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Abstract. In this paper we introduce a financial market model based on continuous time
random motions with alternating constant velocities and jumps, which occur with ve-
locity switches. Given that jump directions match velocity directions of the underlying
random motion properly in relation to interest rates, in this setting will be free of arbitrage.
Additionally, we suppose also the interest rate depending on the market state.

The replicating strategies for options are constructed in detail, and closed form formu-
las for option prices are obtained.
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Resumen. En este articulo introducimos un nuevo modelo del mercado financiero basado
en movimientos aleatorios en tiempo continuo con velocidades constantes y alternantes.
Este movimiento esta complementado con saltos que ocurren cuando se presentan
cambios de la tendencia. Este modelo esta libre de arbitraje, si la direccion del salto es
opuesta a la diferencia entre tendencia y tasa de interés. Suponemos que las tasas de
interés dependen del estado del mercado. Las estrategias repicables son construidas
en detalle. Las formulas completas para los precios de las opciones son obtenidas.
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1. Introduction

Option pricing models based on the exponential Brownian motion have well known
limitations. These models have infinite velocities of propagation, independent log-
returns increments on separated time intervals, among others. Moreover it is widely
accepted that financial time series are not Gaussian.

It seems rather natural to replace in the basic models a Brownian motion by a finite
velocity random evolution (with statistically dependent increments). However, it is
conventional that such substitution creates arbitrage opportunities (see e. g. Ratanov,
2004). The main cause of the arbitrage here is the persistent character of such random
motions. To avoid arbitrage possibilities, we propose a model with jumps occurring
every time a tendency changes.

Cox and Ross (1975, 1976) and Merton (1976) initiated the research of the option
pricing models with jump diffusion processes, but jumps introduced in these models
are usually motivated by empirical adequacy. In the present paper the use of jumps is
motivated not only by the adequacy problems, but also by the possibility to avoid an
arbitrage as well.

More specifically, we suppose the market can have two possible states, alternating
at independent and exponentially distributed time intervals, which form a continuous
time Markov chain. The interest rates r, and the velocities ¢, oflog-returns of the risky
asset are defined by the current market state. Moreover we suppose that log-returns of
arisky asset follow the so-called telegraph process (see Kac, 1959), with jumps occur-
ring each time of velocity changes. Thus we have a complete market model, and hedg-
ing is perfect. Unfortunately, the underlying process is not a Lévy process, and therefore
the general theory does not work.

It is known (see Kac, 1959, 1974; Ratanov, 1997) that, at least in the homogeneous
setting, the underlying process converges to Brownian motion under suitable rescaling.
More precisely, we prove that this model converges to the Black-Scholes model if the
size of jumps vanishes, but the velocities of the asset’s return and the frequencies of
jumps go to infinity in a particular manner.

The paper is organized as follows. Section 2 presents inhomogeneous telegraph
processes and martingales related to the telegraph evolutions and to the driving inho-
mogeneous Poisson process. Here, also the Girsanov theorem for the telegraph pro-
cesses with jumps is obtained. In Section 2.3 we introduce the main model: for that
purpose, we consider a friction-free financial market, where a risk-free (bond) asset has
two constant return rates », depending on the market’s state, and a risky asset price is
given by the stochastic exponential S,E, (X +J). Here X = X (¢) is the integrated tele-
graph process and J = J (¢) is a pure jump process. The common inhomogeneous
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Poisson process drives both of them. The martingale measure for the asset price process
is constructed. In Section 3 we derive the fundamental equation for the option price and
the perfect hedging strategy formulas. The left continuity in time of the portfolio dy-
namics is proved as well. The closed formulas for the price of the standard call option are
presented in Section 4. These formulas are analytic tractable and combine the outlines of
the Black-Scholes and Merton formulas. Appendices contain the proof of the conver-
gence to the Black-Scholes model and the exact formulas for the distributions of the
underlying processes, which are necessary for the call option price formula.

This paper exploits the ideas presented by the author at the 2nd Nordic-Russian
Symposium on Stochastic Analysis Ratanov (1997) and continues the author’s previ-
ous papers devoted to the telegraph model, Ratanov (2004, 2005).

