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Abstract
Aim of study: To assess selection methods via introgression to improve litter size in native and synthetic sheep breeds. 
Area of study: Sanandaj, Kurdistan, Iran.
Material and methods: Selection approaches were performed using classical, genomic, gene-assisted classical (GasClassical) 

and gene-assisted genomic (GasGenomic) selection. Litter size trait with heritability of 0.1 including two chromosomes was simu-
lated. On chromosome 1, a single QTL as the major gene was created to explain 40% of the total additive genetic variance. After 
simulation of a historical population, the animals from the last historical population were split into two populations. For the next 7 
generations, animals were selected for favorable or unfavorable alleles to create distinct breeds of A or B, respectively. Then from 
the last generation, both males and females from breed B were selected to create a native population. On the other hand, males from 
breed A and females from breed B were mated to simulate a synthetic population. Finally, intra-population selections were carried 
out based on high breeding values during the last five generations.

Main results: The genetic gain in the synthetic breed was higher than that of the native breed under all selection methods. The 
frequencies of favorable alleles after five generations in the classical, genomic, GasClassical and GasGenoimc selection approach-
es in the synthetic breed were 0.623, 0.730, 0.850 and 0.848, respectively.

Research highlights: Combining gene-assisted selection with classical or genomic selection has the potential to improve ge-
netic gain and increase the frequencies of favorable allele for litter size in sheep.
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Introduction

Litter size (LS) is defined as the number of lambs 
born per ewe lambing. In sheep, a large variation in 
litter size has been observed among and within 
breeds. A trait such as LS can be genetically affected 
by many genes with small effects as well as major 
genes with large effects (Drouilhet et al., 2009). The 
major genes frequency is one of the main factors in 

improving breeding program efficiency for LS in 
sheep (Elsen et al., 1994). Since the heritability of 
LS is low (Hanford et al., 2005; Mokhtari et al., 
2010), the selection based on the ewe’s own perfor-
mance might induce a slow genetic gain. In addition, 
DNA testing of major genes and learning about in-
heritance patterns shown that major genes could lead 
to improvement of ovulation rates and LS in sheep 
(Davis, 2005).
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domly mated for 1000 generations with an effective 
population size of 1000 animals (500 males and 500 
females). At the second step, two random samples 
consisting of 330 animals as founders (30 males and 
300 females for each breed) were drawn out of the last 
generation of historical population to simulate two dif-
ferent breeds, hereafter called A and B breeds. For the 
next 7 generations, using a random mating design, 
animals from breed A and B were selected based on 
favorable and unfavorable alleles of the major gene, 
respectively. Hence, two breeds were generated and 
fixed for favorable and unfavorable alleles. After fixa-
tion of favorable and unfavorable alleles, the breeding 
values of animals for LS were predicted using a thresh-
old model (Model 2 below). At the third step, 30 males 
and 300 females from the last generation of Breed B 
were selected based on high breeding values and 
treated as founders to generate the native breed. Fur-
thermore, to generate the synthetic breed, 30 males and 
300 females from the last generation of breed A and B, 
respectively, were selected based on high breeding 
values and treated as founders. The founder animals 
expanded over five generations and were selected and 
mated based on high breeding values and minimizing 
inbreeding. In order to have a constant population size 
across generations, each dam produced 5 offsprings 
with an equal probability of each sex. Replacement 
rates for males and females were 40% and 20%, re-
spectively. In generations G1 to G5, the native and the 
synthetic breeds were kept at a constant size of 1500 
breeding candidates per each breed and 30 males and 
300 females were selected in each generation as parents 
of the next generation. 

Genome structure

The LS trait in sheep was simulated with heritabil-
ity of 0.1. The genome consisted of 2 chromosomes, 
each 100 cM in length. For each chromosome, 10000 
markers and 100 QTLs were simulated (20000 SNPs 
and 200 QTLs in total). Due to the limitation in com-
putational requirements, only two chromosomes were 
considered. One of the QTLs at position 25.7 cM on 
chromosome 1 was considered as the major gene which 
explained 40% of the additive genetic variance for LS 
trait. This fraction of genetic variance for the major 
gene was similar to that reported in the Lacaune sheep 
by Bodin et al. (2014). Other QTLs were randomly 
distributed over the chromosomes. The rest of the ad-
ditive genetic variance (60%) was allocated to the re-
maining 199 QTLs. The QTLs effects were sampled 
from a gamma distribution with shape of parameter ϒ 
= 0.4. Biallelic SNP markers were randomly distrib-

When a major gene with desirable characteristics is 
detected in a particular breed, introduction and intro-
gression of this gene into other breeds might be desir-
able. The cross between two or more breeds and sub-
sequent mating among crossbred animals is considered 
a synthetic breed. Almost 418 synthetic breeds have 
been developed from the combination of two and more 
breeds (Rasali et al., 2006). One of the main purposes 
of developing synthetic breeds has been to increase 
prolificacy and reproduction efficiency (Hulet et al., 
1984; Fahmy, 1990). Hence, crossbreeding between 
high and low prolific breeds for increasing favorable 
allele frequencies in a synthetic breed appear to be use-
ful for improving LS. Previous studies have shown that 
breeding programs for introduction and introgression 
of favorable alleles such as the Booroola gene (FecB) 
into other sheep breeds is highly successful (Gootwine 
et al., 2008; Mishra et al., 2009).

