On Prime and Weakly Prime \mathcal{LA} -submodules of \mathcal{LA} -modules

Sobre LA-submódulos de LA-módulos primos y débilmente primos

Pairote Yiarayong^{1,a}

Abstract. In this paper, we introduce the concept of prime and weakly prime \mathcal{LA} -submodules and give some basic results about prime and weakly prime \mathcal{LA} -submodules of \mathcal{LA} -modules. Moreover, we investigated relationships between prime and weakly prime \mathcal{LA} -submodules in \mathcal{LA} -modules. Finally, we obtain sufficient conditions of a weakly prime \mathcal{LA} -submodule in order to be a prime \mathcal{LA} -submodule.

Keywords: \mathcal{LA} -module, prime \mathcal{LA} -submodule, weakly prime \mathcal{LA} -submodule, \mathcal{LA} -ring, prime ideal.

Resumen. En este artículo, introducimos el concepto de \mathcal{LA} -submódulos primos y débilmente primos y damos algunos resultados básicos acerca de los conceptos de \mathcal{LA} -submódulos de \mathcal{LA} -módulos primos y débilmente primos. Más aún, investigamos relaciones entre \mathcal{LA} -submódulos primos y débilmente primos en \mathcal{LA} -módulos. Finalmente, obtenemos condiciones suficientes para que un \mathcal{LA} -submódulo débilmente primo sea un \mathcal{LA} -submódulo primo.

Palabras claves: \mathcal{LA} -módulos, \mathcal{LA} -submódulo primo, \mathcal{LA} -submódulo débilmente primo, \mathcal{LA} -anillo, ideal primo.

Mathematics Subject Classification: 16L30, 06F25.

Recibido: marzo de 2018

Aceptado: julio de 2020

1. Introduction

Throughout this paper, we assume that all rings are \mathcal{LA} -rings. Let R be an \mathcal{LA} -ring and let M be an \mathcal{LA} -module. In 2003, Anderson and Smith [1] introduced the concepts of a weakly prime ideal in commutative rings. According to their definition, a proper ideal I of a ring R is called a weakly prime ideal if whenever $0 \neq ab \in I$ for $a, b \in R$, then $a \in I$ or $b \in I$. In [3], Dauns introduced the concepts of a prime submodule. A proper submodule N of an R-module M to be a prime submodule [3] of M if whenever $am \in N$ for $a \in R, m \in M$, then $m \in N$ or $a \in (N : M)$. Atani and Farzalipour [2] introduced the concepts of

 $^{^1\}mathrm{Department}$ of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand

^apairote0027@hotmail.com

a weakly prime submodule. According to their definition, a proper submodule N of an R-module M to be a weakly prime submodule of M if whenever $0 \neq am \in N$ for $a \in R, m \in M$, then $m \in N$ or $a \in (N : M)$. Mostafanasab et al. [6] introduced the concepts of a weakly classical prime submodule. According to their definition, a proper submodule N of M to be a almost 2-absorbing submodule of M if whenever $0 \neq abm \in N$ for $a, b \in R, m \in M$, then $am \in N$ or $bm \in N$.

In 1996, Mushtaq and Kamran [7] introduced the notion of left almost group $(\mathcal{LA}\text{-group})$. Yusuf in [10] introduces the concept of a left almost ring $(\mathcal{LA}\text{-ring})$. That is, a non empty set R with two binary operations "+" and "·" is called a left almost ring, if (R, +) is an $\mathcal{LA}\text{-group}$, (R, \cdot) is an $\mathcal{LA}\text{-semigroup}$ and distributive laws of "·" over "+" holds. Further in [9] Shah and Rehman generalize the notions of commutative semigroup rings into $\mathcal{LA}\text{-rings}$.

In 2010, Shah and Rehman [9] define the notion of an \mathcal{LA} -module over an \mathcal{LA} -ring, a non abelian non associative structure but closer to abelian group. Now we shall use the paper [8] which deals with the notion of \mathcal{LA} -modules. In this study we followed lines as adopted in [9, 8] and established the notion of prime and weakly prime \mathcal{LA} -submodules of an \mathcal{LA} -module. Specifically we characterize the prime and weakly prime \mathcal{LA} -submodules in \mathcal{LA} -modules. Moreover, we investigated relationships between prime and weakly prime \mathcal{LA} -submodules in \mathcal{LA} -modules.

2. Preliminaries

In this section, we refer to [4, 5, 7, 9, 8, 10] for some elementary aspects and quote few definitions, and essential examples to step up this study. For more details, we refer to the papers in the references.

Recall that a groupoid (S, \cdot) is called a **left almost-semigroup** (\mathcal{LA} **semigroup**) if it satisfies the left invertive law; (xy)z = (zy)x for all $x, y, z \in S$ (see [4]). An \mathcal{LA} -semigroup (G, \cdot) is called a **left almost group** (\mathcal{LA} -group) if there exists left identity $e \in G$ (that is ex = x for all $x \in G$), for all $x \in G$ there exists $x^{-1} \in G$ such that $xx^{-1} = e = x^{-1}x$ (see [7]).

