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Abstract

The mixture models are widely used in cases when there are elements that come
from different populations, mixed in a superpopulation. There are traditional
methods for the estimation of the parameters in mixture models: the Bayesian
Method and the Expectation-Maximization (EM) algorithm. For that reason, in
this work we propose the use of evolutive algorithms, such as genetic algorithms.
We propose an algorithm for the comparison of evolutive and traditional methods,
and we illustrate the use of this algorithm with a real application. We found that
the evolutive algorithms are a competitive option to estimate the parameters in
mixture models in the cases when the populations in the mixture follows a gamma
distribution, the weights of the populations in the mixture are even and the sam-
ple size is bigger than 100 items. For the mixture of normal distributions and the
estimation of the number of populations in a mixture, the traditional method is a
better option than the genetic algorithm.

Keywords: mixture estimation, mixture distribution, evolutive algorithms, ge-
netic algorithms.

Resumen

Los modelos de mezclas son ampliamente usados en casos en los que se tienen
elementos de poblaciones diversas, unidos en una super población. Hay métodos
tradicionales para la estimación de los parámetros de modelos de mezclas, como
lo son el bayesiano y el algoritmo de esperanza-maximización (EM). En esta in-
vestigación se propone usar los algoritmos evolutivos, como lo son los algoritmos
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bUniversidad Nacional de Colombia, Sede Medelĺın, Colombia.
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genéticos, como método que puede servir para encontrar los parámetros de esti-
mación de los modelos de mezclas. Para el desarrollo de este estudio se propone
un algoritmo para la comparación de métodos evolutivos y tradicionales y se in-
cluye un ejemplo de aplicación con datos reales. Se encontró que los algoritmos
evolutivos son una opción competitiva para la estimación de parámetros en dis-
tribuciones de mezclas en los casos cuando las poblaciones en la mezcla siguen una
distribución gamma, los pesos en las poblaciones son balanceados y el tamaño de
muestra es mayor de 100 ı́tems. Para las mezclas de distribuciones normales y la
estimación del número de poblaciones en una mezcla, el método tradicional es una
mejor opción que el algoritmo genético.

Palabras clave: estimación de mezclas, algoritmos evolutivos, algoritmos genéticos.

1 Introduction

The mixture models are statistical representations of an overall distribution with
two or more subpopulations. The main idea behind these models is to represent the
heterogeneity of the data (McLachlan & Basford 1988, Reynolds & Templin. 2004).
In the real world, some populations are composed of subpopulations, for example,
the height of a group of people is composed of at least two groups, women and
men, but it can be generated of more than two groups, as the age or ethnicity. The
mixture models can be represented as x1, . . . , xn where each xj is a p-dimensional
vector, arising from a superpopulation G, which is a mixture of a finite number of
populations, g, denoted as G1, . . . , Gg in some proportions π1, . . . , πg, respectively,
where:

g∑
i=1

πi = 1, πi > 0, (i = 1, . . . , g)

The probability density function (p.d.f) of x in G can be represented in the finite
mixture form:

f(x;φ) =

g∑
i=1

πifi(x; θ) (1)

Where fi(x; θ) is the p.d.f. of the Gi-th population, and θ denotes the vector
of unknown parameters associated with the parametric forms adopted for the g
densities. It is assumed that the vector φ = (π, θ)′ of unknown parameters belongs
to some parameter space Ω.

For the modelling of the mixture models, or the estimation of the parameter φ and
the number of population g, two approaches are widely used: the Bayesian ap-
proach and the classical approach. In the Bayesian approach the data is collected,
plotted, smoothed and then, a given a prior distribution, as the Dirichlet distribu-
tion, is fitted to it. Further, the data is clustered and analysed (Crawford 1994).
The computation of the posterior unlabeled observation is difficult due to the form
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of the likelihood, because the number of terms grows exponentially with the sample
size n, and generally cannot be solved using analytical methods (West 1993). The
classical approach is the maximum likelihood estimation (McLachlan & Basford
1988). The likelihood estimation uses the EM algorithm (E for expectation, and
M for maximation) of Dempster, Laird and Rubin (McLachlan & Basford 1988).
To run this algorithm, it is needed some starting values for φ, φ(0) on the equation
1, or to initially partition the data into the specified number of groups g, and
take φ(0), as the estimate of φ based on this partition, as it represented the true
grouping of the data (McLachlan & Basford 1988, Susko et al. 1998, Gallegos &
Ritter 2009, Snee 1973).