Conventional or best linear unbiased prediction 
(CBLUP) selection is based on pedigree and pheno-
typic information (Henderson, 1975). Genomic selec-
tion, described by Meuwissen et al. (2001) is a method 
for improving quantitative traits in plant and animal 
breeding. This technique relies on the segmentation of 
the genome in thousands of intervals bracketed by 
contiguous markers and effects of all markers on the 
whole genome are estimated (Gaspa et al., 2015). 

Several major genes (casual mutations) have been 
identified for LS in sheep (Galloway et al., 2000; Souza 
et al., 2001; Hanrahan et al., 2004; Martinez-Royo et 
al., 2008; Drouilhet et al., 2009). The genomic selec-
tion method (Duchemin et al., 2012) has opened its 
way into sheep breeding programs. Combining ge-
nomic or classical selection with gene-assisted selection 
could be used for creating a synthetic sheep breed. 
Therefore, the objectives of this study were: (1) to 
compare classical, genomic, gene-assisted classical 
(GasClassical) and gene-assisted genomic (GasGe-
nomic) selection methods in introducing a favorable 
gene for the creation of a synthetic breed to improve 
LS; and (2) to track genetic gain between a native and 
a synthetic sheep breed via classical and genomic selec-
tion over five generations in a sheep population by 
simulation. 

Material and methods

Simulation

Simulations were performed (Fig. 1) based on the 
forward-in-time process using the QMSim software 
(Sargolzaei & Schenkel, 2009). The first step involved 
the historical population being generated and ran-
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trait such as LS. All parameters used for the simulation 
are summarized in Table 1.

Selection

Two selection strategies were used from G0 to G5. 
The first was creation of the synthetic breed to intro-
duce a favorable allele by classical, genomic, GasClas-
sical and GasGenomic selection and the second was 
the selection of superior animals in the native breed 
based on classical and genomic selection.

Prediction of breeding values

―Classical selection. The Bayesian method was 
used for prediction of breeding values (PBVs) based 
on pedigree and phenotypic information. For Bayesian 
method, the MCMCglmm R package developed by 

uted along the two chromosomes. The mutation rate 
for both markers and QTL was assumed 2.5×10-4 per 
locus per generation (Esfandyari et al., 2015). The true 
breeding value (TBV) for an individual was calculated 
by multiplying the genotype codes by the QTL ef-
fects. Finally, the phenotypic value of each individual 
i (yi), was created by adding a normally distributed 
residual ei ~ N 0,σ e

2( )  to the sum over QTLs of ge-
netic values as shown below:

 
yi =

k=1

m

∑xikα k +ei
 

(1)

Above, xik (i=1, …, n; k=1,…, m) is an element of 
the incidence marker matrix for additive genetic effects 
(αk) and ei is a random residual [ e ~ N 0,Iσ e

2( )], where 
σ e
2 is the residual variance. To convert a continuous 

trait into a threshold trait in each generation, 20% of 
the high-level phenotypes were considered to be 2, and 
the rest were considered as 1 to simulate a categorical 

19 

 1 

Figure 1. Structure of the simulation schemes.  2 
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Breed A and B, respectively, 
the breeding values of the 

animals were predicted 

Breed B (30 males and 300 females) 
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Figure 1. Structure of the simulation schemes.
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Hadfield (2010) was applied to analyze classical selec-
tion using BLUP methodology. The following animal 
model was used: 

 l = 1μ + Za + e (2)

where l is the vector of underlying latent variable for trait 
(one threshold and two categories of response), μ is the 
overall mean, 1 is a vector of ones, Z is the incidence 
matrix relating phenotypic records to the animals, a is a 
vector of random additive genetic effects with distribution 
a ~ N(0, Aσ a

2 ) and e is a vector of random residuals with 
e ~ N(0, Iσ e

2 ), where σ a
2  and σ e

2 are additive genetic and 
residual variances, respectively. A and I are the additive 
genetic relationship and the identity matrices, respec-
tively. A total of 300,000 rounds of Gibbs sampler were 
considered and the first 30,000 rounds were discarded as 
a burn-in period. The thinning interval was set to 100 
cycles. In each generation, pedigree and phenotypic re-
cords of new generation were added to the recent pedi-
gree and data file. Therefore, PBVs for every round of 
selection were re-calculated and the predicted breeding 
values were used for selection. 