2.Inhomogeneous Telegraph Processes and Martingales. Dynamics
of the Basic Assets and the Martingale Measure

2.1. Telegraph and Poisson Martingales

The state of the market is denoted by 6 =o(¢), >0 with values +1 such that

P(o(t+At)=1|0(t)=-1)=A At +0(A?),

P(o(t+A)=-1|o(t)=1)=AAt+0o(Ar), At —0.

Here A, A, >0 and o(0)=¢&, where £ is a random variable with two values +1.
Time intervals 7, -7,,, j=1, 2, ... (7,=0),separated by instants 7,, j=1, 2, ...
of value changes of ¢ are independent and exponentially distributed random vari-
ables. Denote by N(¢) the number of value changes of ¢ intime ¢,i.e. o(r) = E(-1)"".

The process N = N(¢) is an inhomogeneous Poisson process with alternating param-
eters A, .

Let ¢ <c,, h, h_bereal numbers. We denote

V(6) =y X(0)=[V(s)ds @.1)
0
and
N(1)
J(@) = Zhw/_), 120. 22)
Jj=1

The process (X, V) is called a (inhomogeneous) telegraph process with states
(¢, A)and (c,, 4,).Theprocess J=J(¢), t=0 isapure jump process with jumps
at the Poisson times 7,, j=1, 2, ... For A=A, and —c_=c¢, =c, processes
V(ty=Ec(-D)"" and X (r)=&c[(-1)""ds, t=0 are well known, due to S. Goldstein
(1951) and M. Kac (1959, 1974), and they are called telegraph and integrated telegraph
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processes, respectively. Also, it is known that if A, ¢ — e and ¢’ /A — 1, the process
X (?) converges to the standard Brownian motion.

The inhomogeneous process is less known (see for example Beghin et al, 2001),
where the exact distributions of inhomogeneous X (¢) are calculated).

Remark 2.1. Let X=X (f) and X = X(¢), t>0 be telegraph processes with states
(c,, A) and (E,, A,) respectively, governed by the common Poisson process N=N (f).
Then

X(t)=aX(r)+bt (2.3)

with

a=a5=C+_C_’ bzbézu' (24)
c,—C_ ¢, —C

Notice that c,a+b=¢,, o ==1.
To construct related martingales we have the following lemma.
Lemma 2.1. The conditional expectations j (t)=EUJ(@)|E=0),
n,()=E(N®)|E=0) and v, (1)=EWV (1) |E =0), o =%1, t>0 can be calculated as
follows

—At

H 1-

(6= 7’71 +A0, i , 2.5)
1—-e™

no () =1+ Ay —— (2.6)

v,()=g+A,0.e", 2.7

where A=A +A,, H=h +h, y=22 g=ttrch o —thhdo g _tohe,

A ()
0, ==, o==I.
Remark 2.2. In the homogeneous case A =4, =A, ¢, =a+c, ¢ =a—c formulas
(2.6)-(2.7) are known:
n,(t)=2t, v,(t)=a+occe™",
Proof. Formulas (2.6) and (2.7) follow from (2.5). Indeed, the Poisson process
N(¢), t=0 isapurejump process with 4, =1.Hence (2.6) coincides with (2.5), which has

o =x=l1.

H=h +h =2 and a, = . Moreover, V(t)—c,, ¢t =0 is again a pure jump process
with alternating jump values 4, =c , —c,, c=+1. Thus H=0and o, =—(c, —c_,).
Therefore, (2.7) follows from (2.5) and the identity ¢, —A_ (¢, —c ,)/A=g.

To prove (2.5), first notice that conditioning on a switch at the time interval (0, Af)
we have

Jo+A) == A1) j () + A, At(j (1) +h,)+0o(At), At — 0.
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Hence, expectations j (), o ==1 fit the equations
dj; .
5 D= Us = o)t Ahg, >0 238)

with initial data j, |_,=0, o ==*1.

Since Ao, —A o, =A h, —A h , and o =—c,, the unique solution of system
(2.8) is given by (2.5). Thus, the lemma is proved.

The following formulas are the evident consequence of Lemma 2.1.

