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RESUMEN

El conocimiento de la distribución de probabilidad de los retornos de la tasa de

cambio y la medición de las área extremas son tópicos en la literatura de finanzas

que han sido analizados por procedimientos de estimación paramétricos y no

paramétricos. Sin embargo, un conflicto de robustez surge debido a que estas series

de tiempo son leptocurticas. Más aún, se ha observado que en varias economías en

desarrollo la fase inicial del régimen flexible de tasa de cambio ha presentado

volatilidad alta. En esta investigación se cubren dos objetivos: primero, parametrizar

varias clases de distribuciones que permitan tener una nueva descripción del pro-

ceso generador de la tasa de cambio durante el régimen flexible. Segundo, cuanti-

ficar el área extrema a través del estimador de Hill. Está estrategia requiere que el

número de observaciones extremas sea conocido. Así basado en la teoría de esta-

dísticas de orden se implementa una regla de decisión encontrada por simulación

de Monte Carlo bajo varias distribuciones. El modelo de decisión es formulado de

tal manera que el error cuadrado medio es minimizado.
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 ABSTRACT

Modeling the unconditional distribution of returns on exchange rate and

measuring its tails area are issues in the finance literature that have been studied

extensively by parametric and non-parametric estimation procedures. However, a

conflict of robustness is derived from them because the time series involved in this

process are usually fat tailed and highly peaked around the center. Moreover, it has

been an empirical fact that the initial phase of a freely floating exchange rate regime

has experienced high volatility across many economies. The purpose of this paper is

twofold. First, we try to capture the behavior of the Colombian exchange rate under

the flexible system by fitting special types of distributions in order to obtain a new

insight of the underlying distribution. Secondly, we measure the tail area through the

Hill estimator. This strategy requires the number of extreme observations in the tails

to be known. Therefore, the decision rule of choosing an optimal cutting observation

based on the idea of spacing statistics is implemented by using a Monte Carlo

simulation under different underlying distributions. The decision model is formulated

in such a way that the mean squared error is minimized.

Key words: Tail area; Long-tailed distributions; Monte Carlo simulation.
JEL Classification: C14, C15, C16, C22, C44, E17, F31.

Héctor Manuel Zárate.p65 17/11/04, 11:40 p.m.20



HÉCTOR MANUEL ZÁRATE SOLANO 21

Rev. Econ. Ros. Bogotá (Colombia) 7 (1): 19-43, junio de 2004

I. INTRODUCTION

The methods of modeling the behavior of the exchange rate and drawing
inferences about the tail areas of the distribution have been an issue of great interest
in econometric literature and applied statistics.1  As with stock returns, there is a
consensus on the stylized fact that the empirical distributions of exchange rate
returns are fat-tailed and more peaked around the center than the normal distribution.
Combination of these two facts is known in the distributional theory as leptokurtosis.
Recent studies suggest that several empirical distributions that seem to capture the
properties of exchange rate returns, work as appropriate data generating functions.
These kinds of distributions can be classified into two broad types: stable Paretian
and random summation stable distributions.2

On the other hand, the simplicity to obtain the tail area using the Hill estimator has
been the source of a wide range of applications in many areas of economics such as
monetary policy, insurance claims and income distribution. However, its
implementation requires the choice of a number of extreme order statistics r from a
sample of size  n. There are different approaches in selecting this cutting observation
such as: the Bayesian framework, the likelihood techniques and Hill’s alternatives.
Recently Hsieh (1999) developed a procedure of choosing an optimal  r  based on the
idea of spacing statistics and on a decision rule under the squared error loss function.

The plan of this paper is as follows: First, we describe the data and usefulness of
modeling and measuring the tail of exchange rate returns. Secondly, we study the
main characteristics of the distributions involved in modeling the flexible exchange
rate return. Then we model the unconditional distribution of returns on exchanges
rates under these kinds of parametric distributions for the flexible system implemented
in this country since August-1999. In section 3, we applied the decision model and the
optimal decision rule to choose the cutting observation through a Monte Carlo
simulation analysis. Therefore, we applied the optimal decision rule to currency
exchange rate returns and estimated the upper tail. Finally, we present the conclusions
and some recommendations.