Definition 2.1. [10] A **left almost ring** (\mathcal{LA} -ring) is a non empty set R together with two binary operations, addition (denoted by +) and multiplication (denoted by \cdot), such that for all x, y, z in R:

- 1. (R, +) is an \mathcal{LA} -group.
- 2. (R, \cdot) is an \mathcal{LA} -semigroup.
- 3. x(y+z) = xy + xz and (x+y)z = xz + yz.

Definition 2.2. [9] Let R be an \mathcal{LA} -ring. A **left almost module** (\mathcal{LA} -**module**) is an \mathcal{LA} -group M together with a function $R \times M \mapsto M$ (denote the image of (r, m) by rm) such that for all $r, s \in R$ and $n, m \in M$:

1.
$$r(n+m) = rn + rm,$$

- 2. (r+s)m = rm + sm,
- 3. s(rm) = r(sm),
- 4. If R has a multiplicative left identity element e, then em = m.

Example 2.3. [8] Every locally associative \mathcal{LA} -group is an \mathcal{LA} -module over the \mathcal{LA} -ring of integers.

Lemma 2.4. [8] Let M be an \mathcal{LA} -module over an \mathcal{LA} -ring R. Then the following properties hold.

1. r0 = 0, 2. 0m = 0, 3. (-r)m = -(rm) = r(-m), 4. (-r)(-m) = rm for all $r \in R$ and $m \in M$.

Proof. See [8].

Definition 2.5. [8] An \mathcal{LA} -subgroup N of an \mathcal{LA} -module M over an \mathcal{LA} -ring R is called an \mathcal{LA} -submodule over R, if $RN \subseteq N$, i.e., $rn \in N$ for all $r \in R$ and $n \in N$.

Definition 2.6. [8] Let M be an \mathcal{LA} -module over an \mathcal{LA} -ring R and let A be an \mathcal{LA} -submodule of M. We define the **quotient module or factor module** M/A by $M/A = \{m + A : m \in M\}$.

Lemma 2.7. [5, 8] Let A and B be two \mathcal{LA} -submodules of an \mathcal{LA} -module M over an \mathcal{LA} -ring R. Then $(A + B)/A \cong B/(A \cap B)$.

Proof. See [5, 8].

Recall that an ideal P of an \mathcal{LA} -ring R is a **completely prime ideal** if for each elements a, b of $R, ab \in P$ implies that either $a \in P$ or $b \in P$.

Example 2.8. [5] Let $R = \{0, 1, 2\}$ be a set under the binary operations defined as follows,

+	0	1	2
0	0	1	2
1	2	0	1
2	1	2	0
	0	1	2
0	0	1	2
$\frac{\cdot}{0}$	0 0 0	1 0 1	$\begin{array}{c} 2\\ 0\\ 2 \end{array}$

Boletín de Matemáticas 26(2) 101-112 (2020)

Then R is an \mathcal{LA} -ring (See [5]). It is easy to see that $\{0\}$ is a completely prime ideal of R.

Recall that an ideal P of an \mathcal{LA} -ring R is a **weakly completely prime** ideal if for each elements a, b of $R, 0 \neq ab \in P$ implies that either $a \in P$ or $b \in P$. Clearly, every completely prime ideal of an \mathcal{LA} -ring R is weakly completely prime.

Example 2.9. Let $R = \{0, 1, 2, 3, 4, 5, 6, 7\}$ be an \mathcal{LA} -ring (See [5]) under the binary operations defined as follows,