―Genomic selection. The Bayes B method was used 
to estimate marker effects with Monte Carlo Markov 
Chain (MCMC). In Bayes B, it is assumed that each 
SNP has either an effect of zero or non-zero with prob-
abilities of π and 1-π, respectively, and for those with 

non-zero effect, it is assumed that each SNP has a dif-
ferent variance. The BGLR (Bayesian Generalized 
Linear Regression) package of R software (Perez & 
Campos, 2014) was used for prediction of genomic 
breeding values (GPBVs). The Gibbs sampler was run 
for 30,000 rounds with a 3,000 burn-in period. The 
thinning interval was set to 10 cycles. The following 
model was used to estimate the genomic breeding values:

 
l = µ +

j=1

n

∑x ijm j + e
 

(3)

where l is the vector of underlying latent variable for 
trait (one threshold and two categories of response), μ 
is the overall mean, 1 is a vector of ones, xij is an inci-
dence matrix for marker j and individual i, mj is a 
random effect for marker j and e is the random resid-
ual error with distribution of  e ~ N(0, Iσ e

2 ) . In each 
generation, the effects of markers were estimated using 
female phenotypes. GPBVs for male and females were 
calculated as the sum of all marker effects according 
to their marker genotypes:

 GPBVi =  
j=1

n

∑x ijm j
!  (4)

where xij is the genotype of animal i at locus j, and mj
!  

is the estimated substitution effect of marker j.

Table 1. Parameters of the simulation process.

Historical and current populations

No. of generations (effective population size) 1000 (1000)
Breed A B Native Synthetic
No. of founder sires (dams) 30 (300) 30 (300) 30 (300) 30 (300)
Criteria for selection/culling Favorable allele/ 

age
Unfavorable  

allele/age
High breeding 

value/age
High breeding 

value/age
No. of generations for each breed 7 7 5 5
Mating system Random Random Minimizes  

inbreeding
Minimizes  
inbreeding

No. of offspring per dam 5
Replacement ratio for males (females) 0.4 (0.2)
Sex probability for offspring 0.5

Genome

No. of chromosomes 2
Total length of chromosome (M) 2
Position of markers and QTLs Random
No. of QTL 200
No. of markers 20000
Marker and QTL mutation rate 2.5 × 10–4

Heritability  0.1
Variance of QTL as the major gene (%) 40
Position of major gene (cM) 25.7 
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where D = freq(AB) – (freq(A) × freq(B)); freq(AB) 
is frequency of observed haplotype; and freq(A) and 
freq(B) are frequencies of alleles A and B, respec-
tively.

Evaluation of scenarios

The genetic gain, frequency of favorable allele and 
mean of inbreeding coefficient were monitored across 
generations for all selection schemes. The genetic gain 
per generation was computed as the average TBV over 
time. In addition, the accuracy of prediction for both 
classical and genomic selection methods was obtained 
as the Pearson correlation between the TBVs and (G)
PBVs in each generation. A total of 10 replicates were 
produced for each scenario and selection method. The 
10 replicates were simulated separately, but the initial 
generation (G0) was identical for all scenarios within 
each replicate.

Results

Native breed

The results obtained using simulations performed 
for the native breed are summarized in Table 2. The 
results obtained under classical and genomic selection 
methods showed that the trend of true breeding values 
increased across generations. The mean of true breed-
ing values for both methods were -0.22 at G0 and in-
creased to 0.264 and 0.621 at G5 for classical and 
genomic selection, respectively. Furthermore, the mean 
of true breeding values obtained under genomic selec-

Combining gene-assisted selection with 
classical and genomic selection

In the present study, selection and culling of animals 
in each generation was based on (G)PBVs and age, re-
spectively. For combining gene-assisted selection with 
classical and genomic selection (GasClassical and 
GasGenomic), we developed an alternative approach that 
allows selection of animals with favorable allele and the 
highest (G)PBVs as the parents of the next generation. 
According to this approach: 1) the PBV or GPBV for 
each animal was predicted using model 2 and 3, respec-
tively; 2) homozygosity or heterozygosity of each animal 
was determined based on the favorable allele, and 3) 
based on the equation below, the weighted predicted 
breeding value of each animal was obtained:

 G( )PBVW = G( )PBVp +NFA  (5)

where G( )PBVW = G( )PBVp +NFA is the weighted PBV or GPBV, 
G( )PBVW = G( )PBVp +NFAis the predicted PBV or GPBV for each ani-

mal based on model 2 and 3, respectively, and NFA is 
number of favorable alleles in each animal. If an animal 
had 2, 1 or zero copies of the favorable allele, NFA was 
2, 1 and 0, respectively (Fig. S1 [suppl.]). 

Linkage disequilibrium (LD)

The LD in the native and the synthetic breeds from 
G0 to G5 was assessed by r2 among all pairs of markers 
using QMSim software (Sargolzaei & Schenkel, 2009):

 r2 = D2

fre(A)× freq(a)× freq(B)× freq(b)
 (6)

Table 2. Mean of true breeding values, accuracy of prediction (r) and mean of inbreeding coefficient (F) in each generation 
based on classical and genomic selection in the native breed.