1 Blackwell and Hodges started measuring the tail area of convolutions of distributions.
Wallace used the normal distribution to approximate the tail area for t and chi-square
distribution. Approximations were extended later to the exponential family and for dis-
crete and continuous cases such as: normal, binomial, gamma, and beta. Lindsay (1989)
provided a mathematical instrument based on moment spaces of unknown mixed distribu-
tions. Hill (1975), Weissman (1985) developed general approaches without assuming a
specific global parametric form but based in fitting a suitable parametric model or a Zipf
form to a few of the largest or smallest order statistics. Dumouchel (1983) evaluated its
robustness based upon the stability property of the distribution and suggested a robust
procedure to estimate and compare tail shapes. Jureèková, Koenker y Portnoy (2001)
studied the tail behaviour of the least-squares estimator in the linear regression model.

2 Other alternatives used frequently in empirical work are: The Student t  distribution and
the mixture of normal distributions.
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II. ¿WHY MEASURE THE TAIL AREA

OF THE EXCHANGE RATE RETURNS?

Knowledge of the unconditional probability distribution of the exchange rate returns
has important finance and economics applications in situations where uncertainty related
to exchange rate movements must be measured. For example, analysis regarding the
effects of exchange rate volatility on international trade and capital mobility, models of
foreign exchange transactions costs, mean-variance analysis of international assets
portfolios, studies of exchange rate efficiency, or pricing of options on foreign currencies.
Furthermore, the inflation targeting framework follows the exchange rate dynamics.
Finally, we must take account of recent evidence suggesting a strong correlation between
nominal and real exchange rates under a floating rate system.

Summing up unpredictable changes in exchange rate has pervasive effects for
macroeconomic stabilization, with consequences for prices, wages, interest rates,
production levels, and employment opportunities. These facts have direct or indirect
implications for the welfare of economics agents. Frequently a measure of dispersion
such as the variance of exchange rate changes is used to account for the uncertainty, and
the implementation of some parametric models based on normal assumptions is typically
exploited. However, it is now generally accepted among economists in this field that
short term foreign currencies are fat tailed behaved and more peaked around the origin.3

The α- area of the tail of a distribution is also analyzed in this context as a measure
of the extreme(?) behavior of exchange rate movements and is related to the fourth raw
moment.4  By using a direct estimation of α we also test for regime switches affecting
changes of the distribution of exchange rates over time. Thereby, the economic
interpretation when α is increased is that extreme exchange rate changes have become
less frequent over time. Thus, the instability of the exchange rate over time can be

tested through the hypothesis 0 : 2H α < . Hence one may wonder whether the change

of regimes or international environment has led to changing the tail of the distribution.
Thus, we could match the effect of the changes under the stability test.

2.1. Data Description

In applied work with exchanges rates, returns are preferred to levels when there is a
high frequency data. The main reason is that investors compare returns rather than levels
and capital movements are the prime cause of short run exchange fluctuations. The

3 It means that a distribution has fatter tails, relative to the normal distribution.
4 This moment gives information about kurtosis. While in the parametric framework the

tail area can be calculated through ( ) ( )
x

x f x dxα
∞

= ∫ , the non- parametric one estimates

the heaviness of the tail without assuming a particular global parametric form.
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stylized facts of exchange rates can be summarized as follows: the logarithm of exchange
rates is usually non stationary (Fig 3). This fact may cause problems of spurious correlation
unless proper care is taken. In contrast, returns are stationary (figure 4) and also exhibit
little serial correlation (fig 5). Kurtosis is significantly different from zero. In general,
sample moments of returns imply lack of skewness for freely floating currencies.

The basic data for our analysis consists of the daily exchange rates (in terms of the
U.S. dollar), which cover the period since the floating exchange rate system started.
Thus, the whole sample goes from September 29-1999 to October 10-2003 excluding
holidays. We calculate the rate of change by taking the logarithm difference between
the close of two successive trading days.5

For reference purposes, we record in the table and figures below some basic sample
statistics. Shown in table 1 are: the sample standard deviation (volatility), the sample
skewness, the sample normalized kurtosis and the quantiles of highest observations.