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	6	7	4	5
2	2	3	0	1	5	4	7	6
3	3	2	1	0	7	6	5	4
4	4	6	5	7	0	2	1	3
5	5	7	4	6	2	0	3	1
6	6	4	7	5	1	3	0	2
$\overline{7}$	7	5	6	4	3	1	2	0
+	0	1	2	3	4	5	6	7
$\frac{+}{0}$	0	1	2	3 0	4	5	6 0	$\frac{7}{0}$
$\frac{+}{0}$	0 0 0	$\frac{1}{0}$	2 0 0	$\frac{3}{0}$	4 0 0	5 0 0	$\begin{array}{c} 6 \\ 0 \\ 2 \end{array}$	$\frac{7}{0}$
$\begin{array}{c} + \\ \hline 0 \\ 1 \\ 2 \end{array}$	0 0 0 0	$\begin{array}{c} 1 \\ 0 \\ 2 \\ 4 \end{array}$	$\begin{array}{c} 2\\ 0\\ 0\\ 0\\ 0 \end{array}$	$\begin{array}{c} 3\\ 0\\ 2\\ 4 \end{array}$	$\begin{array}{c} 4\\ 0\\ 0\\ 0\\ 0 \end{array}$	5 0 0 0	$\begin{array}{c} 6 \\ 0 \\ 2 \\ 4 \end{array}$	$\begin{array}{r} 7\\ 0\\ 2\\ 4 \end{array}$
$\begin{array}{c} + \\ \hline 0 \\ 1 \\ 2 \\ 3 \end{array}$	0 0 0 0 0	$ \begin{array}{c} 1 \\ 0 \\ 2 \\ 4 \\ 5 \end{array} $	2 0 0 0 0	$\begin{array}{c} 3 \\ 0 \\ 2 \\ 4 \\ 5 \end{array}$		5 0 0 0 0		$\begin{array}{c} 7\\ 0\\ 2\\ 4\\ 5\end{array}$
$+ \\ 0 \\ 1 \\ 2 \\ 3 \\ 4$	0 0 0 0 0 0	$ \begin{array}{c} 1 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \end{array} $	$\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 3 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \end{array}$	$\begin{array}{c} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 6 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \end{array}$	$ \begin{array}{r} 7 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \end{array} $
$\begin{array}{c} +\\ \hline 0\\ 1\\ 2\\ 3\\ 4\\ 5\end{array}$	0 0 0 0 0 0 0	$ \begin{array}{c} 1 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \\ 4 \end{array} $	$\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 3 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \\ 4 \end{array}$		$5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 6 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \\ 4 \end{array}$	$ \begin{array}{r} 7 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \\ 4 \end{array} $
$\begin{array}{c} + \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \\ 4 \\ 2 \end{array}$	$\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 3 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \\ 4 \\ 2 \end{array}$		$5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$egin{array}{c} 6 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \\ 4 \\ 2 \end{array}$	$\begin{array}{c} 7 \\ 0 \\ 2 \\ 4 \\ 5 \\ 0 \\ 4 \\ 2 \end{array}$

It is easy to see that $\{0\}$ is a weakly completely prime ideal of R. But $\{0\}$ is not a completely prime ideal of R, since $6 \cdot 4 = 0 \in \{0\}$, while $6 \notin \{0\}$ and $4 \notin \{0\}$.

3. Prime and Weakly Prime *LA*-Submodules

In this section, we define and study the prime and weakly prime \mathcal{LA} -submodules in an \mathcal{LA} -module. Moreover, we investigated relationships between prime and weakly prime \mathcal{LA} -submodules in \mathcal{LA} -modules.

Let M be an $\mathcal{L}A$ -module over an $\mathcal{L}A$ -ring R and $\emptyset \neq A, B \subseteq M$. The colon ideal of R is considered to be (A : B) such that $a \in (A : B) \Leftrightarrow aB \subseteq A$ and $ab \in (A : B) \Leftrightarrow a(bB) \subseteq A$, where $a, b \in R$. If $A = \{m\}$, then we write $(\{m\} : B)$ as (m : A) and similarly if $B = \{m\}$, we write (A : m).

Remark 3.1. Let A be an $\mathcal{L}A$ -submodule of an $\mathcal{L}A$ -module M over an $\mathcal{L}A$ -ring R and $\emptyset \neq B \subseteq M$. It is easy to see that $0 \in (A : B) \neq \emptyset$, since $0B = \{0\} \subseteq A$.

Lemma 3.2. Let M be an \mathcal{LA} -module over an \mathcal{LA} -ring R and $m \in M$. If A is an \mathcal{LA} -submodule of M, then (A : m) is an ideal of R.

Proof. Let a, b and r be any elements of R such that $a, b \in (A : m)$. Then we have $am, bm \in A$. Since

$$(a-b)m = am - bm \in A + A \subseteq A$$

and $a(rm) = r(am) \in rA \subseteq A$, we have $a - b, ar, ra \in (A : m)$. Therefore, (A : m) is an ideal of R.

By Lemma 3.2, we immediately obtain the following corollary:

Corollary 3.3. Let A and B be two \mathcal{LA} -submodules of an \mathcal{LA} -module M over an \mathcal{LA} -ring R. Then (A : B) is an ideal of R.

Remark 3.4. Let M be an \mathcal{LA} -module over an \mathcal{LA} -ring R. Then the following properties hold.

- 1. For every \mathcal{LA} -submodule A of M, (A:m) = R for all $m \in A$.
- 2. If A and B are any \mathcal{LA} -submodules of M such that $B \subseteq A$, then (A : B) = R.
- 3. Let $C, D \subseteq M$ such that $D \subseteq C$. If A is an \mathcal{LA} -submodule of M, then $(A:C) \subseteq (A:D)$.

In the following we shall introduce the notion of prime \mathcal{LA} -submodules of an \mathcal{LA} -module M over an \mathcal{LA} -ring R.

Definition 3.5. A proper \mathcal{LA} -submodule N of an \mathcal{LA} -module M over an \mathcal{LA} -ring R is called **prime** if for $r \in R$ and $m \in M, rm \in N$ implies that $m \in N$ or $r \in (N : M)$.

