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Abstract
Aim of study: The objective of this study was to identify the autosomal genomic regions associated with genetic differentiation 

between three commercial strains of Iberian pig.
Area of study: Extremadura (Spain).
Material and methods: We used the Porcine v2 BeadChip to genotype 349 individuals from three varieties of Iberian pig 

(EE, Entrepelado; RR, Retinto; and TT, Torbiscal) and their crosses. After standard filtering of the Single Nucleotide 
Polymorphism (SNP) markers, 47, 67, and 123 haplotypic phases from EE, RR, and TT origins were identified. The allelic 
frequencies of 31,180 SNP markers were used to calculate the fixation index (FST) that were averaged in sliding windows 
of 2Mb.

Main results: The results confirmed the greater genetic closeness of the EE and RR varieties, and we were able to identify sev-
eral genomic regions with a divergence greater than expected. The genes present in those genomic regions were used to perform an 
Overrepresentation Enrichment Analysis (ORA) for the Gene Ontology (GO) terms for biological process. The ORA indicated that 
several groups of biological processes were overrepresented: a large group involving morphogenesis and development, and others 
associated with neurogenesis, cellular responses, or metabolic processes. These results were reinforced by the presence of some 
genes within the genomic regions that had the highest genomic differentiation.

Research highlights: The genomic differentiation among varieties of the Iberian pig is heterogeneous along the genome. The 
genomic regions with the highest differentiation contain an overrepresentation of genes related with morphogenesis and develop-
ment, neurogenesis, cellular responses and metabolic processes.
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in the analysis, which covered an autosomal genome of 
22.61 Mb that had a density of one SNP marker per 
7251.38 bp. In first place, we tried to corroborate the 
divergence between varieties by using a multidimen-
sional scaling analysis (MDS) with the cmdscale () 
command from R package stats (R Core Team, 2019), 
and a maximum likelihood estimation of individual 
ancestries using the ADMIXTURE software (Alexander 
et al., 2009) with the assumption of three populations. 

In a second step, we performed an imputation pro-
cess of missing alleles and the reconstruction of the 
haplotype phases for the genotyped individuals and 
their parents with the FImpute software (Sargolzaei et 
al., 2014). First, a haplotype library built from refer-
ence individuals (24 sires and 30 dams with more than 
4 progeny) was generated using the save_hap_lib op-
tion of the FImpute software. Second, we used this 
haplotype library to reconstruct the founder haplo-
typic phases of each Iberian pig variety using ad-hoc 
software written in FORTRAN90 and we were able to 
identify 47, 67 and 123 different haplotypes for EE, 
RR and TT, respectively. Third, these haplotypes were 
used to calculate allelic frequencies for each population 
and SNP by counting the alleles and dividing by the 
number of haplotypes. These allelic frequencies were 
used to calculate the Weir-Cockerham (Weir & Cock-
erham, 1984) estimator of the fixation index (FSTi) 
(Wright, 1951) for each (ith) SNP among the three 
populations and for each specific pair of populations, 
Entrepelado-Retinto (FST(ER)i), Entrepleado-Torbiscal 
(FST(ET)i ) and Retinto-Torbiscal (FST(RT)i). Finally, the 
single SNP FST statistics were averaged in sliding win-
dows of 1, 2 and 3 Mb centered at each SNP. 

The genes located within the genomic regions as-
sociated with an average FST greater than the 95th and 
99.9th percentiles were identified using the Biomart 
Tool (Smedley et al., 2015) with the Sus scrofa 11.1 
genome map. The genes within the genomic regions 
that had an average FST greater than the 95th percentile 
were used in an overrepresentation enrichment analy-
sis (ORA) with the gene ontology (GO) terms for bio-
logical process for Homo sapiens and Sus scrofa with 
the WEB-based Gene SeT AnaLysis Toolkit (Wang 
et al., 2017; www.webgestalt.org) and the complete 
genome as a reference set. 