Table 1

Sample Statistics for Daily Returns

Std. Deviation Skewness Kurtosis 99% 95% 
0.47 0.59 4.10 1.41 0.86 

Figure 1

Box Plot for Returns

At a glance a boxplot shows the location, spread, and skewness of the data, along with observations
that may be outliers. The bar across the box at the median summarizes location; the length of the box
shows spread and the relative position of the median provide an indication of skewness.
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5 Rt = 100*ln(tct/tct-1), where tc  is the official exchange rate.
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Figure 2

Upper Tail Percentile Window
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Figure 3

Daily Official Exchange Rate
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Figure 4

Daily Returns
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Figure 5

Scatter Diagram for Returns
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III. MODELING THE DISTRIBUTION

OF EXCHANGE RATE TIME SERIES

It is believed as an empirical fact that the distribution of exchange rate returns is
usually fat-tailed and more peaked around the origin than the normal one. Various
statistical probability distributions seem to share these features: the student t

distribution, the mixture of two normal distributions,6  the stable Paretian distributions
and the random geometric summation stable distributions.7  In this section, we descri-
be the main characteristics of these kinds of distributions and compare them with the
empirical distribution built with non-parametric fitting that serves as a benchmark.

Figure 6

Estimated Normal and Empirical Density for Exchange Rate Returns
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3.1. Stable Paretian distributions8

These kinds of distributions have several theoretical properties.9  They are stable
with respect to addition and scaling which implies the same shape over different
periods. This property is relevant in finance: If weekly returns are the sum of daily

6 This fact allows enjoying the nice and useful normal properties.
7 This family covers distributions such as: Laplace and Weibull.
8 From which the lower the exponent the fatter the tails are. These distributions fit nicely

the ancient Law of Proportional Effect proposed by Robert Gibrat. Its main assumption is
that the exponent does not change when observations are summed. Moreover, the implica-
tions of these kinds of distributions are related with the exact amount of tail-fatness that
is involved. Summing up, the sum stable laws are also related with the additive property.

9 “The only way the sum can get large is by one of the summands getting large”.
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returns, then weekly returns have a stable distribution with the same tail index as the
daily returns. They are flexible in fitting exchange rates and almost all the studies take
into account this kind of distributions.

More specifically, let X
1
, X

2
,... X

n
 be a random sample with the same distribution

function F.  F is Paretian stable if there exist constants a
n
 > 0 and nb R∈  such that for

any n

1 2 1( ... )
d

n n na X X X b X+ + + + = . Where d means distributed.

The characteristic function10  has the explicit representation:

exp{ | | [1 ( ) tan ] }, if 1
2( )

2exp{ | | [1 ( ) ln | ] }, if 1

itx
c t i sign t i t

e dF x
c t i sign t t i t

α α παβ δ α

β δ α
π

 − − + ≠= 
 − + + =

∫

Where  ( )sign t =

1 if 0
0 if 0

1 if 0

t
t
t

>
 =
− <

The characteristic exponent ( )0 2α α< <  is the index of stability and can also be

interpreted as a shape parameter; ( 1 1)β β− ≤ ≤  is the skewness parameter;

( )Rδ δ ∈  is a location parameter; and ( 0)c c >  is the scale parameter.

The stability property of a distribution plays an important role in measuring the area
of the tail. It is based on the characteristic that a quantity may have a stable distribution
if it can be thought as the sum of independent effects. In other words, the iid variables

iX  have a stable distribution with index α if 1 ... nX X+ +  has the same distribution as:

1/
1, 0 2n n Xαδ α+ < ≤ . If 2α =  then X is distributed normal, whereas if 2α < the

distribution is called Stable Paretian due to the fact that the tail probabilities are quite
approximated to those of the Paretian probability distribution in which

( ) ,P X x kx as xα> = → ∞ .