Example 3.6. Let $M = \{0, 3, 8\}$ the binary operation "+" be defined on M as follows:

+	0	3	8
0	0	3	8
3	8	0	3
8	3	8	0

Then M is an \mathcal{LA} -group. Let $R = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ be an \mathcal{LA} -ring under the binary operations defined as follows,

Pairote Yiarayong

\oplus	0	1	2	3	4	5	6	7	8
0	3	4	6	8	7	2	5	1	0
1	2	3	7	6	8	4	1	0	5
2	1	5	3	4	2	0	8	6	7
3	0	1	2	3	4	5	6	7	8
4	5	0	4	2	3	1	7	8	6
5	0	4	0	4	0	0	4	4	8
6	7	6	0	1	5	8	3	2	4
7	6	8	1	5	0	7	4	3	2
8	8	$\overline{7}$	5	0	1	6	2	4	3
.	0	1	2	3	4	5	6	7	8
. 0	$\frac{0}{3}$	1	2 6	3	4	5	6 6	7	8
· 0 1	0 3 0	1 1 3	2 6 0	3 3 3	4 1 8	5 6 8	6 6 3	7 1 0	8 3 8
$\begin{array}{c} \cdot \\ \hline 0 \\ 1 \\ 2 \end{array}$	0 3 0 8	1 1 3 1		3 3 3 3	$\begin{array}{c} 4\\1\\8\\7\end{array}$	5 6 8 2	6 6 3 6	$\begin{array}{c} 7\\ 1\\ 0\\ 4 \end{array}$	$\begin{array}{c} 8\\ 3\\ 8\\ 0 \end{array}$
$\begin{array}{c} \cdot \\ 0 \\ 1 \\ 2 \\ 3 \end{array}$	0 3 0 8 3	$ \begin{array}{c} 1 \\ 3 \\ 1 \\ 3 \end{array} $	$ \begin{array}{c} 2 \\ 6 \\ 0 \\ 5 \\ 3 \end{array} $	3 3 3 3 3				$\begin{array}{c} 7\\ 1\\ 0\\ 4\\ 3 \end{array}$	
$\begin{array}{c} \cdot \\ \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	0 3 0 8 3 0	$ \begin{array}{c} 1 \\ 3 \\ 1 \\ 3 \\ 6 \end{array} $	$\begin{array}{c} 2 \\ 6 \\ 0 \\ 5 \\ 3 \\ 7 \end{array}$	3 3 3 3 3 3	$\begin{array}{c} 4 \\ 1 \\ 8 \\ 7 \\ 3 \\ 5 \end{array}$	$5 \\ 6 \\ 8 \\ 2 \\ 3 \\ 4$	$\begin{array}{c} 6 \\ 6 \\ 3 \\ 6 \\ 3 \\ 1 \end{array}$	$\begin{array}{c} 7\\ 1\\ 0\\ 4\\ 3\\ 2\end{array}$	
$\begin{array}{c} \cdot \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$	0 3 0 8 3 0 8	$ \begin{array}{c} 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 6 \\ 6 \\ 6 \end{array} $	$2 \\ 6 \\ 0 \\ 5 \\ 3 \\ 7 \\ 4$	$\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{3}$		$5 \\ 6 \\ 8 \\ 2 \\ 3 \\ 4 \\ 7$	$\begin{array}{c} 6 \\ 6 \\ 3 \\ 6 \\ 3 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 7 \\ 1 \\ 0 \\ 4 \\ 3 \\ 2 \\ 5 \end{array}$	
$\begin{array}{c} \cdot \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	$\begin{array}{c} 0 \\ 3 \\ 0 \\ 8 \\ 3 \\ 0 \\ 8 \\ 8 \\ 8 \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 6 \\ 6 \\ 3 \end{array}$	$\begin{array}{c} 2 \\ 6 \\ 0 \\ 5 \\ 3 \\ 7 \\ 4 \\ 8 \end{array}$	$\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{3}$			$\begin{array}{c} 6 \\ 6 \\ 3 \\ 6 \\ 3 \\ 1 \\ 1 \\ 3 \end{array}$	$\begin{array}{c} 7 \\ 1 \\ 0 \\ 4 \\ 3 \\ 2 \\ 5 \\ 8 \end{array}$	
$ \begin{array}{c} 0 \\ 1 \\ $	0 3 0 8 3 0 8 8 8 0	$ \begin{array}{c} 1 \\ 3 \\ 1 \\ 3 \\ 6 \\ 6 \\ 3 \\ 1 \end{array} $	$\begin{array}{c} 2 \\ 6 \\ 0 \\ 5 \\ 3 \\ 7 \\ 4 \\ 8 \\ 2 \end{array}$	$ \begin{array}{c} 3 \\ $		$5 \\ 6 \\ 8 \\ 2 \\ 3 \\ 4 \\ 7 \\ 0 \\ 5$	$\begin{array}{c} 6 \\ 6 \\ 3 \\ 6 \\ 3 \\ 1 \\ 1 \\ 3 \\ 6 \end{array}$	$\begin{array}{c} 7 \\ 1 \\ 0 \\ 4 \\ 3 \\ 2 \\ 5 \\ 8 \\ 7 \end{array}$	

Define a map $R \times M \mapsto M$ by $(r, m) \mapsto r \cdot m$. Then M is an $\mathcal{L}A$ -module over an $\mathcal{L}A$ -ring R. It is easy to see that $\{3\}$ is an $\mathcal{L}A$ -submodule of an $\mathcal{L}A$ -module M over an $\mathcal{L}A$ -ring R. But $\{0\}$ is not a prime $\mathcal{L}A$ -submodule of M over an $\mathcal{L}A$ -ring R, since $1 \cdot 1 = 3 \in \{3\}$, while $1 \notin \{3\}$ and $1M = \{0, 3, 8\} \notin \{3\}$.