Corollary 2.1. Let (X (¢), V(¢)), t=0 bethe telegraph process with states (c_, A.)
and (c,, 2,). Let J=J(t), t=0 be the jump process with values h, driven by the
same Poisson process. Then the conditional expectations are given by

L -A-s)
E(J(1)|F,)=J(s) +%(r—s)+ Ao, eT 29)

_ A A=)
E(X()|F.) = X(s)+g(t—s)+ A0, IET (2.10)

with 6 =0(s), s<t.
From these formulas it is easy to obtain the following theorem:
Theorem 2.1. Let (X(¢), V(2)) be the telegraph process with states (c_, A.) and

N()
(c,, A). Let J=J()= 21 how . Then X + J is the martingale if and only if
=

Z’oho :_Co’ o==1.
Proof. From formulas (2.9) and (2.10), it follows that X + J is the martingale if and

only if
YH
+—=0.
75
o, +0,=0.

The unique solution to this system is 4, =—c, /A,, o ==%l.
2.2. Change of Measure

Let X =X(¢), t=0 be the telegraph process with the states (c,, 4,), 4, >0,

¢, >c_,and N=N(t), t>0 be the driving Poisson process.

Fix time horizon 7. Let

P, .o

t

*
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be the density of new measure P* relative to P. Here X" is the telegraph process with
the states (c;, A4,), k"7 =(1+h) (1+4",)", is the pure jump process with the jump
values

h,=—c, /A, >-1, c==%1. (2.12)

Both of these processes are driven by the same inhomogeneous Poisson process
N. E,(-) denotes the stochastic exponential.

From (2.11) we obtain

Z(t)=e" %' (1), (2.13)
Where
KO =[T(1+a7" (). 2.14)

Here AJ*(s)=J"(s)~J" (s-)-
Let us consider the sequence k" ©, which is defined as follows

KT = KR, n2l, Ky =1, o =%, 215)
Thus, if 1 =2k,
KO =1+ 1) A+ R ), 2.16)
And p=2k+1,
KT = (1R A+ R 2.17)

Therefore k() = k7, , where ¢ = +1 indicates the initial direction.

The following theorem replaces the Girsanov theorem in this framework.

Theorem 2.2. Under the probability P* with density Z(t) relative to P, process
N = N(t), t=>0 isagain the Poisson process with intensities A" =A_—c = A_(1+h’)>0
and A, =24, —c; =N (1+h)>0 (see (2.12)).

Proof. Let 77 (1) =P(N (1) =n | € =) and 7 (1) =P"(N(t) =n|& =0), n=0,1,2....
Probabilities 77 (¢), o =1 are completely defined as the solution of the following
system, which can be obtained in the same manner as (2.8)

©
dr!
dt
@ - T
=0, n 215 7y, =1

=-An7W)+An7 1), t>0,n>1

Moreover, from (2.13)-(2.17) and (2.3)-(2.4) it follows

() = E(Z(O1 1y | E=0) =k [ " pl (x, )dx @.18)

with @’ =55 and b" = “=5% Here p/®, n>0 are the probability densities with
respect to measure P of the current position of the process X (¢), 0<z<T, which has
n turns, 1. e. for any measurable set A
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P(X(D)e A, N())=n|E=0) =] p”(x,)dx 2.19)

Conditioning on the number of jumps at (0, A¢) and passing to limitas Ar — 0 we
obtain (see Ratanov (2004) for details)

WO @
Lo, L=+ 2P 21 (220)
ot ox

with  zero initial conditions:  p'°|_ =0, n>=1. Moreover

p(x, )=e'8(x—c,t).
From this equation and (2.18)

dr® ) ,
T =(b" A, +d c)nNO)+ A, (1=, AT (o).

The following evident equalities complete the proof:

b'—A, +a'c,=c,—A, =—A,
Ae(l=Cg 1 ;)= Ay,

7 1,=0, n=1,
25" 1= 8(x).

Corollary 2.2. Under the probability P* with density Z(f) relative to P, process
X =X(t), 0<t<T is the telegraph process with the states (c_, A*) and (c,, 1))
with A, =2, —c, =A,(1+h)>0, o==1 (see (2.12)).