10 The density is determined uniquely by the characteristic function. Regularly varying:

( ) xG x e
β−= = ( )L x

xα  where L  is slowly varying, this is: ( ) 1( )
L tx

L x →  as x → ∞  for all t ; for

example this covers Pareto and log-gamma distributions.
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Stable distributions have nice properties and provide parameters of location, scale and
skewness. If a stable distribution with α < 2 is a good candidate to explain data, therefore,
the property P (X > x) = kxα is used to estimate the probability of extreme deviations and
it is used as a good indicator of tail behavior. In this case the maximum likelihood
estimator will have an asymptotically normal distribution with mean α  and variance
determined by the Fisher Information frontier.

Figure 7

Estimated Gamma and Empirical Density for Exchange Rate Returns
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3.2. The geometric summation model and some

of its properties

The idea underlying the geometric summation model is to allow for the fact that
financial markets may with some small probability change their characteristics in any
given period.

To state the geometric summation stable model formally, let X
i
 be the change of an

exchange rate during the period  t = t
0
 + i. In each period we expect the occurrence of

an event that significantly changes the characteristic of the return process. Let T (p) be
“the number of periods after which such an event is expected to occur”. Therefore, we
assume that T (p) is an independent random variable geometrically distributed. So, its
probability function is given by:

1Pr{ ( ) } (1 ) ,kT p k p p−= = − k=1, 2,

Héctor Manuel Zárate.p65 17/11/04, 11:40 p.m.28
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The geometric sum 
( )

1

T P

P I
I

G X
=

= ∑  represents the accumulation of the X
i
’s up to the

event at time t
0
 + T(p), which means the total change of the exchange rate over that

period of time. The distributions that belong to this family are: Lognormal, Weibull
and Laplace.11

The use of random summation stable distributions has been proposed recently as
an effective alternative in financial modeling. The main attribute is that they are
stable under different underlying probability schemes.

Figure 8

Estimated Log-normal and Empirical Density for Exchange Rate Returns
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11 Lognormal: the distribution of Ueµ σ+  where U  is standard normal. Weibull with decreas-

ing rate, ( ) xG x e
β−=  with 0 1β< <  where ( ) 1 ( )G x G x= −  is the tail.

Weibull: 
1 exp{ }, 0

( ; , )
0 0

x si x
F x

si x

αλ
α λ

 − − ≥
= 

<

Laplace: | |( )
2

x uG x e duλλ −

−∞
= ∫
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Figure 9

Estimated Weibull and Empirical Density for Exchange Rate Returns
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3.3. Goodness of fit Tests

A goodness of fit test is a statistical hypothesis test, that is used to assess formally
whether the observations are an independent sample from a particular distribution

with distribution function F̂ . That is, a goodness of fit test can be used to test the

following null hypothesis:

0
ˆ:H The exchange rate returns come from the distribution function F 12

Kolmogorov-Smirnov Tests. Compare an empirical distribution function with
the distribution function of the hypothesized distribution.

ˆsup{| ( ) ( ) |}n nD F x F x= − . A large value of nD  indicates a poor fit.

Anderson-Darling Tests: This test is designed to detect discrepancies in the tails
and has higher power that the K-S test. The statistics is defined by:

12 As usual in the folklore of statistical science failure to reject 0H  should not be inter-

preted as “accepting 0H  as being true”.
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2 2 ˆˆ[ ( ) ( )] ( ) ( )n nA n F x F x x f x dx
∞

−∞

= − Ψ∫ . Where 
1( ) ˆ ˆ{ ( )[1 ( )]}

x
F x F x

ψ =
−  is

the weight function. A large value of 2
nA  indicates a poor fit.

Table 2

Evaluation of Candidates Models

*The sum stable distributions are the best candidates.

IV. LET THE TAILS SPEAK FOR THEMSELVES.

Given the dispute over the specific distribution and the fact that returns are fat
tailed we use a robust procedure based on Zipf’s distributions to measure the upper tail
of the distribution.13  This distribution is the discrete version of the symmetric stable
distribution class.