Let M_1 and M_2 be two \mathcal{LA} -modules. Then

$$M_1 \times M_2 := \{(x, y) \in M_1 \times M_2 : x \in M_1, y \in M_2\}.$$

For any $(a, b), (c, d) \in M_1 \times M_2$ and $r \in R$ we define (a, b) + (c, d) := (a+c, b+d)and r(a, b) := (ra, rb), then $M_1 \times M_2$ is an \mathcal{LA} -module as well.

Example 3.7. Let $R = \{0, 1, 2\}$ be an \mathcal{LA} -ring under the binary operations defined as follows,

+	0	1	2
0	0	1	2
1	2	0	1
2	1	2	0
	ļ.		
	0	1	2
-			
0	0	0	0
$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	0 1	$\begin{array}{c} 0 \\ 2 \end{array}$

Boletín de Matemáticas 26(2) 101-112 (2020)

It is easy to see that R is an \mathcal{LA} -module over an \mathcal{LA} -ring R. Next, let $A = \{0\} \times \{0\}$. Then, A is a prime \mathcal{LA} -submodule of an \mathcal{LA} -module $R \times R$ over an \mathcal{LA} -ring R.

Theorem 3.8. Let M be an \mathcal{LA} -module over an \mathcal{LA} -ring R and $m \in M$. If A is a prime \mathcal{LA} -submodule of M, then (A : m) is a completely prime ideal of R.

Proof. Then by Lemma 3.2, we have (A : m) is a proper ideal of R. Let a and b be any elements of R such that $ab \in (A : m)$. Thus $a(bm) \in A$. Since A is a prime $\mathcal{L}A$ -submodule of M, we have $bm \in A$ or $a \in (A : M)$, that is $b \in (A : m)$ or $a \in (A : m)$. Therefore, (A : m) is a completely prime ideal of R.

By Theorem 3.8, we immediately obtain the following corollary:

Corollary 3.9. Let A be a prime \mathcal{LA} -submodule of an \mathcal{LA} -module M over an \mathcal{LA} -ring R. Then (A:M) is a completely prime ideal of R.

In the following we shall introduce the notion of weakly prime \mathcal{LA} -submodules of an \mathcal{LA} -module M over an \mathcal{LA} -ring R.

Definition 3.10. A proper $\mathcal{L}A$ -submodule N of an $\mathcal{L}A$ -module M over an $\mathcal{L}A$ -ring R is called **weakly prime** if for $r \in R$ and $m \in M, 0 \neq rm \in N$ implies that $m \in N$ or $r \in (N : M)$.

As is easily seen, every weakly prime \mathcal{LA} -submodule of an \mathcal{LA} -module M over an \mathcal{LA} -ring R is a weakly prime \mathcal{LA} -submodule. The following example shows that the converse of this property does not hold in general.

Example 3.11. Let $R = \{0, 1, 2, 3, 4, 5, 6, 7\}$ be an \mathcal{LA} -ring under the binary operations defined as follows,

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	2	0	3	1	6	4	$\overline{7}$	5
2	1	3	0	2	5	7	4	6
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	6	4	$\overline{7}$	5	2	0	3	1
6	5	7	4	6	1	3	0	2
7	7	6	5	4	3	2	1	0

Pairote Yiarayong

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	4	4	0	0	4	4	0
2	0	4	4	0	0	4	4	0
3	0	0	0	0	0	0	0	0
4	0	3	3	0	0	3	3	0
5	0	7	7	0	0	7	7	0
6	0	7	7	0	0	7	7	0
7	0	3	3	0	0	3	3	0

It is easy to see that $R \times R$ is an \mathcal{LA} -module over an \mathcal{LA} -ring R. Then, $\{0\} \times \{0\}$ is a weakly prime \mathcal{LA} -submodule of $R \times R$. But $\{0\} \times \{0\}$ is not a prime \mathcal{LA} -submodule of $R \times R$, since $4(0,3) = (0,0) \in \{0\} \times \{0\}$, while $(0,3) \notin \{0\} \times \{0\}$ and $4(R \times R) = \{0,3\} \times \{0,3\} \not\subseteq \{0\} \times \{0\}$.

Theorem 3.12. Let M be an \mathcal{LA} -module over an \mathcal{LA} -ring R. Then the following conditions are equivalent.