Results and discussion

Genomic divergence between populations

The results of the MDS and the estimation of indi-
vidual ancestries with maximum likelihood are pre-
sented in Figures 1 and 2, respectively. Both approach-

Introduction

The Iberian pig is a native breed from the Iberian 
Peninsula which has high adipogenic capability and meat 
of excellent quality (Ventanas et al., 2005). It is the larg-
est extant population of the Mediterranean-type pig and, 
traditionally, its geographical distribution has been 
limited to the southwest of the Iberian Peninsula. The 
population structure of the Iberian pig comprises sev-
eral varieties that have diverged because of genetic drift, 
selection, and adaptation. Some authors have reported 
that genetic variability among Iberian varieties is as high 
as it is among commercial breeds of white pig (Laval 
et al., 2000; Martínez et al., 2000; Fabuel et al., 2004).

Genomic diversity between Iberian pig varieties is 
not expected to be homogeneous throughout the ge-
nome. In fact, it is plausible that some genomic regions 
exhibit higher divergence because of selection or ad-
aptation processes (Qanbari & Simianer, 2014). As far 
as we know, few studies (Herrero-Medrano et al., 2013; 
Silió et al., 2016) have studied the genomic diversity 
of the Iberian population using high-density genotypes, 
and none of them has analyzed the genomic differen-
tiation between the Iberian varieties throughout of the 
genome. Therefore, the objective of this study was to 
identify the genomic regions that had the highest degree 
of differentiation among three of the most widely used 
Iberian pig varieties (EE, Entrepelado; RR, Retinto; 
and TT, Torbiscal). In addition, the study identified 
candidate genes and the biological processes associ-
ated with the differentiation between varieties.

Material and methods

Genotypes from 349 individuals with the Porcine
SNP60 v2 BeadChip (Illumina Inc., San Diego, USA) 
were used. The data set included purebred Entrepelado 
(EE, n=21 individuals), Retinto (RR, n=50) and Torbis-
cal (TT, n=78). In addition, there were individuals from 
all of the reciprocal crosses: Entrepelado × Retinto (ER) 
and Retinto × Entrepelado (RE, n=25), Entrepelado × 
Torbiscal (ET) and Torbiscal × Entrepelado (TE, n=37), 
and Retinto × Torbiscal (RT) and Torbiscal × Retinto 
(TR, n=138). All analyzed individuals were descendants 
from 44 sires (12 EE, 14 RR and 18 TT) and 139 dams 
(24 EE, 42 RR and 73 TT) with an average progeny 
(± standard deviation) of 7.93 ± 8.01 and 2.51 ± 8.01, 
respectively. Genotypes were filtered using PLINK (Pur-
cell et al., 2007). The criteria of selection included a call 
rate higher than 95% at the individual and single nu-
cleotide polymorphism (SNP) levels and a minor allelic 
frequency (MAF) > 0.01 for autosomal SNPs. Subject 
to those criteria, 31,180 of 61,565 SNP’s were included 
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between the purebred populations that generated the 
cross. In addition, the estimation of individual ances-
tries after the assumption of three populations distrib-
uted the purebred individuals into three different an-
cestries and assigned crossbred individuals with 
approximately half ancestry from each parental popu-
lation. 

Average ± standard deviation of the FST results 
between the three varieties of Iberian pig was 
0.069 ± 0.060, which is lower than the estimate re-
ported by Fabuel et al. (2004), who used a set of 
36 microsatellites (FST=0.129). However, they are not 
directly comparable since microsatellites have a 
higher mutation rate and, therefore, FST estimates are 
not in the same scale. In addition, Faubel et al. (2004) 
included five varieties (Entrepelado, Retinto, 
Lampiño, Torbiscal, and Guadyerbas), and the Gua-
dyerbas population had the greatest genetic distance 
from the other populations. Therefore, a greater esti-
mate of FST was expected in their analysis. We did not 
include Guadyerbas because it is almost entirely re-
stricted to conservation programs. The mean ± stand-
ard deviation of FST statistics between pairs of popula-
tions was 0.045 ± 0.055 between EE and RR, 
0.049 ± 0.059 between EE and TT, and 0.057 ± 0.072 
between RR and TT. The results of paired t-tests were 
highly significant (p<1e-8) for all comparisons. The 
results confirmed the closeness between Entrepelado 
and Retinto, as it was previously reported by Fabuel 
et al. (2004). 