A natural and effective way of modeling the tail behavior is looking before at the
data and letting the tails speak for themselves. Its main characteristic is that inferences
about tails do not depend on the center of the distribution. Thus, there is not a global
distribution that governs the behavior of the tails. Let X(1), X(2) ... X(n), from the

distribution F with algebraic tail form 1 ( ) ~F x Cx α−−  as 0x → . Where X(1) is the

reversed order statistic. α is called the upper tail index. Hill introduced an estimator
(Hill, 1975) derived from conditional maximum likelihood considerations on the
descending order statistic defined as:

( )
( )

( 1)1

1

ln( )

r
H i

r
ii

r
xi

x

α

+=

+=
∑

Model S K−  A D−  
Normal 0.10552 47.4159 
Weibull 0.93143 160.8622 
Gamma* 0.07541 27.3441 

Log-Normal 0.07946 35.3716 

13 The law, introduced by the linguist George Kingsley Zipf, describes the relation between
the data value and its order in a time series accordingly ordered. Zipf´s law can be

stated as: ( )rrx =  constant, where r is the rank of the observation and ( )rx  is the

magnitude or the frequency of the occurrence. The main characteristics of this are a
few elements that score very high, a medium number of elements with middle scores and
a huge number of elements that score very low.
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Where r + 1 is the number of observations above the threshold D. This formula
requires a choice of  r.

4.1. Procedure to choose the cutting observation r

A variety of analytical techniques can be used in finding the number of extreme
order statistics. A general methodology proposed by Hill is based mainly on the Renyi
representation theorem, which states that for i = 1, 2, ..., n .

( ) 1 1 2[ ( ... )]
1 1

i iee ex F Exp
n n n i

−= − + + +
− − +

Where ie  are independent exponentially distributed random variables, each one

with expectation 1. Thus, using the fundamental result in the theory of rank statistics

that ( )F X U≈  and logU e≈ . Inverting and solving for ie

1 ( )( 1)(ln ( ln ( )j j
je n j F X F x−= − + −

By definition (0)( ) 1F x =  and j=1, 2,…, n .

Assuming ( ) ~ 1F x Cx α−−  for x D≥  with D unknown, Hill proposes to construct

random variables ( ) ( 1)log logi i
iV X X += −  where ( )iX  is the thi  reverse-order statistic

and (??) the tail area can be calculated as: 
1 1

1
( )

r

r i
i

r iVα − −

=
= ∑ . Summing by parts we

can express 1ln( / )i i
iV X X +=  for 1, 2,..., 1i n= − .

 It follows that conditional upon ( 1)rX D+ ≥ , 1i n iiV eα − +=  for 1,2,...,i r= . The

choice of 1r +  is crucial to know the behavior of iiV . If it is small then iiV  follows

an exponential distribution with parameter α  for 1, 2,...,i r= .

On the other hand, iiV  show a systematic difference from the exponential

distribution. Hill proposes some methodologies of estimating the cut observation, r .

First, a general frequentist approach, which tests the hypothesis that iiV  comes from

an exponential distribution for i = 1, 2, ..., r. The chi-square distribution is used as the
appropriate theoretical distribution which decides if the hypothesis is accepted for a
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particular r. Thus, we can increase r  step by step until we do not find enough evidence
to accept the hypothesis that iV

i
  follows an exponential distribution. Furthermore,

Hill proposes other test statistics as measures of discrepancy:

( ) 2 1 2
0 1

( )rr
i oi

H iVα α −
=

= −∑

And 
2

( )
1 1
(ln( ) ln( )]r rr

i ii i
K iV r iV

= =
= −∑ ∑

Where:

1 1
( ) ( 1)

0 0 1 1
( ) ln lnr r i r

ii i
r r iV r Y r Yα α

− −
+

= =
   = = = −   ∑ ∑ .

The distributions of the statistics, conditional upon ( 1)rY D+ ≥  can be derived.

Hsieh similarly looked at a variant of the above formulation and proposed a robust
procedure to find r. The tests statistic is:

2
( ) 2 1 2 1

0 0 2
1

( )
( )

r
r

ir i
i

i

e e
H iV

e
α α − =

=

−
= − = ∑∑

which measures the discrepancy between the underlying distribution and the
exponential distribution. The idea of this procedure for choosing the optimal r is to
test the hypothesis that iV

i
 has an exponential distribution for i = 1, 2, ..., r by using the

statistic H(r). If the hypothesis is accepted at a particular r, then r can be increased until
the evidence to accept the hypothesis is not enough. Hsieh developed a systematic
methodology to implement this test statistic (Hsieh 1999) through a Monte Carlo
simulation study. We adapted the optimal rule for determining r under specific
distributions and sample size.