- 1. A is a weakly prime \mathcal{LA} -submodule of M.
- 2. $(A:m) = (A:M) \cup (0:m)$ for any $m \in M A$.
- 3. (A:m) = (A:M) or (A:m) = (0:m) for any $m \in M A$.

Proof. First assume that A is a weakly prime $\mathcal{L}A$ -submodule of M. Let m be any element of M - A such that $r \in (A : m)$. Then $rm \in A$. If rm = 0, then $r \in (0 : m) \subseteq (A : M) \cup (0 : m)$. Net, let $rm \neq 0$. Since A is a weakly prime $\mathcal{L}A$ -submodule of M, we have $m \in A$ or $r \in (A : M)$. Thus it is clear that $r \in (A : M) \subseteq (A : M) \cup (0 : m)$. Next, we prove that $(A : M) \cup (0 : m) \subseteq (A : m)$. Clearly, $(A : M) \subseteq (A : m)$ and $(0 : m) \subseteq (A : m)$. Hence $(A : M) \cup (0 : m) \subseteq (A : m)$. Therefore $(A : m) = (A : M) \cup (0 : m)$ and so (1) implies (2).

Assume that (2) holds. It is well-known that the union of two ideals I, J of an $\mathcal{L}\mathcal{A}$ -ring R is an ideal if $I \subseteq J$ or $J \subseteq I$. By condition, the ideals (A : M)is the union of the ideals (A : M) and (0 : m), so either $(A : m) \subseteq (A : M)$ or $(0 : m) \subseteq (A : m)$. Thus either (A : m) = (A : M) or (A : m) = (0 : m) and so (2) implies (3).

Finally, assume that (3) holds. Let r be any element of R and let m be any element of M such that $0 \neq rm \in A$. Then $r \in (A : m)$. By condition 3, we have $r \in A : M$). Therefore, A is a weakly prime $\mathcal{L}A$ -submodule of M and so (3) implies (1).

Theorem 3.13. Let A be a weakly prime $\mathcal{L}A$ -submodule of an $\mathcal{L}A$ -module M over an $\mathcal{L}A$ -ring R with left identity. For every $m \in M$ if I is an ideal of R such that $\{0\} \neq Im \subseteq A$, then either $m \in A$ or $I \subseteq (A : M)$.

Proof. Let m be any element of M and let I be an ideal of R such that $\{0\} \neq Im \subseteq A$. Clearly, $I \subseteq (A : m)$ and $I \not\subseteq (0 : m)$. If $m \in A$, then

there is nothing to prove. Next, let $m \notin A$. Then by Theorem 3.12, we have $I \subseteq (A:m) = (A:M)$ i.e., $I \subseteq (A:M)$.

By Theorem 3.8 and Corollary 3.9, we immediately obtain the following corollary:

Corollary 3.14. Let A be a weakly prime \mathcal{LA} -submodule of an \mathcal{LA} -module M over an \mathcal{LA} -ring R. Then the following properties hold.

- 1. A is a weakly prime \mathcal{LA} -submodule of M.
- 2. $(A:m) = (A:M) \cup (0:m)$ for any $m \in M A$.

Theorem 3.15. Let A be a weakly prime \mathcal{LA} -submodule of an \mathcal{LA} -module M over an \mathcal{LA} -ring R. If A is not prime, then $(A : M)A = \{0\}$.

Proof. Suppose that $(A: M)A \neq \{0\}$. We will show that A is a prime \mathcal{LA} -submodule of an \mathcal{LA} -module M over an \mathcal{LA} -ring R. Let m be any element of M and let r be any element of R such that $rm \in A$. If $rm \neq 0$, then either $m \in A$ or $r \in (A: M)$, since A is weakly prime \mathcal{LA} -submodule. Now, assume that rm = 0. Next, let $rA \neq \{0\}$. Then there exists element n of A such that $0 \neq rn \in A$. Thus $0 \neq rn + 0 = rn + rm = r(n+m) \in A$, which implies that either $n + m \in A$ or $r \in (A: M)$. Therefore either $n \in A$ or $r \in (A: M)$. Now we can assume that $rA = \{0\}$ and $(A: M)m = \{0\}$. Since $(A: M)A \neq \{0\}$, then there exists $s \in (A: M)$ and $n \in A$ such that $0 \neq sn \in A$. Clearly,

$$(s+r)(n+m) = (s+r)n + (s+r)m = (sn+rn) + (sm+rm) = (sn+0) + (0+0) = (0+0) + (0+sn) = sn.$$

It is clear that $0 \neq (s+r)(n+m) \in A$. Thus, since A is a weakly prime $\mathcal{L}\mathcal{A}$ -submodule of M, we have $n+m \in A$ or $s+r \in (A:M)$. Therefore $m \in A$ or $r \in (A:M)$ and hence A is a prime $\mathcal{L}\mathcal{A}$ -submodule of M. \Box

By Theorem 3.15, we immediately obtain the following theorem:

Theorem 3.16. Let A be an \mathcal{LA} -submodule of an \mathcal{LA} -module M over an \mathcal{LA} -ring R such that $(A : M)A = \{0\}$. Then the following conditions are equivalent.