The results of the genomic scans through the por-
cine autosomal genome of the single SNP FST statistic 
for all populations and after averaging them in sliding 
windows of 1, 2, and 3 Mb centered at each SNP are 
presented in Figure 3. The distribution along the ge-
nome of FST statistics calculated with a single SNP 
was extremely noisy. Therefore, it was not possible 
to extract a clear pattern of the genomic differentiation 
between populations and confirmed the need to aver-
age estimates of the FST in wider genomic regions. The 
number of markers included in each window was 
18.37 ± 6.63, 33.77 ± 11.36, and 48.97 ± 15.68 SNP 
for sliding windows of 1, 2, and 3 Mb, respectively. 
The results from the genomic scan with sliding win-
dows of 1 Mb were somewhat noisy, and the results 
based on sliding windows of 2 Mb and 3 Mb were 
very similar. Therefore, to achieve a compromise 
between noise reduction and the genomic size of the 
windows, we decided to explore the results based on 
2 Mb sliding windows.

The genomic scans for each pair of populations (EE 
and RR, EE and TT and RR and TT) with sliding windows 
of 2 Mb are presented in Figure 4. The distributions of 
the FST estimates along the autosomal chromosomes were 

es indicate that the genomic data clearly identified the 
genetic structure of the populations. The representation 
of the MDS with the first two dimensions distributed 
the individuals in six groups that correspond to the pure 
(EE, RR and TT) and crossbred (ER, ET and RT) 
populations. Graphically, the crossbred were located 

Figure 1. Multidimensional scaling (MDS) plot between individ-
ual samples of the EE (Entrepelado), ER (Entrepelado × Retinto), 
ET (Entrepelado × Torbiscal), RR (Retinto), RT (Retinto × Torbis-
cal) and TT (Torbiscal) populations.

Figure 2. Inferred admixture proportions under the assumption of 
three populations for the individual samples of the EE (Entrepelado), 
ER (Entrepelado × Retinto), ET (Entrepelado × Torbiscal), RR 
(Retinto), RT (Retinto × Torbiscal) and TT (Torbiscal) populations.
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Figure 4. Genomic scan for average FST in sliding windows of 2 Mb, centered at each SNP, between Entrepelado and Retinto, 
Entrepelado and Torbiscal, and Retinto and Torbiscal populations of Iberian pig.

Figure 3. Genomic scan for a single SNP FST among three varieties of Iberian pig (Entrepelado, Torbiscal and Retinto) and for 
the average FST in sliding windows of 1, 2, and 3 Mb, centered at each SNP.
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associated with regulation of gene expression was 
significant with the Sus scrofa database.

Those results are reinforced by the genes within the 
genomic regions greater than the 99.9th percentile (0.157) 
which were located at SSC8 (56983392-60232132 bp), 
SSC15 (80515676-86990138 bp) and SSC17 (42130987-
42480736 bp) as presented in the Table S1 [suppl.]. 
Among them is a family of HOXD (Homeobox protein) 
genes that encode a family of transcription factors that 
play a crucial role in morphogenesis (Myers, 2008), 
jointly, with the tightly linked EVX2 (Even-Skipped Ho-
meobox 2) (Hérault et al., 1997), and the SP9 (Sp9 Tran-
scription Factor) (Kawakami et al., 2004). In addition, 
the NEUROD1 (Neurogenic differentiation 1) is a tran-
scription factor involved in regulatory networks in em-
bryonic stem cells (Marchand et al., 2009), the OLA1 
(Obg Like ATPase 1) gene plays a role on the attachment 
of cells to the extracellular matrix (Jeyabal et al., 2014), 
and the ATF2 (Activating transcription factor-2) which 
has been found to affect skeletal growth (Vale-Cruz et 
al., 2008). Some other interesting genes located within 
them that are related with morphogenesis are the CHN1 
(Chimerin 1) and the PRKRA (protein kinase, interferon 
inducible double stranded RNA dependent activator). The 
CHN1 is mostly expressed in the brain and it is associ-
ated with the early development of the nervous system 
(Lim et al., 1992) and PRKRA has been related with the 
development of the cerebellum (Yong et al., 2015). An 
additional evidence of the relationship of those genomic 
regions with the embryological development is that, in 
pigs, they have been associated with QTL for teat num-
bers in SSC8 (Velardo et al., 2016), number of mummies 

clearly different among the three genomic scans. How-
ever, we were able to detect some degree of similarity 
since the correlations between the FST estimates obtained 
from EE and RR and EE and TT, EE and RR and RR and 
TT and EE and TT and RR and TT were 0.218 (p<0.001), 
0.214 (p<0.001), 0.317 (p<0.001), respectively. 