(
pn

2.3. Dynamics of the basic assets and the martingale measure

We assume the bond price follows

t

B()=¢"", Y(t)= J'ra(s)ds, r, r,>0. (21)

0

To introduce the price process for the risky asset let X = X (¢), ¢ ;Vgt)be the telegraph
process with the states (¢, 4) and (c,, A,),c,>c and J=J(t)= X h,, _,, h. >-1
(see (2.11-2.2)). e

We assume the price of the risky asset follows the equation

ds(n)=S@-)d (X () +J (1)), t>0. (222

Process S(7), >0 assumed to be right-continuous.

Integrating (2.22) we obtain

St)=8,E, (X +J)=S8,e""k(1), (2.23)

where

k@ =TJa+AJ(s) =k, S, =5(0)

s<t
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The sequence k7, n>0 is defined as in (2.15)-(2.17) (with A, instead of 4}).
We assume the following restrictions to the parameters of the model

rO' _CO' —
- >0, o=%1. (2.24)

Since the process N is the unique source of randomness, there is the only one
equivalent martingale measure. To construct it we are looking for the respective martin-
gale in the form X*(¢)+J"(¢), t=0.By Theorem 2.1 we suppose that A_#> =—c .

Theorem 2.3. Let Z()=E,(X +J), t>0 with h, =—c /A, be the density of
probability P* relative to P. The process (B(t)™' S(t)),s, IS the P - martingale if and only if

B c_—r
c=A +5%" e g1l
h

(o2

Under the probability P* the Poisson process N is driven by the parameters

(<2

A =le % >0, 0 =+%1.
h

Proof. First notice that by Corollary 2.2 X(#)-Y(¢) is the telegraph process (with
respect to P*) with the states (¢, —r,, A, —c.), ¢ ==%l1.From Theorem 2.1 it follows
that X (¢1)-Y(#)+J(t), t =20 is the P"-martingale if and only if

(A —c))h, =—(c, —1;).

Hence ¢, =4, +(c, —1,)/h, and h, =—c, /A, =—1+(r, —c,)/(A,h,). Thus, theo-
rem is proved.

Remark 2.3. From condition (2.24) it follows that h,>-1 and
Ao =A,—c,=(r,—c,)/ h,>0.Therefore Z =Z(t)=E (X" +J") really defines the new
probability measure.

3. Pricing and Hedging Options
3.1. Fundamental equation

Fix time horizon T and consider the function
F(t,%,0)=E,_ [ fxe" k(T -1) | =0 |

o=x%1, 0<¢<T,

where E* denotes the expectation with respect to martingale measure p*, which is
defined in Theorem 2.3. The density Z(¢) of P* relative to P is defined in (2.13)-(2.17).
Function F, =F(t, S(¢), 0(¢))=¢,S()+y,B(t) is the strategy value at time ¢ of the
option with the claim f(S,) atthe maturity time 7.

Notice that Y(t) = a, X () +b,t with a, =;==, b, =<—=-* (see Remark 2.1). Condi-

tioning on the number of jumps we can write
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F(t, x, 0)=e""0Y [ f(xe’ k) p)y, T—1)dy, G.1)
n=0_—o0

where p,ff’z, n=0, o=l are the probability densities of telegraph process

X(t), 0<¢<T,whichcommences n turns, with respect to martingale measure P*. Den-
sities p°) are defined asin (2.19).

Function F'solves the following difference-differential equation, which plays the same
role as the fundamental equation in the Black-Scholes model. Exploiting equation (2.20)
(with A, =4, —c, =(r, —c,)/h, instead of ) and the identity c,a, +b, =7,, o ==I
from (3.1) we obtain

a—F(t, X, G)+cha—F(t, X, O)
ot ox

=(r, +A)F(t, x, 0)-Ae " z Je'”"”f(xey K)p 0 (v, T—1)dy.

n=l —o

By equalities (2.15) and A, === the latter equation takes the form

a—F(t, X, G)+caxa—F(t, X, O)
ot ox

rO' _CO'

=(r6+r";c")F(t, x, 0)- F(t, x(1+h,),~0), =21 (32)

with the terminal condition F;, = f(x).
Remark 3.1. Note that the above equations do not depend on A, as the respective
equation in the Black-Scholes model does not depend on the drift parameter.