4.2. The optimal decision rule

Decisions problems are well-defined by a set that contains: an action space A, a

parameter space Θ , and a loss function :L Ax RΘ → . Under this framework the tail

index represents the true state of nature, thus α θ∈ , the action space set, formed by all
possible actions that a statistician can take for a given sample X = x is given by

{ }: 2 1r
HA r nα= ≤ + ≤  which is a set of all Hill estimates for a known sample of size n.

 The decision function (rule) is determined by 
'

( ) r
s HXδ α=  where

{ }{ }' max 2, min : 1Hr r sφ= > − . s  is a predetermined decision parameter and
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its choice is based on the tradeoff between the variation and bias in the estimates.

The statistician must choose the parameter S taking into account that the risk function

is minimized.14

4.3. Monte Carlo analysis

We perform a Monte Carlo simulation experiment suggested by Hsieh in order to

find the optimal S.15  Through this experiment we obtain the value of α under the

underlying Pareto, log normal gamma and Weibull distributions and for our specific

sample size. Then, we calculate the risk function that is minimized, which in turn

allows us to formulate s  as a function of the sample size. Finally we obtain the

decision rule. The simulation process is described below:

Parameter space

{ : 1.0, 2.0(.1)}α αΘ = = , which means that α varies from 1 to 2 with a bean

of 0.1

Choice of S:

{ : .1.0,3.0(.1)}s sΨ = = , which means that s  varies from 0.1 to 3 with a bean

of 0.1.

For a fixed α we generated k random samples of size n from the chosen distributions

F
l
. Given a fixed S and the ith random sample, the decision rule 

' '( ) ( )( ) i ir r
s i Hx α α∂ = =

is applied and 
' min{ : }i Hr r sφ= > . Thus, the Hill estimate , 1,2,...i i kα =  is

calculated and evaluated to respect to different loss functions. The process is repeated

for each value of s  and the optimal decision S is chosen to one that minimizes the risk

of s∂  at α .

Tables in the Appendix A shows the risk, ( )sR α  at s=.1, 2.0 (.1) for Pareto random

samples of different sizes. The value of s  is calculated fitting the OLS estimator on

the optimal value of S as a function of the sample size. We obtain for this specific

14 The Risk function is given by: ( , ( )) ( , ( )) ( , ( )) ( / )XR X E L X L x f x dxα δ α δ α δ α= = ∫ . In this case

the loss function ( , ( ))sL Xα δ  is defined on the product space xAΘ .
15 We would like to point out that the pXrice we have to pay for using estimators that come

from simulation techniques is that the limiting distribution and the rate of convergence
of the estimator are unknown.
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sample size the value of the parameter that should be chosen by the statistician under
the rule:

S* = 1.57

4.4. Measuring the tail area of the flexible exchange rate return

In this section we calculate the amount of tail-fatness of the daily exchange rates
returns based on the decision rule obtained previously. Table 1 shows the tail index
estimation results from the rule. We reported: the number of observations, r̂ +1, the tail

estimate ˆ r
Hα , the estimated cutoff point D̂  and the standard deviation. The rule chooses

r + 1 = 72 as the cut observation. Thus, the estimation of the tail is 72 2.56Hα =  and the

threshold above which the algebraic tail is valid is estimated above the return D̂ = 0.62.

Table 3

We can test for H
0 
: α < 2  against the alternative H

1 
: α > 2 on the basis of the

asymptotic normality. At the 5 percent significance level the asymptotic confidence
interval is given by [1.92, 3.17]. Thus, H

0
 is not rejected. Therefore, returns are clearly

fat-tailed and the currency is highly volatile.

Figure 10 displays the estimation of the tail area as a function of the of the extreme
order statistics r.