We propose the use of evolutive algorithms to estimate the parameters of mixture
distributions. Evolutive algorithms are methods of stochastic search, that can
work in very complex problems without the assumptions of the traditional meth-
ods, such as the continuity and the existence of derivatives (Haupt & Haupt 2004).
Some examples are Simulated Annealing, Taboo Gearch and Genetic Algorithms
(Fouskakis & Draper 2002). The first one, Simulated Annealing, works as an
analogy of the change of temperature of the materials under an annealing pro-
cess (Metropolis et al. 1953). Taboo Search uses a structured method to find the
maximum of a function avoding local optima by imposing restrictions or ”taboo’
and searching on the entire parameter space (Glover 1989). Finally, Genetic Al-
gorithms uses biological concepts as evolution, crossbreeding and selection to find
the maximum of a function (Zhu & Chipman 2006, Scrucca 2013, Denning 1992).

1.1 Algorithm

Genetic algorithms (GA) are stochastic searches models (Zhu & Chipman 2006)
first proposed by Holland (1975) in (Fouskakis & Draper 2002). These models work
as an analogy to Darwinian evolution, with their structural blocks, chromosomes,
and making those evolve by selection, crossover and mutation (Denning 1992). The
innovations proposed were “using bit string representations, proportional selection
and crossover as the main operators” (Scrucca 2013). To implement a GA, first we
must know the function to be optimized; later, a set of n chromosomes of length
p are generated at random. The next step is to evaluate the fitness for every
chromosome, and to arrange them by pairs, making the most fitted more likely
to crossover, and there is a chance to their offspring to mutate. Later, only the
most fitted between parents and their offspring are allowed to continue, and new
chromosomes are generated.

Two generic algorithms were used in this work. Both were made on R (R Core Team
2014). One was used for the known number of distributions and it is described on
figure 1, because we can compute the error on the estimation for every parameter,
and another when the number of populations was unknown, figure 2, because it
needs a different approach.
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Figure 1: Algorithm when the number of populations is known. Source: elaborated
by authors.
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Figure 2: Algorithm when the number of populations is unknown. Source: elabo-
rated by authors.
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2 Simulation Results

To make the comparation between traditional methods and evolutive algorithms
to estimate the parameters in mixture models, we implement a simulation study.
This allow us to know the real parameters and find the error within the estimation.
The basic form for a mixture functions follow the equation 1. For this case, we are
going to use a mixture of two normal distributions with parameters θ1 = (µ1, σ1)
and θ2 = (µ2, σ2), respectively so the equation 1 follows the form:

f(x;µ1, σ1, µ2, σ2, π) = π ∗ f1(x, µ1, σ1) + (1− π) ∗ f2(x, µ2, σ2)

In this case, the values to estimate are:

µ1, σ1 Parameters of the first population

µ2, σ2 Parameters of the second population

π Population weights

The configuration for the simulations is shown in table 1.

Table 1: Values for the parameters of the simulation study. Source: elaborated by
authors.

Factor Levels

Populations Known Unknown
Mixture of distributions Normal Gamma
k Number of populations 2 3 5

Separation between means 2 3 5
πi Population weights 5 10 25 50

Population size 30 50 100 200

To compute the distance between the estimated and the real density, the Hellinger
distance (HD) is used as an approach to measure the distance between the true and
estimated densities, the one with the true parameters used for the simulation, f(x),
and the one with the parameters given by the EM and GA, g(x) (Beran 1977).
This is shown in equation (2). This estimator has been used before in mixtures
of parametric families, as described by (Wu & Karunamuni 2009) and (Adele &
Cordero-Braña 1996) and it has been shown that this estimator is robust. To
analyze the result, when the distance is zero, it means that the estimated values
are the same as the real ones, for this reason, the best method is the one to achieve
the minimum values (Adele & Cordero-Braña 1996).