3.2. Predictability of the Strategy

To identify the self-financing trading strategy I1, =(¢,, v,), 0<¢<T such that
E=¢S@t)+y B(t), 0<t<T wehave dF, =dF(¢,5(¢),0(t)) = ¢,dS(t)+w,dB(¢).

The predictability of the strategy means the left continuity of ¢,.

To prove it notice that

t t N
F=F+ J.QYS(S)V(S)dS + ﬁ//sdB(S) + z (Prjho(zj—)S(Tj_)~
0 0 =

From the identity w, = B(¢)"' (F, - ,S(¢)) we obtain
N(t)

F=F+ _[ro(x)Fsds + .[(psS(s)(co'(x) - ro(s))+ 2[, (p‘[jho(‘[j—)S(Tj_)'
0 0 j=

On the other hand

N(1)

F=F+ J'aa—f(s, S(s), o(s))ds+ J'aa—i(s, S(s), a(s)S(s)c,,ds+ Z::‘(FT/ —Ffﬁ).
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Comparing the latter two equations we have between jumps
SOV LE+L—yF
' SOV @-r)

From the fundamental equation (3.2) it follows that between the jumps

_ rﬂ(l)_co(t) B ~
0= hms(t)(cm_rw))[m, S, o@)=F(t, SO+ hy,).~0()] (33)

_F@ SOU+h,),-ocM)-FE S, o@)

SOhy,

The jump values of ¢ are
F, -F,_
' TS@ (34)

o(7;-)

¢

_F(Tja S(T‘/‘)a O-(Tj))_F(Tj’ S(T]--),-O'(Tj-))
B S(t,~)h '

o(7;-)

Formulas (3.3)-(3.4) remind the CRR and BS-formulas for the amounts of risky asset
held over the time.

Lemma 3.1. The strategy ¢,, 0<t<T is left-continuous.

Proof. To prove ¢, - =@, firstnotice that by (2.23)

S, )A+hy, ) =S(T)). (3.5
Applying (3.5) to (3.3)-(3.4) it is easy to finish the proof.

4. Pricing a Standard Call

In the framework of the market model (2.21), (2.22)-(2.23) the price of the option with
contingent claim f can be expressed as follows
c=¢" =E,(B(T)" /)= Y EL(B(TY" /| N(T) = mmS(T), @.1)
n=0

o =xl,

where ¢ indicates the initial state. If A = A, == A, then 7(°)(T') = %> ¢™*" . In general
case A' # A, probabilities 7.)(T), 0 =%1, n>0 are calculated in Appendix B.
For the standard call option with contingent claim f = (§(T')- K)* we rewrite (4.1)

in the form
c=Y¢,(KT) “2)
n=0
with
c,(K.T)=S,U\ (v-b7,T)- Ku (v-b7.T), “3)
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where y=InK /S, and b =Ink 7. Here functions «'” and U\, n>0 are de-

fined as follows:

w0 =u, (., ¢,,1,) =E, [B(t)ill{)((tby’N(/):n}] 44

n

— efb,.t Jefa,.xpi’o')(x, t)dx
y

with a, === and b, === (see (2.3)-(2.4) in Remark 2.1);

U;io)(ya f)=U,§o)(ya IS /1; Cy, rt)
=E_(B()'E, (X + )1,y INWO)=m)7'S (1) 4.5)

— Kn ae—b,.tj'e—a,..wxp*(f;z (x, t)dx
¥

Functions u'”(y,), n>1 satisfy the equation (see (2.20))

du'® @ . .
== D+, a; r, =~ +r)u” (v, O+ Au 7 (v, 1) 4.6)

with initial conditions u'” |

-,=0, n>1. Functions ', n>1 are assumed to be

continuous and piece-wise continuously differentiable.
Itis plain, that «(y, 1)=e %*""0(c,t~y), o =+1.Moreover u'” =0,if y>c,t,
and for y<c.t,

(v, D=p (=" [ (N, 47)

In the latter case system (4.6) has the form

dp(o') ) }
=R )P Ao 2, (48)

P\ =g %) and p@ | _ =0, n>1, o ==I.
As it is demonstrated in Appendix B the solution of (4.8) can be written in the form
P W)= TN PO 1), 0 =%1, n20,

where Al = ALD2IR172 and functions P are defined as follows:

(+) _ ,—at (=) —
P =e, B =1,

(n+D); k!