Selection method Gen MeanTBV r(PBV,TBV) F

Classical 0 -0.220 ± 0.155 0.253 ± 0.056 0.000 ± 0.000
1 -0.146 ± 0.154 0.309 ± 0.064 0.000 ± 0.000
2 -0.064 ± 0.168 0.374 ± 0.066 0.000 ± 0.000
3 0.042 ± 0.187 0.370 ± 0.102 0.000 ± 0.000
4 0.146 ± 0.206 0.375 ± 0.055 0.004 ± 0.004
5 0.264 ± 0.226 0.358 ± 0.075 0.016 ± 0.007

Genomic 0 -0.220 ± 0.155 0.669 ± 0.077 0.000 ± 0.000
1 -0.145 ± 0.155 0.696 ± 0.067 0.000 ± 0.000
2 0.017 ± 0.170 0.722 ± 0.061 0.000 ± 0.000
3 0.209 ± 0.197 0.763 ± 0.047 0.000 ± 0.000
4 0.416 ± 0.215 0.779 ± 0.047 0.000 ± 0.000
5 0.621 ± 0.228 0.738 ± 0.046 0.002 ± 0.001



Meysam Latifi, Amir Rashidi, Rostam Abdollahi-Arpanahi and Mohammad Razmkabir

Spanish Journal of Agricultural Research March 2020 • Volume 18 • Issue 1 • e0403

6

tion was 74% higher than that of the classical selection. 
Thus, the accuracy of prediction using genomic selec-
tion was higher compared to the classical selection. 
The highest accuracies for classical and genomic selec-
tion was obtained in G4 and afterwards, decreased in 
G5 (Table 2). At G5, the mean of inbreeding coeffi-
cients for the native breed under classical and genom-
ic selection were 0.016 and 0.002, respectively.

Synthetic breed

The results obtained using simulations performed 
for the synthetic breed are summarized in Table 3. As 
expected, regardless of selection methods, mean of true 
breeding values increased across generations. Genetic 
gain obtained under GasGenomic (1.347) was higher 
than that of obtained using the GasClassical selection 
(1.007), and the value of 1.319 obtained for Genomic 
selection was higher than that of obtained for the clas-
sical selection method (0.884). Combining gene assist-
ed-selection with classical and genomic selection led 
to higher genetic gain. Consequently, genetic gain 
obtained by GasGenomic and GasClassical selection 
methods was greater than those of genomic and clas-

sical selection (2% and 16% higher genetic gain from 
G0 to G5, respectively). As shown in Table 3, genom-
ic and GasGenomic selection resulted in better accura-
cies of PBV prediction in comparison with classical 
and GasClassical selection methods. The highest ac-
curacy for classical, genomic, GasClassical and 
GasGenomic selection in the synthetic breed were 
obtained at G4 which decreased slightly at G5 (Table 
3). For the synthetic breed, a similar pattern to that of 
the native breed was observed for the mean of inbreed-
ing coefficient. At G5, mean of inbreeding coefficients 
were 0.011, 0.002, 0.008 and 0.002 for classical, 
genomic, GasClassical and GasGenomic genomic se-
lection, respectively. The mean of inbreeding coeffi-
cient in classical and GasClassical selection varied 
more compared to genomic and GasGenomic selection.

The frequency of the favorable allele in each gen-
eration under classical, genomic, GasClassical and 
GasGenomic selection in the synthetic breed for 10 
replicates is shown in Fig. 2. The frequency of the fa-
vorable allele started with an initial value of 0.091 at 
G0 and reached to 0.623, 0.730, 0.850 and 0.848 at G5 
for classical, genomic, GasClassical and GasGenomic 
selection methods, respectively (Table 3). The fre-
quency of favorable allele under classical and genomic 

Table 3. Mean of true breeding values, accuracy of prediction (r) and mean of inbreeding coefficient (F) in each generation 
based on classical, genomic, GasClassical and GasGenomic selection methods in the synthetic breed.

Selection 
method Gen MeanTBV r(PBV,TBV) Frequency1 F

Classical 0 -0.142 ± 0.151 0.263 ± 0.034 0.091 ± 0.000 0.000 ± 0.000
1 0.282 ± 0.154 0.298 ± 0.066 0.500 ± 0.000 0.000 ± 0.000
2 0.332 ± 0.149 0.361± 0.095 0.451 ± 0.005 0.000 ± 0.000
3 0.384 ± 0.163 0.506 ± 0.057 0.429 ± 0.024 0.000 ± 0.000
4 0.530 ± 0.168 0.514 ± 0.059 0.491 ± 0.051 0.002 ± 0.003
5 0.742 ± 0.176 0.462 ± 0.086 0.623 ± 0.072 0.011 ± 0.004