- 1. A is a prime \mathcal{LA} -submodule of M.
- 2. A is a weakly prime \mathcal{LA} -submodule of M.

Lemma 3.17. Let A_i and B_i be two $\mathcal{L}\mathcal{A}$ -submodules of an $\mathcal{L}\mathcal{A}$ -module M_i over an $\mathcal{L}\mathcal{A}$ -ring R_i . Then the following properties hold.

1. For any
$$m_i \in M_i$$
, $\left(\prod_{i=1}^n A_i : (m_1, m_2, \dots, m_n)\right) = \prod_{i=1}^n (A_i : m_i).$

Pairote Yiarayong

2.
$$\left(\prod_{i=1}^{n} A_i : \prod_{i=1}^{n} B_i\right) = \prod_{i=1}^{n} (A_i : B_i).$$

Proof. Straightforward.

Theorem 3.18. Let M_1 and M_2 be two \mathcal{LA} -modules over \mathcal{LA} -rings R_1 and R_2 , respectively. If $A \times M_2$ is a weakly prime \mathcal{LA} -submodule of an \mathcal{LA} -module $M_1 \times M_2$ over an \mathcal{LA} -rings $R_1 \times R_2$, then A is a weakly prime \mathcal{LA} -submodule of M_1 .

Proof. Let m be any element of M_1 and let r be any element of R such that $0 \neq rm \in A$. Clearly, $(0,0) \neq (a,a)(m,0) = (am,0) \in A \times M_2$. Since $A \times M_2$ is a weakly prime $\mathcal{L}A$ -submodule of $M_1 \times M_2$, we have $(m,0) \in A \times M_2$ or $(a,a) \in (A \times M_2 : M_1 \times M_2)$. By Lemma 3.17, it follows that $m \in A$ or $a \in (A : M_1)$. Hence, A is a weakly prime $\mathcal{L}A$ -submodule of M_1 .

By Theorem 3.18, we immediately obtain the following corollary:

Corollary 3.19. Let M_1 and M_2 be two \mathcal{LA} -modules over \mathcal{LA} -rings R_1 and R_2 , respectively. If $M_1 \times A$ is a weakly prime \mathcal{LA} -submodule of an \mathcal{LA} -module $M_1 \times M_2$ over an \mathcal{LA} -rings $R_1 \times R_2$, then A is a weakly prime \mathcal{LA} -submodule of M_2 .

Theorem 3.20. Let M_1 and M_2 be two \mathcal{LA} -modules over \mathcal{LA} -rings R_1 and R_2 , respectively. Then the following conditions are equivalent.

- 1. A is a prime \mathcal{LA} -submodule of M_1 .
- 2. $A \times M_2$ is a prime $\mathcal{L}A$ -submodule of an $\mathcal{L}A$ -module $M_1 \times M_2$ over an $\mathcal{L}A$ -rings $R_1 \times R_2$.

Proof. First assume that A is a prime \mathcal{LA} -submodule of M_1 . Let (m_1, m_2) be any element of $M_1 \times M_2$ and let (a_1, a_2) be any element of $R_1 \times R_2$ such that $(a_1, a_2) (m_1, m_2) = (a_1m_1, a_2m_2) \in A \times M_2$. Clearly, $a_1m_2 \in A$. Then $m_1 \in A$ or $a_1 \in (A : M)$, since A is a prime \mathcal{LA} -submodule of M_1 . By Lemma 3.17, it follows that $(m_1, m_2) \in A \times M_2$ or $(a_1, a_2) \in (A : M_1) \times R_2 = (A : M_1) \times (M_2 : M_2) = (A \times M_2 : M_1 \times M_2)$. Therefore, $A \times M_2$ is a prime \mathcal{LA} -submodule of $M_1 \times M_2$ and so (2) implies (1).

It is clear that $2 \Rightarrow 1$.

By Theorem 3.20, we immediately obtain the following corollary:

Corollary 3.21. Let M_1 and M_2 be two \mathcal{LA} -modules over \mathcal{LA} -rings R_1 and R_2 , respectively. Then the following conditions are equivalent.

- 1. A is a prime \mathcal{LA} -submodule of M_2 .
- 2. $M_1 \times A$ is a prime $\mathcal{L}A$ -submodule of an $\mathcal{L}A$ -module $M_1 \times M_2$ over an $\mathcal{L}A$ -rings $R_1 \times R_2$.

Boletín de Matemáticas 26(2) 101-112 (2020)

By Theorem 3.20 and Corollary 3.21, we immediately obtain the following theorem:

Theorem 3.22. Let M_i be an \mathcal{LA} -module over \mathcal{LA} -rings R_i . Then the following conditions are equivalent.