HD =

∫ ∞
−∞

(√
f(x)−

√
g(x)

)2
dx ≈

M∑
i=1

(√
f(xi)−

√
g(xi)

)2
(2)
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Where X is a variable created to estimate the approximated distance expressed
in equation 2 in the interval X ∈ I, I = {(µ1 − 3σ1); (µk + 3σk))}, for the normal
mixture, and I = {(α1 − 3β1); (αk + 3βk))} for the gamma mixture. xi, i =
1...500, being M = 500, estimated in a grid of X, and the population k is the
population with the mean or the scale parameter for the normal and gamma
cases, respectively. f(x) is the real density, with the parameters used to generate
the data in the simulation. g(x) is the estimated density, with the parameters
obtained with the EM or the GA.

The simulations were run as shown in table 1, and the results for the experiments
when there are 5 known populations are shown in figures 3 and 4 for the mixture
of normal populations and gamma populations, respectively. The name codes are
as follows:

Weight: Is the percentage weight of the first distribution, the weight of the
other distributions in the mixture were asigned in equal parts to complete
the 100%

GA: Genetic Algorithm

EM: Expectation Maximization Algorithm

Mean: Is the mean between the results of the simulations

Hellinger distance: Is the Hellinger distance calculated with equation (2)

2.1 Results of the estimation of the parameters when the
number of populations is known

For the mixture of normal populations when the number of populations is known,
with the case for 5 populations found in figure 3 and figure 4 for the normal and
gamma mixture, respectively, the remarkable findings are: When the weights of
the populations in the mixture were even, the Hellinger distance was smaller than
when the weights were uneven, and when the weight of one of the populations was
smaller than 10%, the GA could not detect the population, and could not estimate
the parameters. That estimation was not a problem for the EM algorithm. In
general, as the sample size increases, the Hellinger distance decreases. The number
of populations in the mixture increases the calculated Hellinger distance, for both
methods, GA and EM. The separation between the means of each population in
the mixture increases the mean Hellinger distance, for the GA results.

When the number of populations is known, in a mixture of normal populations,
the EM algorithm had better results than the GA, and in all cases could estimate
the parameters, even when the sample size and the weight were small, but the
estimation of the parameters of the GA were similar.

In a mixture of gamma populations, the EM algorithm had numerical inestability
with the estimation of the parameters, but the GA could yield results in all the
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Figure 3: Plot of the Hellinger distance for the mixture of 5 normal populations,
in a mixture with known number of populations. Source: elaborated by the authors.

cases, except for the ones when the weight of one population and the sample size
were small. Also, in general, the GA had better results of the EM in this case,
with smaller Hellinger distance.

2.2 Results of the estimation of the number of populations

For the estimation of the number of populations, the inicial number of populations
was set as 3 + real number of populations for both methods: GA and EM, the
simulations were made with the same factors described in table 1 and the results
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Figure 4: Plot of the Hellinger distance for the mixture of 5 gamma populations,
in a mixture with known number of populations. Source: elaborated by the authors.

can be seen in figures 5 and 6, for the case with 5 populations, respectively.

It can be seen that for the mixture of normal populations, in figure 5, both methods
diverge in their behavior, because the GA overestimates and the EM underesti-
mates the number of populations. For the GA the closest experiments were the
ones with small sample data, this could be for the same reason when the number
of populations was known, when they could not estimate all the data and yielded
NaN.When the sample size was big enough, 100 or 200 the method in all the cases
estimated the inicial set of populations (8). For the EM algorithm, all the results
were really close, but the best results were obtained when the identification was

Comunicaciones en Estad́ıstica, agosto 2016, Vol. 9, No. 2



264 Natalia Romero-Rı́os & Juan Carlos Correa

1 2 3 4 5

0
2

4
6

8
n=30

separacion

m
e

a
n
 #

 o
f 

p
o

p
u
la

ti
o
n

s

weight=5
weight=10
weight=25
weight=50

GA
EM
Real

1 2 3 4 5

0
2

4
6

8

n=50

separacion
m

e
a

n
 #

 o
f 

p
o

p
u
la

ti
o
n

s

weight=5
weight=10
weight=25
weight=50

GA
EM
Real

1 2 3 4 5

0
2

4
6

8

n=100

separacion

m
e
a

n
 #

 o
f 
p

o
p

u
la

ti
o

n
s

weight=5
weight=10
weight=25
weight=50

GA
EM
Real

1 2 3 4 5

0
2

4
6

8
n=200

separacion

m
e
a

n
 #

 o
f 
p

o
p

u
la

ti
o

n
s

weight=5
weight=10
weight=25
weight=50

GA
EM
Real

Mean number of populations for a mixture of five normal populations
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Figure 5: Plot of the mean estimated number of pofbpulations for the mixture of
5 normal populations, in a mixture with unknown number of populations. Source:
elaborated by the authors.

easy, as exposed in the previous analysis, when the sample size, separation and
weight was large. In the other cases, the method could not find all the populations,
also, this method had a smaller variation compared with the GA.For this reason,
the conclusion is that neither of the methods, GA nor EM algorithm are exact,
neither of both methods in neither scenario had an exact performance, and this
can be checked by looking carefuly the images.