Genomic 0 -0.142 ± 0.151 0.581 ± 0.089 0.091 ± 0.000 0.000 ± 0.000
1 0.281 ± 0.153 0.646 ± 0.056 0.500 ± 0.000 0.000 ± 0.000
2 0.399 ± 0.144 0.720 ± 0.052 0.449 ± 0.003 0.000 ± 0.000
3 0.579 ± 0.177 0.799 ± 0.043 0.442 ± 0.003 0.000 ± 0.000
4 0.852 ± 0.198 0.834 ± 0.045 0.537 ± 0.004 0.001 ± 0.001
5 1.177 ± 0.207 0.820 ± 0.048 0.730 ± 0.003 0.002 ± 0.003

GasClassical 0 -0.142 ± 0.151 0.251 ± 0.044 0.091 ± 0.000 0.000 ± 0.000
1 0.279 ± 0.152 0.303 ± 0.084 0.500 ± 0.000 0.000 ± 0.000
2 0.304 ± 0.168 0.386 ± 0.053 0.449 ± 0.005 0.000 ± 0.000
3 0.460 ± 0.184 0.510 ± 0.060 0.550 ± 0.033 0.000 ± 0.000
4 0.666 ± 0.220 0.516 ± 0.049 0.700 ± 0.053 0.002 ± 0.003
5 0.883 ± 0.251 0.482 ± 0.065 0.850 ± 0.043 0.008 ± 0.005

GasGenomic 0 -0.142 ± 0.151 0.635 ± 0.089 0.091 ± 0.000 0.000 ± 0.000
1 0.281 ± 0.151 0.672 ± 0.068 0.500 ± 0.000 0.000 ± 0.000
2 0.407 ± 0.145 0.741 ± 0.052 0.449 ± 0.004 0.000 ± 0.000
3 0.637 ± 0.150 0.784 ± 0.050 0.538 ± 0.027 0.000 ± 0.000
4 0.915 ± 0.159 0.805 ± 0.041 0.698 ± 0.003 0.001 ± 0.000
5 1.205 ± 0.184 0.793 ± 0.052 0.848 ± 0.005 0.002 ± 0.003

1Frequencies of favorable allele
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selection. Moreover, genetic gain in the synthetic breed 
under GasGenomic (60%) and Genomic (57%) selec-
tion methods was higher than that obtained for the 
native breed using the genomic selection method. 

Linkage disequilibrium in the native and the 
synthetic breeds

The average LD decay obtained using genomic se-
lection method for all possible pairs of markers in the 
native and the synthetic breeds are shown in Fig. 4. As 
illustrated, the maximum average of r2 for the native 
and the synthetic breeds (genomic and GasGenomic 
selection) at distance 0.0 to 50 kb at G0 were 0.19 and 
0.18, respectively. However, the minimum average of 
r2 at a distance of 400 to 500 kb for the native and the 

selection (Figs. 2a and 2c) showed high fluctuations 
whereas when applying GasClassical and GasGenomic 
selections, no fluctuation was observed over 10 repli-
cates (Figs. 2b and 2d). 

Comparison between the native 
and the synthetic breeds

Mean of true breeding values for the native and the 
synthetic breeds obtained using different methods are 
shown in Fig. 3. As illustrated, genetic gains for LS in 
the synthetic breed under classical or genomic selec-
tions were higher than selections in the native breed. 
Genetic gain in the synthetic breed with GasClassical 
(117%) and classical (82%) selection methods was 
greater than that in the native breed under classical 

Figure 2. Pattern of allele frequencies of the favorable allele for the synthetic breed under a) Classical b) Gene-assisted classical 
(GasClassical), c) Genomic and d) Gene-assisted genomic (GasGenomic) selection across 10 replicates (the black line is the mean 
of 10 replicates).
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synthetic breeds (genomic and GasGenomic selection) 
at G0 were 0.11 and 0.10, respectively. For the native 
and the synthetic breeds (genomic and GasGenomic 
selection) at G5, the average maximum values of r2 for 
distance of 0.0 to 50 kb were 0.30 and 0.26, respec-
tively. In addition, the average minimum values of r2 
for the native and the synthetic breeds (genomic and 
GasGenomic selection) from 400 to 500 kb at G5 were 
0.23 and 0.18, respectively. For the native and the 
synthetic breeds, by increasing marker pair distance, 
the values of r2 decreased at G0 and G5 (Fig. 4). The 
native breed showed higher levels of LD in comparison 
with the synthetic breed at G0 and G5. 