Pn(o') — Pn(o)(t) =%|:1+ i (4D, (—ar)* :I’ o=x1, n>1. (49)
) k=1

Here
m =[n/2], m=[(n-1)/2],

(m), =m(m+1) ... (m+k=1), a=A-A" +r,—r.
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P(+)_P()_P

2n % T 2n+1 T T 2n+l T T 2n41 "

Notice that A =A) = A
To write down u'” =u!”(y, t) for c_t < y <c,t letus define coefficients B, ,, j<k:

ﬂk‘ 0= ﬂk‘ 1= ﬁk, k-2 = ﬂk‘ =1

(k_j)[j/z]
B, = T (4.10)
Let functions ¢, , be defined as follows: ¢, , = B,,, and
k=
0= Sd B, P, 15k SR @11)
j=0
For p, ¢ >0 we denote v{” =0, v\” =e™*, v = B(p),0 =%1 and for n>1
G iq_
Vorsr =Vort(Ps @) =B, (P)+ = Dy, (D),
n—1
= =B (P)+ 2500, (),
2 2 | k! k 1, (412)
v =3 (P, @) =Py ’(p)+k§l%<ﬁm, (D),
Theorem 4.1. Then the solution of system (4.6) has the form
0, y>cyt,
@ =), =
u, w7(p.q), ct<y<ct o==%I, @.13)

P, y<ct,

where w'® =g TR N@O©O () gy p =22t g =20 This solution is

o—c_ 2 c —c_

unique.
See the proof in Appendix B.

Remark 4.1. If A=A =) r.=r=r, then P”=°L

n!’ n n n!

P9 =e""x,(t) and @, , =P, . Moreover

Remark 4.2. By definition function u{” is discontinuous at ¢ =0 and u"” has the
discontinuity at p = 0. It is easy to see that functions u'®’, n>1, defined in (4.13), are
continuous. The points of possible discontinuity of derivatives are concentrated on
the lines p =0 and q = 0. For example for u®’, & =+1 we have

(@) (o)
ou, | oy

ap -0 ap -0

| — l*e-(llﬂ;)ﬁ
(<2
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and
au](o) | _ 8u1(6) | — A;e—(/l,:ﬂ; )q.
a p p=+0 a p =0
Moreover, using (4.13) it is possible to proof that ' e ¢"™'.
Similarly, functions U'” =U'"(y,t), n>1 fit the equation
Ul U o) | g -
"4 L=~ +7,—c U + A A+ h)UCD. @.14)

a gy
For A; =57 (see Theorem 2.3) it follows that A;(1+h,) = A, +7, —c, = 4, . There-
fore equation (4.14) has the same form as (4.6) with 2 instead of A;, ., =0 and
U =e™'0(c,t—y).
U0, t A, c., r.)=u"@ t; A, c., 0). @4.15)
Exploiting (4.2)-(4.3) we can consider the following particular cases in detail.

1) Merton model.!
Assumethat r =r, =r, ¢c.=c, =c, h. =h_=—-h, A =1, =A.Thenequation (2.22)

has the form

dS(t) = S(¢t—)(cdt — hdN (1)),

where N = N(¢), ¢t>0 is the (homogeneous) Poisson process with parameter 1 > (.
From call option pricing formula (4.2)-(4.3) we obtain

¢=S,U(InK/S,,T) - Ku(InK/S,,T). (4.16)

If0<h<1andc<r, then ' =h, =nlIn(1-h) | — and

u=u(nK/S,, T)= e'rriu,ﬁ‘”(ln(K/SO)—bn, T)

n=0

=e"P,(N(T)<ny)=¢""¥, (A'T)

oy

Here 1" =(c—r)/h>0 and ‘I’n0 (2)=e7 X % Function U has the form

pr
Uy, T)=¥, (A" (1-hT).