Biological processes and candidate genes 
between Entrepelado and Retinto

The genomic regions that had an average FST(ER) 
greater than the 95th percentile (0.082) contained 651 
genes, which were used in an ORA for the GO for bio-
logical process. Among them, 569 and 157 genes were 
annotated to functional categories in the Homo sapiens 
and Sus scrofa databases, respectively. The enriched 
GO terms that had a p-value < 0.0001 are presented in 
Table 1. We identified up to 15 and 3 terms within the 
human and the porcine databases, respectively. All of 
the GO terms identified with the Homo sapiens refer-
ence (anterior/posterior pattern specification, skeletal 
system development, limb morphogenesis, appendage 
morphogenesis, pattern specification process, region-
alization, embryonic skeletal system development, 
appendage development, limb development, skeletal 
system morphogenesis, embryo development, embry-
onic limb morphogenesis and embryonic appendage 
morphogenesis) and two identified with the Sus scrofa 
(skeletal system development and anatomical structure 
morphogenesis) were associated with embryogenesis 
and morphogenesis. In addition, a biological process 

Table 1. Enriched gene ontology (GO) terms for biological processes (p < 0.0001) with genes locat-
ed within the genomic regions that have an average FST over the 95th percentile between Entrepelado 
and Retinto Iberian pig populations based on the Homo sapiens and Sus scrofa databases.

Homo sapiens p-value

anterior/posterior pattern specification (Homo sapiens) 1.73e-08
skeletal system development (Homo sapiens) 1.50e-07
limb morphogenesis (Homo sapiens) 1.93e-06
appendage morphogenesis (Homo sapiens) 1.93e-06
pattern specification process (Homo sapiens) 2.52e-06
regionalization(Homo sapiens) 2.53e-06
embryonic skeletal system development (Homo sapiens) 3.10e-06
appendage development (Homo sapiens) 3.76e-06
limb development (Homo sapiens) 3.76e-06
skeletal system morphogenesis (Homo sapiens) 5.83e-06
embryo development (Homo sapiens) 7.30e-06
embryonic limb morphogenesis (Homo sapiens) 2.27e-05
embryonic appendage morphogenesis (Homo sapiens) 2.27e-05
embryonic organ morphogenesis (Homo sapiens) 2.27e-05
embryonic skeletal system morphogenesis (Homo sapiens) 3.87e-05
skeletal system development (Sus scrofa) 5.09e-05
anatomical structure morphogenesis (Sus scrofa) 6.38e-05
regulation of gene expression (Sus scrofa) 6.54e-05
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(Ponsuksili et al., 2015) and hemoglobin content 
(Zhang et al., 2014) in SSC2, intramuscular fat content 
(Cepica et al., 2012) and vertebra number (Rohrer et 
al., 2015) in SSC6 and the ratio to non-productive days 
in SSC14 (Onteru et al., 2011). In addition, some of 
the genes within or near those genomic regions (see 
Table S2 [suppl.]) are associated with the same bio-
logical processes highlighted above, and are good 
candidates for had being affected by selection or adap-
tation; e.g., INSR (insulin receptor) or ADCYAP1 
(Adenylate Cyclase Activating Polypeptide 1). The 
INSR gene has been proposed as a candidate gene for 
intramuscular fat content by Cepica et al. (2012) while 
ADCYAP1 is a member of the glucagon superfamily of 
hormones that are involved in in growth, metabolism, 
and immune response (Sherwood et al., 2000). In ad-
dition, NWD1 (NACHT and WD Repeat Domain Con-
taining 1) modulates androgen receptor signaling 
(Correa et al., 2014), and MN1 (Transcriptional activa-
tor MN1) is involved in the development of craniofacial 
traits (Pallares et al., 2015). Further, another interesting 
gene is the CD209 (dendritic cell-specific intercellular 
adhesion molecule-3-grabbing non-integrin, DC-
SIGN), that functions as an important pattern recogni-
tion receptor (PRR) in immune defense and plays a role 
in the immune modulation during pathogen infection 
(Soilleux et al., 2002).