Figure 10

Optimal Decision Rule and Hill Estimates of Exchange Rate Returns

Tail index estimation 
The standard deviation is calculated with the formula 

( 1) /( 1)r r rα + −  

n  1r +  D̂  α̂  std 
498 72 0.62 2.56 0.31 
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V. CONCLUSIONS

The paper focuses on two main issues related to the behavior of the Colombian
flexible exchange rate returns: modeling the underlying distribution and measuring
the amount of tail-fatness. First, we have fitted various candidate distributions to
model the daily returns for the period in which the currency has floated freely. The
change from a controlled exchange regime to a flexible one has always caused a
period of high volatility during the beginning of the new period according with the
international experience.

 In this research we found that some distributions nicely fit the center of the
distribution. However, the family of symmetric stable Paretian distribution has the
best fit and dominates the other alternatives. The distributions of the geometric family
under consideration are thin tailed and not capable of capturing the characteristics of
the returns. The goodness of fit, measured in terms of Kolmogorov and Anderling tests
shows the results. The normal distribution which is the model extensively used in
finance appears to be very inappropriate for modeling return of exchange rates.

Future work in this topic will examine the fitting of other members of these families.
It is also possible to explore other views which presume that the data come from
distributions that vary over time. Thus, more information will lead us to test the iid
hypothesis and to find distributions across days of the week in order to set appropriate
statistical properties of the exchange rate time series. The results also suggest the
modeling of conditional distribution of returns as residuals of an ARMA model.

Based on the optimal decision rule a practical estimation of the number of extreme
order statistics required in the computation of the Hill estimator is extended to some
special distributions. A statistical test of discrepancy and the moment space are used
according to Hsieh to find the optimal decision parameter, which in turn sets the
extreme cut observation and the threshold value. It is noted that the statistician should
choose the decision parameter. The estimation is achieved from a Monte Carlo
simulation strategy. The results indicate that the currency at the beginning of the
flexible regime is highly volatile.
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APPENDIX B

 This section contains a brief summary of some of the most popular techniques
used until now to draw inferences about the area of tail distributions. Even though
there are variations and improvement on some of them, the purpose is to summarize
the basic ideas employed in the task of estimating these kinds of probabilities.

B.1. Ruin probabilities

This topic is of importance in areas such as reliability, telecommunications
systems and insurance risk. In the estimation process the Monte Carlo simulation is
widely used to estimate probabilities, expectations or distributions that are not
analytically available. Also some statistical methods involving order statistics are
extensively used. Distributions under the risk theory can be classified into two

groups. Light tails distributions which means the tail ( ) ( )sxB x O e−=  for some s>0.

Thus, the moment generating function is finite. In contrast ( )B x  is heavy tail if

( )B x = ∞  for all s>0. Light tails include Exponential, Gamma, Hyper-exponential.

Heavy tails distributions include Weibull, Pareto, Loggama, mixtures of exponentials,
the sub-exponential class of distributions and distributions with regularly varying
tails.1 The main objective of this approach is to determine the probability that the

Value tR  drops below zero given its time evolution. Thus, ( , ) (inf 0)tu T P Rψ = <

B.2. Exponential Framework

Considering the method for tails of distributions that look exponential1 ,, a general
approach is derived for continuous distributions from the estimation of the function

( )k x  and its correspondent derivative (Gross J and Hosmer D): If X is an exponential

random variable then:

2 '( ) ( ) / ( )
x

f y dy f x f x
∞

= −∫
Where ( )f x  and ' ( )f x  are the density and its first derivative respectively. Then

there exists a function ( )k x  such that the tail area can be described by:

 
2 '( ) ( ) ( ) / ( )

x

f y dy k x f x f x
∞

=∫

1, The tail of a distribution is said to be regular varying with exponent α  if 
( )( ) ~ L xB x
xα ,

x α→  and L(x) is slowly varying, i.e. satisfies 
( ) 1,
( )

L xt x
L x

→ → ∞ . Examples: Pareto, Loggama,

and pareto mixture of exponentials.
1, Include standard normal, t, Poisson, binomial, Chi-squared
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Where ' 2( ) ( ) ( ) / ( )k x S x f x f x=  and ( ) ( )
x

S x f y dy
∞

= ∫

The investigation of ( )k x  and its derivatives are the key element of approximating

tail areas of continuous distributions. For the case of discrete distributions, one presu-
mes the geometric distribution in which

2 /x m x x
m x

p p p
∞

=
= ∆∑

 Where 1( )x x xp p p +∆ = − . The sum of the tail probabilities x m
m x

p
∞

=
∑  follows a

geometric pattern in the sense that

2( ) /x m x x
m x

p d x p p
∞

=
= ∆∑

Where:

2( ) ( ) /x m x xm x
d x p p p∞

=
= ∆∑

and its differences are the basis of approximating tail areas for discrete distributions.