This behaviour, for the EM algorithm, is repeated in the mixture of gamma pop-
ulations and it can be seen in figure 6. The GA could no estimate the number
of population, because of the tendency to overestimate the number of populations
to the initial parameter of 8 populations, this lead to numerical inestability and
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Figure 6: Plot of the mean estimated number of populations for the mixture of 5
gamma populations, in a mixture with unknown number of populations. Source:
elaborated by the authors.

posterior errors. For this reason, for the mixture of gammas, the EM is better in
the estimation of the number of populations.

2.3 Illustrative example

The data for this illustration was taken from a study conducted by Estrada et al.
(1988), the Instituto del Seguro Social gave the permission to use de data set.
This study had as an objective to measure 69 anthropometric parameters from a
working population in Colombia. The data was taken from males and females from
20 to 60 years old, and the aim was to get a characterization of the population,
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and with the information taken from this database to get to design spaces and
equipment for the use of the Colombian workers, because historically these have
been designed using international standards or heuristically. From this study, the
data on BMI (Body Mass Index) has been selected as the variable to analyze,
because of the importance to describe the body and therefore the designs to do
for the colombian workers, also is a variable that is important to show the risk of
mortality by circulatory diseases or cancer (Estrada et al. 1988). The histogram
and the density can be seen in figure 7 where it shows a form of a couple, but
with a heavy tail on the right, and a little hump around a BMI of 30. Looking
very carefully, it can be seen another humps on 24 and 28. The Kolmogorov
Smirnov test was made to check normality, for a two sided hypotesis. We observed
a p − value < 2.20E − 16, and this analysis confirms that the distribution is not
a normal one. For this reason, an analysis using a mixture of distributions is
appropriate.

Histogram and density for BMI of Colombian workers
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Figure 7: Histogram and estimated density for data about the BMI of colombian
workers. Source: elaborated by authors.

The number of population was made using the EM algorith, and gave as a result
4 populations in the mixture, so the parameter comparison was with the GA and
EM algorithm with 2, 3 and 4 estimated populations. The parameters estimated
are shown in table 2. The parameters of every populations were different from the
calculations of both methods, and as a way to assess the adjustment to the data,
the graph 8 was created. In this graphic, the best method for this data set is the
EM algorithm with 3 populations, because it is the one that best fits the estimated
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density.This method gives the information to conclude that there are three groups
of Colombian workers, one with a the 24% of the people, with a healthy BMI,
with mean 21, the majority 64% with overweight with a BMI of 25, and with a
standard deviation of 2,6, and the last one with a 12% of people, with a BMI of
28, close to the obesity.

Table 2: Parameters estimated from the mixture of BMI of colombian workers.
Source: elaborated by authors.

Popula. Pop number GA EM
π µ σ π µ σ

2 1 0.4567 26.3176 3.6591 0.7938 23.7285 2.7923
2 0.5433 23.0441 2.3605 0.2062 27.6599 3.8662

3 1 0.2657 23.0418 2.3409 0.2381 21.1638 1.6954
2 0.4681 25.9696 3.9413 0.1191 28.7908 3.9641
3 0.2662 23.5178 2.1600 0.6429 25.0014 2.5691

4 1 0.1590 23.2227 2.6489 0.2934 21.3270 1.7535
2 0.3252 26.9433 3.7198 0.0065 24.0586 0.0294
3 0.3662 23.1989 2.4640 0.5700 25.2685 2.4292
4 0.1495 23.9916 2.7161 0.1302 28.6128 3.9589

As a conclusion, the methods can be used for real case studies with results that can
describe the data. As a recommendation, we endorse further studies of the number
of populations, because it is a critical input and the methods here exposed are not
very accurate for the estimation of the number of populations in the mixture.
We recommend to follow the EM algorithm for the estimation of the number of
populations, and next using an evolutive algorithm if the distribution is not a
mixture of normal populations.