Forh<0Oandc<0,i.e. b =nIn(1-h) T +eo , we have
u(y,T)=e""(1-y,, (A7),

Uy, T)=1-vy,,(A" (1=-mT).

! This model is called the Merton model (see Melnikov et al, 2002; Merton, 1976), but
Merton (1976) contains the reference to Cox, Ross (1975). See also Cox, Ross (1976).
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By n, we denote
n, =inf{n: S,e™ " > B(T) 'K} = In(K/S,)=cT .
In(1-h)
2) If A+ )(1+h,)<1,then In(1+4 )+In(1+4,)<0 and 5 — —e . The call op-
tion price is given by the same formula (4.16) with

nl®)

nl®)
U3, 1)=Y p 7 (D+ Y, u® (y-b).T; Al c..rn),
k=0

f=n) 41
and from (4.15) it follows
U, D=u, Ts A, c., 0), (4.17)
y=InK/S,.
Here
n® :min{n D y=b? >c_T},
n'? = min{n cy=b7 > c+T}.
3) If A+A)(1+h,)>1,then In(1+A )+In(1+h,)>0 and b — +oo . Denoting

m'® = max{n Cy=b7 > c_T},

m® =max{n : y-b" >c,T},
we obtain the call option price formula of the form (4.16) with

m(,m

u'?(y, T)= Zu,ﬁa)(y—b,fa), T Ays ey 1)+ z P (T).

k=m(®) k=m'" +1

For U'“)(y, T') weagainapply (4.17).
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Appendix A. Convergence to Black-Scholes Model

It is known from Kac (1959) (see also Ratanov, 1997) that (homogeneous) telegraph
process X = X(¢), t=0 converges to the standard Brownian motion w(z), >0, if
¢,A — oo, ¢’ /2 — 1. Moreover, we have the following theorem (at least for the symmet-
riccase A =4, ¢ =a—c, ¢, =a+c).

Theorem A.l.Let A =4, =4 —> o0, ¢ — oo,

A=V alA—=v (A1)
Let 4 ,h, -0 and
a+AB/2—pn (A2)

where B=In[(1+4)(1+4,)].
Then model (2.22) converges in distribution to the Black-Scholes model:
S() —2— S, exp(vw(-)+ ut), (A3)

with v:ﬁlvf +vj .

Proof. Let f(z,r)=e¢™ be the moment generating function of X (¢) = X (r)+Inx(r).
We prove here the convergence

f(z,t) = exp(zt +v’z%t 1 2) (A4)

which is sufficient for the convergence of one-point distributions in (A.3). From
Remark 2.1 it follows that

f(Z, l) — er(z) — ez(cX’ (t)+at+1nk (1))

_ eazt 2 J'ez(xu-nB/Z)p.;t (x’ t)dx, (AS)

n=0_—co
where X* is the standard telegraph process with the states (£1, A),and p', n>0
are the probability densities of X*'(f) which are defined as in (2.19).
Changing variables in the integral in (A.5) we obtain

f(Z, t) _ eazz J.eczx zean/Zp)s’z (x, t)dx
—oo n=0

— eazH(Af/l)z J.e”]_?(x, t)dx,

where p(x, t) is the density of telegraph process X (r) with the states (+¢, 1),

A =2e®? < ).
Then notice that

A=A+az=Me** - +az
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AzB  AZ*B’
~
2
From (A.1)-(A.2) it follows that \JAB /2 ~ —a/+/7A and

+az

A=A+az— uz+vz"/2

The densities p(,, #) converge to the probability density of v, w(¢):

-2 202
e e

p(x,t) >

v.N2mt

Summarizing we obtain (A.4). The complete proof of (A.3) is a bit tricky and it is
omitted here.

Remark A.1. Condition (A.2) in this theorem means that the total drift ¢+ AB/2
is asymptotically finite. Here a=(c_+c,)/2 is generated by the velocities of tele-
graph process X and summand ) B /2 represents the drift component (possibly with
infinite asymptotics), which is provoked by jumps. If in (A.2) the limit of JB/2 is
finite, then q — o = const and in (4.3) the drift volatility term v, =0.