Discussion

The results of this study showed that employing 
genomic and GasGenomic selection methods rather 
than Classical and GasClassical selection lead to in-
crease in genetic gain in the native and the synthetic 
breeds. Meuwissen et al. (2001) showed that using 
genomic selection method resulted in an increased ac-
curacy of selection for traits with low heritability and 
female sex-limited such as LS. A reason for the high 
accuracy of prediction in genomic selection could be 
due to use of the marker information to capture the 
Mendelian sampling terms (Daetwyler et al., 2007). 
The results reported by other researchers indicated that 
the accuracy of prediction depends on the extent of 

linkage disequilibrium, the density of markers, statisti-
cal methods, heritability of trait and selection design 
(Wang et al., 2013; Gowane et al., 2018; Karimi et al., 
2019). Using simulated data, higher accuracies were 
reported for genomic selection compared to classical 
selection in dairy cattle (Gaspa et al., 2015), swine 
(Putz et al., 2018) and American mink (Karimi et al., 
2019). In the current study, the accuracies in all selec-
tion methods increased from G0 to G4. Afterward, a 
decrease was observed in G5, because individuals in 
this generation did not have any recorded offspring. 

When the combination of gene-assisted selection with 
classical and genomic selection was carried out for 
improvement of a trait by introducing a major gene, 
genetic gain was higher than when classical and ge-
nomic selection were used alone. These findings indi-
cate that if the major gene is controlling a large propor-
tion of genetic variance in a population, the combination 
of classical and genomic selection with gene-assisted 
selection leads to an increase in genetic gain. Pedersen 
et al. (2009) indicated that using genotype information 
increased within-family selection and lead to an increase 
in genetic gain as the accuracy of breeding values in-
creased. Generally, this result was obtained using clas-
sical and genomic selection methods in the synthetic 
breed which resulted in higher genetic gain compared 
to the native breed. High genetic gain for the synthetic 
breed led to an increase of heterozygosity at the QTL 
level and accuracy of selection method (Ødegard et al., 
2009b). Our results indicated that two breeds (A and B) 

Figure 3. Mean of breeding values for the native and the synthetic breeds with Genomic and Clas-
sic selection methods across 10 replicates.
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GasClassical selection method (31%). These results are 
in agreement with Ødegard et al. (2009a), who stated 
that combining genomic selection with gene-assisted 
selection for the target QTL acted as an additional ac-
tion against decline of the target QTL and gave surpass 
genetic gain. 

The study presented here about the extent of the LD 
can be used to interpret the difference observed among 
the breeds. Observed LD is a function of the recombi-
nation rate between loci within a breed and the selec-
tion performed for specific quantitative or qualitative 
traits of interest (Prieur et al., 2017). Each of the breeds 
showed the decrease in r2 with increased distance be-
tween markers. In the present study, the levels of LD 
for the native and the synthetic breeds at a distance 
from 0.0 to 50 kb at G0 and G5 was in agreement with 
the results reported by Kijas et al. (2014) at a distance 
of 10 kb. For the native and synthetic breeds under 
selection, the level of LD increased over the genera-
tions. The high level of LD showed a high level of 
selection intensity over generations for these breeds. 
The extent of LD could be increased by several factors, 
including inbreeding, population structure, and bottle-
necks (Pritchard & Przeworski, 2001). In this study, 
the extent of LD was found to be remarkably different 
between the native and the synthetic breeds (Fig. 4). 
This could be due to the creation of the synthetic breed 
from two cross-breeds (Breed A and B). Toosi et al. 
(2010) mentioned that individual animals are less re-
lated to each other in a crossbreed population; there-
fore, LD haplotypes in crossbred populations are nar-
rower than in a purebred. Results of the current study 
showed that the LD decay was different between 
breeds, and similar results in sheep were reported by 
Al-Mamun et al. (2015). 

were separated based on the frequencies of the major 
gene after 7 generations. If the two breeds were consid-
erably divergent, the relative advantage of crossing 
could be higher.

In both the native and the synthetic breeds, the rate 
of increase of inbreeding coefficient was lower in ge-
nomic selection compared to classical selection. Dae-
twyler et al. (2007) stated that the low inbreeding rate 
in genomic selection compared to the classical selection 
method is due to an increase in prediction accuracy of 
the Mendelian sampling. In our simulation, the mating 
system was based on optimized mating design. Thus, 
pairs of mates were chosen based on minimizing ge-
netic relationship to create the next generation (Sargol-
zaei & Schenkel, 2009). Hence, the rate of inbreeding 
coefficient in both genomic and classical selection was 
lower than the results reported in previous research 
(Ødegard et al., 2009b; Gaspa et al., 2015). 

The frequency of favorable allele after five genera-
tions in classical, genomic, GasClassical and GasGe-
nomic selection methods in the synthetic breed were 
0.62, 0.73, 0.85 and 0.85, respectively (Table 3). Re-
sults obtained in our study showed that the frequency 
of favorable allele in genomic selection increased by 
more than 20% compared to the classical selection. 
These findings indicate that genomic selection is more 
effective in increasing the frequency of favorable allele 
than the classical selection without any knowledge of 
the major gene’s position. Under GasClassical and 
GasGenomic selection methods, the frequency of the 
favorable allele was never declined in comparison with 
classical and genomic selections (Fig. 2). The fre-
quency of the favorable allele was the same in the 
GasClassical and GasGenomic, but the rate of genetic 
gain in the GasGenomic was higher than that of the 

Figure 4. The average LD decay for the native and the synthetic breeds (genomic and GasGenomic selection) at generation zero 
(G0) and five (G5) across 10 replicates.
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The results of this study confirmed that reproduction 
and sex-limited traits such as LS in sheep can be im-
proved by using genomic selection methods. The results 
also demonstrated that inclusion of information about 
known causal mutations into genomic and classical 
selection methods can lead to increase in frequency of 
favorable allele and subsequently resulted in higher 
genetic gain in the synthetic breed.

