a cluster of 9 
type (a) nodes are shown on table 3. 

 
Table 3. Homogeneous cluster 

Nodes 
Execution time 

(seconds) 
Speedup 

1 879 1.00 
2 453 1.94 
3 340 2.59 
6 177 4.97 
9 109 8.06 

 
Figure 6 shows the comparative speedup against 
lineal acceleration under the above mentioned 
conditions. 

 

 
Figure 6. Speedup   

The following times were obtained using the 
non-adaptive version of the algorithm on a 
heterogeneous cluster: 

 

Table 4. Heterogeneous cluster non-adaptive 
version 

Nodes 
a) b) 

Execution time 
 (seconds) 

Speedup 

 1 2448 1.00 
 2 1252 1.96 
 3 846 2.91 
 6 422 5.80 

1 8 279 8.77 
10 8 141 17.36 

 
The obtained execution times show that type 
a) nodes are much faster than type b) ones 
but the algorithm shows a quasi-lineal 
speedup behavior, because it considers every 
node as equal to the rest, therefore it is 
unable to take advantage of the faster nodes 
added on the later stages to the cluster (in fact 
we can observe comparing tables 3 and 4, 
that 9 nodes of type b ran faster than 18 
mixed nodes). On the other hand, the 
adaptive version of the algorithm produced 
the following execution times: 

 

Table 5. Heterogeneous cluster adaptive version 
Nodes 

(a) (b) 
Execution time 
 (seconds) 

Speedup 

 1 2454 1.00 
 2 1253 1.96 
 3 852 2.88 
 6 404 6.07 

1 8 243 10.10 
10 8 100 24.54 

 
It is clear that, when adding faster nodes to 
an existing cluster, this version of the 
algorithm is able to exploit their higher 
computational power unlike the non adaptive 
version.  
Figure 7 shows the comparative speedup of 
both algorithms against a lineal acceleration. 

 

 
Figure 7. Speedup  
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8.        CONCLUSIONS 

The proposed algorithm is able to generate adequate 
solutions for the identification problem.  
The presented results show that the quality of the 
solution improves as the number of sub-populations 
increase; it is also evident that low execution times 
can be maintained while increasing the amount of 
sub-populations by adding nodes to the cluster. 
The speedup tests for up to 18 nodes clusters show 
that, at least for this amount of processors, the 
algorithm can be scaled without considerable loss of 
performance. 
It can be observed that when we add faster nodes to 
a cluster, hyper-lineal accelerations are obtained 
with the adaptive version of the algorithm whereas 
the non-adaptive version achieves only quasi-lineal 
speedups since it cannot take advantage of the faster 
nodes added to the cluster.  
The algorithm can be easily adapted for the 
parametric optimization of different TSK Fuzzy 
models; the scope of application is vast but limited 
by the amount of data that needs to be exchanged 
between sub-populations for models with a very 
large number of parameters and large number of 
sub-populations.  
However, these limitations can be reduced with the 
advent of new networking technologies such as 
gigabit- Ethernet.  
The real limit for the number of sub-populations that 
the algorithm can exploit on fast-Ethernet networks 
for this specific problem remains to be empirically 
found, since for the moment on test runs with 18 
nodes and up to 36 sub-populations that limit was 
not reached. 
Source code of the application written in C for 
GNU/Linux and PVM 3.4 is available at [11]. 
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