In general, by (A.1)-(A.2) VAB/2 — v,,and so _\/) B/2 has the meaning of the jump

component of volatility.
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Appendix B. Proof of Theorem 4.1

As it follows from (2.20), functions
p,(lc) = (G)(t) E, (B(t)_ll{N(t) )

=e’]""[e’“"‘p5f’*)(x, tydx, t20, o==%1, n>1

satisfy the system

'(+)_ (2’ +r)p(+)
AR B
with p(()‘”(t):e‘“;”“”, 120, t20, o=+1 and p*|_=0, n>1. Here
p =% For A; =A"=A and r, =0 the solution is well known:

PO =1, (1) =P(N(1) = n)—M

Generally, we imply the following change of variables

PO (1) = &A@ PO (p)

with A =@ )24 )""?. In these notations we have B7(H)=e™, a
=(A +r)-A +r); BO@)=1; P* |_,=0, n>1 and the system

{PH) aP(+) — P( )
o "on>1. B2)
Pn( ) =P"(;)

n

dt
The latter system has the following solution (see (4.9))

+
) dP( )
) I

2n+l o _ P
P ==t |1y EDntk)  (za) |
Cn+D)!| & @2n+2)..Q2n+k+1) k!

P(_) =t2_n|:1+i n(n+1)(n+k—1) . (—Cll)k }
7 o Cn+D)..2n+k) Ko

po_ [1+ & (ntl)..(n+k) .(—at)k}

(B.3)

= el S en+l)..CQntk) k!

Remark 2.1. Formulas (B.3) can be expressed by hypergeometric function
(Abramowitz, Stegun (1972)):

13,}")@):%.15(;%;‘%1; n+1; —at), m” =[n/2], m" =[(n-1)/2].

n
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Hypergeometric function F(o; B; z) is defined as follows (see e. g. Albanese
and Lawi, 2004, formula (1.6))

) _ a(@+1)...(a+n- 1) (o),
Rl B 2=l 3 =1 Y

As well, using (B.3) it easy to check that P — P = gP,

2n n+l>

n=0.

To obtain
”S,G)(y, H= E; (B(t)_ll{X(t)>y,N(t):n})

we apply the change of variables p=-=-, ¢=

u® = ef(lﬁn)qf(liﬂ:)pA(U)v(o)(p q9)
to equation (4.6).
Evidently, u\”(y, t)=0,ifp<0,and u'”(y, t)=p'”(¢),ifg<0.For p, ¢>0we

have the system

v e
a n—.
?_) ,n>1
ov, ) (B4)
op "
with
W = O(p), v = 0(q), v |, =0
and
V7 =P (p+q). B5)

Here a=(A +r,)— (A +r) and P, n>0, o =41 aredefined in (B.3).
It is plain to check that the exact representation of the solution of (B.4) for p, ¢>0
has the form of (4.12)

n k
+ q
Vén-)i-l =Vyr1 = B (p)+z k'(pk,n (p),
=1 K
V;:) = zn(p)+2 '(pk—l,n—l(p)’
k

W) = (p)+2‘1—<pm<p)

where Do, =P G, = PZ(n) nd
Por =P 1Sk <. (B.6)
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Proposition B.1. The solution of system (B.6) has the form (4.11):

k-1
k—j-1 -
(I an "B B

Proof. Indeed, from (4.11) and (B.2) it follows

k=1

P =20""B P

Jj=0

By the identities A, =P\ and P - P =aP,

a1 = Bl n>0 (see Remark B.1) we

n+l>

have

O = Z akijilﬁk,jPZn—j—l + 2 akijilﬁk,jpz(ni—)j—l - Z akijﬁk,jPZn—j'

Jj=20, jiseven Jj=20, jisodd J20, jisodd
To complete the proof it is sufficient to apply the following identities

Bi amet = Bictoms B 2w = Br. 2mar = Bict, 2m » Which are evident from the definition of

B, (see (4.10)).
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