- 1. A_i is a prime \mathcal{LA} -submodule of M_i .
- 2. $M_1 \times M_2 \times \ldots \times M_{j-1} \times A_j \times M_{j+1} \times \ldots \times M_n$ is a prime $\mathcal{L}\mathcal{A}$ -submodule of an $\mathcal{L}\mathcal{A}$ -module $\prod_{i=1}^n M_i$ over an $\mathcal{L}\mathcal{A}$ -ring $\prod_{i=1}^n R_i$.

Theorem 3.23. Let A and B be two proper \mathcal{LA} -submodules of an \mathcal{LA} -module M over an \mathcal{LA} -ring R such that $B \subseteq A$. Then the following properties hold.

- If A is a weakly prime (prime) LA-submodule of M, then A/B is a weakly prime (prime) LA-submodule of M/B.
- Let B be a weakly prime LA-submodule of M. If A/B is a weakly prime (prime) LA-submodule of M/B, then A is a weakly prime (prime) LAsubmodule of M.

Proof. 1. Let m be any element of M and let r be any element of R such that $0 \neq r(m+B) \in A/B$. Then we have $rm \in A$. If $rm = 0 \in A$, then r(m+B) = rm + B = 0 + B = B, a contradiction. Since A is a weakly prime $\mathcal{L}A$ -submodule of M, we have $m \in A$ or $r \in (A : M)$. Therefore $m + A \in A/B$ or $r \in (A/B : M/B)$ and hence A/B is a weakly prime $\mathcal{L}A$ -submodule of M/B.

2. Let *m* be any element of *M* and let *r* be any element of *R* such that $0 \neq rm \in A$. Then we have $r(m + B) = rm + B \in A/B$. For all $rm \in B$ since *B* is a weakly prime $\mathcal{L}A$ -submodule of *M*, we have $m \in B \subseteq A$ or $r \in (B:M) \subseteq (A:M)$. So we may assume that $rm \notin B$. This implies that $m + B \in A/B$ or $r \in (A/B:M/B)$. Therefore $m \in A$ or $r \in (A:M)$ and hence *A* is a weakly prime $\mathcal{L}A$ -submodule of *M*.

Theorem 3.24. Let A and B be two weakly prime $\mathcal{L}A$ -submodules of an $\mathcal{L}A$ -module M over an $\mathcal{L}A$ -ring R that are not prime $\mathcal{L}A$ -submodule. Then A + B is a weakly prime $\mathcal{L}A$ -submodule of M.

Proof. Since $(A + B)/B \cong B/(A + B)$, we have (A + B)/B is weakly prime \mathcal{LA} -submodule by Theorem 3.23 (1). Now the assertion follows from Theorem 3.23(2).

4. Conclusion

In this paper, we have studied some characteristics of prime and weakly prime \mathcal{LA} -submodules, and give some basic results about prime and weakly prime submodules of \mathcal{LA} -modules. First, we demonstrated that the notions of prime

and weakly prime \mathcal{LA} -submodules in an \mathcal{LA} -module. Then, we proved that an \mathcal{LA} -submodule A_j is a prime \mathcal{LA} -submodule of an \mathcal{LA} -module M_j over an \mathcal{LA} -ring R_j if and only if $M_1 \times M_2 \times \ldots \times M_{j-1} \times A_j \times M_{j+1} \times \ldots \times M_n$ is a prime \mathcal{LA} -submodule of an \mathcal{LA} -module $\prod_{i=1}^n M_i$ over an \mathcal{LA} -rings $\prod_{i=1}^n R_i$. At last, we discussed the relations between prime and weakly prime \mathcal{LA} -modules in an \mathcal{LA} -module.

References

- D. D. Anderson and E. Smith, Weakly prime ideals, Houston Journal of Math. 29 (2003), 831–840.
- [2] S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamkang J. of Math. 38 (2007), 247–252.
- [3] J. Dauns, *Prime modules*, J. Reine Angew. Math. 2 (1978), 156–181.
- [4] P. Holgate, Groupoids satisfying a simple invertive law, Mathematical Studies 61 (1992), 101–106.
- [5] F. Hussain, M. S. A. Khan, K. Rahman, and M. Khan, Congruences and external direct sum of *LA*-modules, Indian Journal of Science and Technology 8 (2015), no. 28, 1–7.
- [6] H. Mostafanasab, U. Tekir, and K. H. Oral, Weakly classical prime submodules, KYUNGPOOK Math. J. 56 (2016), 1085–1101.
- [7] Q. Mushtaq and M.S. Kamran, *Left almost group*, Proc. Pak. Acad. of Sciences 33 (1996), 1–2.
- [8] T. Shah, M. Raees, and G. Ali, On *LA-modules*, Int. J. Contemp. Math. Sciences 6 (2011), no. 21, 999–1006.
- [9] T. Shah and I. Rehman, On *LA-rings of finitely nonzero functions*, Int. J. Contemp. Math. Sciences 5 (2010), no. 5, 209–222.
- [10] S. M. Yusuf, On left almost ring, Proc. of 7th International Pure Mathematics Conference, 2006.