Acknowledgments

The authors are sincerely grateful to the Dr. M Hos-
sein Yazdi (Head of Technical Analysis Division, 
Akvaforsk Genetics Center AS, N-6600 Sunndalsøra, 
Norway) and Dr. Mehdi Bohlouli and Carsten Scheper 
(Institute of Animal Breeding and Genetics, Justus-
Liebig-University Gießen, 35390 Gießen, Germany) 
for the valuable discussions.

References

Al-Mamun HA, Clark SA, Kwan P, Gondro C, 2015. Ge-
nome-wide linkage disequilibrium and genetic diversity 
in five populations of Australian domestic sheep. Genet 
Sel Evol 47: 1-14. https://doi.org/10.1186/s12711-015-
0169-6

Bodin L, Martin PM, Raoul J, 2014. Effects of the FecL 
major gene on mean and variance of litter size in the 
Lacaune meat sheep population. Proc 10th World Conf 
on genetics applied to livestock production (WCGALP), 
Vancouver (Canada), Aug 17-22.

Daetwyler HD, Villanueva B, Bijma P, Woolliams JA, 2007. 
Inbreeding in genome-wide selection. J Anim Breed Genet 
124: 369-376. https://doi.org/10.1111/j.1439-0388.2007. 
00693.x

Davis GH, 2005. Major genes affecting ovulation rate in 
sheep. Genet Sel Evol 37: 11-23. https:/ /doi.
org/10.1186/1297-9686-37-S1-S11

Drouilhet L, Lecerf F, Bodin L, Fabre S, Mulsant P, 2009. 
Fine mapping of the FecL locus influencing prolificacy 
in Lacaune sheep. Anim Genet 40: 804-812. https://doi.
org/10.1111/j.1365-2052.2009.01919.x

Duchemin S, Colombani C, Legarra A, Baloche G, Larroque 
H, Astruc JM, Barillet F, Robert-Granié C, Manfredi E, 
2012. Genomic selection in the French Lacaune dairy 
sheep breed. J Dairy Sci 95: 2723-2733. https://doi.
org/10.3168/jds.2011-4980

Elsen JM, Bodin L, Francois D, Poivey JP, Teyssier J, 1994. 
Genetic improvement of litter size in sheep. Proc 5th 
World Conf on genetics applied to livestock production 
(WCGALP). Guelph, Ontario, (Canada), pp: 237-244.

Esfandyari H, Sorensen AC, Bijma P, 2015. Maximizing 
crossbred performance through purebred genomic selec-
tion. Genet Sel Evol 47: 16. https://doi.org/10.1186/
s12711-015-0099-3

https://doi.org/10.4141/cjas90-096
https://doi.org/10.4141/cjas90-096
https://doi.org/10.1038/77033
https://doi.org/10.1016/j.livsci.2015.05.020
https://doi.org/10.1016/j.anireprosci.2007.09.009
https://doi.org/10.1101/298042
https://doi.org/10.1016/j.smallrumres.2004.07.003
https://doi.org/10.1016/j.smallrumres.2004.07.003
https://doi.org/10.1095/biolreprod.103.023093
https://doi.org/10.1095/biolreprod.103.023093
https://doi.org/10.2307/2529430
https://doi.org/10.2527/jas1984.58115x
https://doi.org/10.1371/journal.pone.0213873
https://doi.org/10.1371/journal.pone.0213873
https://doi.org/10.1111/age.12197
https://doi.org/10.1111/j.1365-2052.2008.01707.x
https://doi.org/10.1111/j.1365-2052.2008.01707.x
https://doi.org/10.1186/s12711-015-0169-6
https://doi.org/10.1186/s12711-015-0169-6
https://doi.org/10.1111/j.1439-0388.2007.00693.x
https://doi.org/10.1111/j.1439-0388.2007.00693.x
https://doi.org/10.1186/1297-9686-37-S1-S11
https://doi.org/10.1186/1297-9686-37-S1-S11
https://doi.org/10.1111/j.1365-2052.2009.01919.x
https://doi.org/10.1111/j.1365-2052.2009.01919.x
https://doi.org/10.3168/jds.2011-4980
https://doi.org/10.3168/jds.2011-4980
https://doi.org/10.1186/s12711-015-0099-3
https://doi.org/10.1186/s12711-015-0099-3


Spanish Journal of Agricultural Research March 2020 • Volume 18 • Issue 1 • e0403