Biological processes and candidate genes 
between Retinto and Torbiscal

The genomic regions that had an average FST(RT) 
within the 95th percentile (0.101) in sliding windows 
of 2 Mb contained 596 genes, of which 530 and 146 
were annotated in Homo sapiens and Sus scrofa data-
bases, respectively. The results of the ORA analyses 
identified statistically significant (p<0.0001) GO terms 
when crossed with the Homo sapiens database, only 
(Table 3). There were up to four GO terms associated 
with development of the neuronal system (generation 

(Onteru et al., 2012) and stillbirths (Schneider 5, 2015) 
in SSC15.

Moreover, some of those genes such as the HOXD 
family are also associated with the regulation of gene 
expression, but it is noteworthy that the ACRT5 (ARP5 
Actin Related Protein 5 Homolog) is involved in the 
INO80 complex that contributes to transcription, DNA 
repair, and DNA replication (Conaway & Conaway, 
2009). Therefore, they can be related with the bio-
logical process last identified (regulation of gene ex-
pression) in the Sus scrofa database. 

Biological processes and candidate genes 
between Entrepelado and Retinto

The genomic regions that were within the 95th per-
centile (0.092) of the average FST(ET) in sliding win-
dows of 2 Mb contained 886 genes, of which 784 and 
228 were annotated in the Homo Sapiens and Sus 
scrofa databases, respectively. The results of the ORA 
with these genes are presented in Table 2. One of the 
enriched GO terms for biological processes was also 
associated with morphogenesis (animal organ morpho-
genesis) and the other terms were associated with the 
global metabolism of the individuals through meta-
bolic or catabolic processes (collagen catabolic pro-
cess, multicellular organismal catabolic process, and 
multicellular organism metabolic process), regulation 
of hormone secretion (negative regulation of hormone 
secretion), or the ubiquitination of proteins (positive 
regulation of ubiquitin-protein transferase activity). 
Furthermore, six genomic regions were detected that 
had an average FST(ET) greater than the 99.9th percen-
tile (0.178) and were at SSC2 (60177754-61303696, 
71588075-71588075 and 92958395-93175114 bp), 
SSC6 (104376948-105459825 bp), SSC10 (36887963-
37186755 bp), and SSC14 (45509383-45509383 bp). 
A search of the porcine QTL database (https://www.
animalgenome.org/QTLdb/pig/) indicated that these 
regions have been associated with copying behavior 

Table 2. Enriched gene ontology (GO) terms for biological processes (p < 0.0001) with genes 
located within the genomic regions that have an average FST over the 95th percentile between 
Entrepelado and Torbiscal Iberian pig populations based on the Homo sapiens and Sus scrofa 
databases.

Homo sapiens p-value

collagen catabolic process (Homo sapiens) 8.69e-06
multicellular organismal catabolic process (Homo sapiens) 1.97e-05
multicellular organism metabolic process (Homo sapiens) 7.94e-05
animal organ morphogenesis (Homo sapiens) 8.69e-05
negative regulation of hormone secretion (Sus scrofa) 7.22e-05
positive regulation of ubiquitin-protein transferase activity (Sus scrofa) 8.81e-05

https://www.animalgenome.org/QTLdb/pig/
https://www.animalgenome.org/QTLdb/pig/
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Final remarks

The main conclusion of this study is that the pro-
cesses of differentiation among Iberian pig varieties have 
heterogeneously affected the autosomal genome. A first 
approximation has identified potential candidate genes, 
most of which are associated with morphogenesis, neu-
ronal development, regulation of metabolism, or cellular 
response to stressors. The presence of those candidate 
genes is coherent with the recent evolution of the Iberian 
pig populations, they have evolved through adaptation 
to harsh environmental conditions. Furthermore, produc-
ers have subjected the Iberian pig to “empirical” selection 
in which adipogenic capacity and morphological traits 
have played an important role. Nevertheless, further re-
search must be done to confirm these results. 
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