3 Conclusions

In this study, a comparison between traditional methods and evolutive algorithms
was made to estimate the parameters in mixture models, with mixtures composed
of normal and gamma populations. The factors of: type of mixture, number of
populations, population weight, sample size and separation between means was
made. The objective was to estimate the parameters of the mixture in the case
when the number of populations is known, and estimate the number of populations,
when this number is unknown. For this comparison, a software in R (R Core
Team 2014) was developed and it is proposed in this study.

Of this comparison, we can conclude that when the number of populations is
known, in a mixture of normal populations, the EM algorithm had better results
than the GA, because the Hellinger distance was smaller and in all cases could
estimate the parameters, even when the sample size and the weight were small.
In the case of a mixture of gamma populations, the EM algorithm had numerical
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Histogram and density for BMI of Colombian workers
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Figure 8: Comparison of method to estimate the mixture of BMI of colombian
workers. Source: elaborated by authors.

inestability with the estimation of the parameters, but the GA could yield results
in all the cases, except for the ones when the weight of one population and the
sample size were small. Also, in general, the GA had better results of the EM in
this case, with smaller Hellinger distance. For this reason, evolutive algorithms
are a competitive option to traditional methods to estimate the parameters, when
the populations in a mixture are not normal.

For the case when the number of populations is unknown the GA overestimates
the number of populations, and it yields as result, the initial parameter of number
of populations, for this reason, the EM is a better option for the estimaton of the
number of populations in a mixture.
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antropométricos de la población laboral colombiana 1995 (acopla95)’, Revista
Facultad Nacional de Salud Pública 15(2), 112–139.

Fouskakis, D. & Draper, D. (2002), ‘Stochastic optimization: a review.’, Interna-
tional Statistical Review / Revue Internationale de Statistique 70(3), 315–349.

Gallegos, M. & Ritter, G. (2009), ‘Trimmed ml estimation of contaminated mix-
tures’, Sankhya: The Indian Journal of Statistics, Series A 71(2), 164–220.

Glover, F. (1989), ‘Tabu Search Part I’, ORSA Journal on Computing 1(3), 190–
206.

Haupt, R. & Haupt, S. (2004), Practical Genetic Algorithms, Wiley.

McLachlan, G. & Basford, K. (1988), Mixture models: inference and applications
to clustering, Marcel Dekker.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller, E. (1953),
‘Equation of state calculation by fast computing machines.’, Journal of Chem-
ical Physics 21(6), 1087–1091.

R Core Team (2014), R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria.
*http://www.R-project.org

Reynolds, J. & Templin., W. (2004), ‘Comparing mixture estimates by paramet-
ric bootstrapping likelihood ratios.’, Journal of Agricultural, Biological, and
Environmental Statistics 9(1), 54–74.

Scrucca, L. (2013), ‘Ga: A package for genetic algorithms in r.’, Journal of Statis-
tical Software 53(4), 1–37.

Comunicaciones en Estad́ıstica, agosto 2016, Vol. 9, No. 2



270 Natalia Romero-Rı́os & Juan Carlos Correa

Snee, R. (1973), ‘Techniques for the analysis of mixture data.’, Technometrics
15(3), 517–528.

Susko, E., Kalbfleisch, J. D. & Chen, J. (1998), ‘Constrained nonparametric
maximum-likelihood estimation for mixture models.’, The Canadian Journal
of Statistics / La Revue Canadienne de Statistique 26(4), 601–617.

West, M. (1993), ‘Approximating posterior distributions by mixture.’, Journal of
the Royal Statistical Society. Series B (Methodological) 55(2), 409–422.

Wu, J. & Karunamuni, R. J. (2009), ‘On minimum hellinger distance estimation’,
The Canadian Journal of Statistics / La Revue Canadienne de Statistique
37(4), 514–533.
*http://www.jstor.org/stable/25653496

Zhu, M. & Chipman, H. (2006), ‘Darwinian evolution in parallel universes: A
parallel genetic algorithm for variable selection.’, Technometrics 48(4), 491–
502.

Comunicaciones en Estad́ıstica, agosto 2016, Vol. 9, No. 2