11Introduction of a major gene to improve litter size in sheep population

disequilibrium and efective population size in New Zea-
land sheep using three diferent methods to create genetic 
maps. BMC Genet 18: 68. https://doi.org/10.1186/s12863-
017-0534-2

Pritchard JK, Przeworski M, 2001. Linkage disequilibrium 
in humans: models and data. Am J Hum Genet 69:1-14. 
https://doi.org/10.1086/321275

Putz AM, Tiezzi F, Maltecca C, Gray KA, Knauer MT, 2018. 
A comparison of accuracy validation methods for genom-
ic and pedigree-based predictions of swine litter size traits 
using Large White and simulated data. J Anim Breed 
Genet 135: 5-13. https://doi.org/10.1111/jbg.12302

Rasali DP, Hrestha JNB, Crow GH, 2006. Development of 
composite sheep breeds in the world: A review. Can J 
Anim Sci 86: 1-24.

Sargolzaei M, Schenkel FS, 2009. QMSim: a largescale 
genome simulator for livestock. Bioinformatics 25: 680-
681. https://doi.org/10.1093/bioinformatics/btp045

Souza C, MacDougall C, Campbell B, McNeilly A, Baird D, 
2001. The Booroola (FecB) phenotype is associated with 
a mutation in the bone morphogenetic receptor type 1 B 
(BMPR1B) gene. J Endocrinol 169: R1-R6. https://doi.
org/10.1677/joe.0.169r001

Toosi A, Fernando RL, Dekkers JCM, 2010. Genomic selec-
tion in admixed and crossbred populations. J Anim Sci 
88: 32-46. https://doi.org/10.2527/jas.2009-1975

Wang CL, Ding XD, Wang JY, Liu JF, Fu WX, Zhang Z, Yin 
ZJ, Zhang, 2013. Bayesian methods for estimating GEBVs 
of threshold traits. Heredity 110: 213-219. https://doi.
org/10.1038/hdy.2012.65

Meuwissen THE, Hayes B, Goddard ME, 2001. Prediction 
of total genetic value using genome-wide dense marker 
maps. Genetics 157: 1819-1829.

Mishra AK, Arora AL, Kumar S, Prince LLL, 2009. Studies 
on effect of Booroola (FecB) genotype on lifetime ewe’s 
productivity efficiency, litter size and number of weaned 
lambs in Garole × Malpura sheep. Anim Reprod Sci 113: 
293-298. https://doi.org/10.1016/j.anireprosci.2008.06.002

Mokhtari MS, Rashidi A, Mohamadi Y, 2010. Estimation of 
genetic parameters for post-weaning traits of Kermani 
sheep. J Anim Sci 80: 22-27. https://doi.org/10.1016/j.
smallrumres.2008.08.002

Ødegård J, Sonesson Ak, Yazdi MH, Meuwissen THE, 2009a. 
Introgression of a major QTL from an inferior into a su-
perior population using genomic selection. Genet Sel Evol 
41: 1-10. https://doi.org/10.1186/1297-9686-41-38

Ødegard J, Yazdi MH, Sonesson AK, Meuwissen THE, 
2009b. Incorporating desirable genetic characteristics from 
an inferior into a superior population using genomic selec-
tion. Genetics 181: 737-745. https://doi.org/10.1534/genet-
ics.108.098160

Pedersen LD, Sørensen AC, Berg P, 2009. Marker-assisted 
selection can reduce true as well as pedigree-estimated 
inbreeding. J Dairy Sci 92: 2214-2223. https://doi.
org/10.3168/jds.2008-1616

Perez P, de los Campos G, 2014. Genome-wide regression and 
prediction with the BGLR statistical package. Genetics 198: 
483-495. https://doi.org/10.1534/genetics.114.164442

Prieur V, Clarke SM, Brito LF, McEwan JC, Lee MA, Braun-
ing R, Dodds KG, Auvray B, 2017. Estimation of linkage 

https://doi.org/10.1186/s12863-017-0534-2
https://doi.org/10.1186/s12863-017-0534-2
https://doi.org/10.1086/321275
https://doi.org/10.1111/jbg.12302
https://doi.org/10.1093/bioinformatics/btp045
https://doi.org/10.1677/joe.0.169r001
https://doi.org/10.1677/joe.0.169r001
https://doi.org/10.2527/jas.2009-1975
https://doi.org/10.1038/hdy.2012.65
https://doi.org/10.1038/hdy.2012.65
https://doi.org/10.1016/j.anireprosci.2008.06.002
https://doi.org/10.1016/j.smallrumres.2008.08.002
https://doi.org/10.1016/j.smallrumres.2008.08.002
https://doi.org/10.1186/1297-9686-41-38
https://doi.org/10.1534/genetics.108.098160
https://doi.org/10.1534/genetics.108.098160
https://doi.org/10.3168/jds.2008-1616
https://doi.org/10.3168/jds.2008-1616
https://doi.org/10.1534/genetics.114.164442