B.3. Moments only for tails

Despite the bad reputation of the method of moments when comparing relative
efficiency with maximum likelihood estimation, it offers a powerful set of mathematical
tools in determining the tail of an unknown mixing distribution. Some special families
of distributions have been catalogued as “quadratic variance property” given that the
variance is a quadratic exponential function of the mean (normal, gamma, Poisson,
Binomial, binomial, negative binomial, hyperbolic secant). In the set up of this problem
a random variable has a mixture distribution relative to a parametric family of

distributions { : }Fθ θ ∈Ω

( ) ( ) ( )QF x F x dqθ θ= ∫ .

Where Q is the mixing distribution. The pth moment matrix

1

1 2 1

2 3 2

1 2

1 . .
. .
. .

. . . . .
. .

p

p

pp

p p p

m m
m m m
m m mM

m m m

+

+

+

 
 
 
 =
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The window function ' 1 1( ) { ( ) ( )}p p p px V x M V xω − −= . Where ( )pV x  is the power vector

2( ) (1, , ,..., )p
pV x x x x= . The main result comes from the fact that given two arbitrary

distributions F(.) and G(.), which is the target, they have the same first 2p moments:

( ) ( )i i im F m G m= =  for 0,1, 2,..., 2i p= . With 1om = . Then, for all values of x ,

( ) ( ) ( )pF x G x xω− <= .

B.4. The parametric solution inside the tails

The setup of the typical parametric solution is based on the shape of the likelihood

of some appropriate functions. Thus, a distribution function that satisfies

( ) ~ {( ) / } ,F x x xαµ β µ− ↓  where µ  is the threshold parameter and ( 0, 0)α β> >  are the

scale and shape parameters respectively. The log-likelihood function having the first

k order statistics if 1 2 ... kX X X< < <  is given by:

1
( , , ) ln ln ( 1) ln(( ) / ) (( ) / )k

i ki
l k k X n X αα β µ α β α µ β µ β

=
= − + − − − −∑

For ,α µ  fixed the maximum likelihood estimator of β  is given by:

1/( / ) ( )kn k Xαβ µ= −

With corresponding maximized likelihood:

1
( , , ) ln ln ln ln( ) ( 1) ln( )k

k ii
l k k n k k k X X kα β µ α α µ α µ

=
= − + − − + − − −∑

Setting / 0l α∂ ∂ =  and / 0l µ∂ ∂ =  respectively to obtain a system of simultaneous

equation that can be solved iteratively to estimate α and µ . But when 1α <  there is no

consistent solution of the likelihood. If no local maximum exists the likelihood

inference fails so we must use other estimators.

B.5. Log-spline Density Estimation

This method captures the tail of a density based on the idea of modeling the

logarithm of a density by a spline function and then estimating the parameters of the

model using maximum likelihood (Kooperberg and Stone (1991)). The logarithm of

the density function is modeled by a restricted spline function

1 1 1 1log ( ; ) ( ) ( ) ... ( )J Jf x c B x B xθ θ θ θ − −= + + + .
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Where

 1 1( ,..., )T
Jθ θ θ −= . Such that 1 10, 0Jθ θ −> >

1 1 1 1( ) log[ exp{ ( ) ... ( )} ]J jc B x B x dxθ θ θ − −= − + +∫
The log-likelihood function corresponding to the log-spline family is:

1
( ) log ( ; )

n

i
i

l f Xθ θ
=

= ∑

Which is strictly concave and therefore can find the unique global maximizer. The
automatic determination of knots can be done by an automatic knot selection technique.
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