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Abstract

The Q-Q plot is a graphical tool for assessing the goodness-of-fit of observed data
to a theoretical distribution in which every single observation in the data is repre-
sented by a symbol. In many occasions, due to either natural variations of the data
or to a large sample size, the Q-Q plot could be interpreted as a sign of failure of
the proposed model. One alternative is to consider a special set of characteristics
of the data such as the sample quantiles that, jointly with its theoretical coun-
terparts, allow the user to effectively compare both. We propose and illustrate
a modified Q-Q plot that helps to visualise the differences between the observed
quantiles and their corresponding theoretical values, and overcome some technical
problems of the traditional Q-Q plot.
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Resumen

El gráfico Q-Q es una herramienta para determinar si los datos observados se
ajustan a una distribución de probabilidad teórica, en el que cada observación
en los datos es representada por un śımbolo. En muchas ocasiones, debido a
variaciones naturales en los datos o un gran tamaño de muestra, el gráfico Q-Q
puede interpretarse como una falla en el modelo probabiĺıstico propuesto. Una
alternativa es considerar un conjunto de caracteŕısticas de los datos tales como
los cuantiles muestrales que, en conjunto con su equivalente teórico, permitan al
usuario comparar ambos de manera efectiva. Proponemos e ilustramos un gráfico
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Q-Q modificado que permite visualizar las diferencias entre los cuantiles observados
y teóricos, y remediar algunas dificultades técnicas del gráfico tradicional.

Keywords: Gráfico QQ, gráficos estad́ısticos, bondad de ajuste.

1 Introduction

Graphical data analysis is an important step towards the understanding of a sta-
tistical problem (Tukey 1977, Fienberg 1979, Wainer 1981, Tufte 1983, Tukey
1990, Wainer 1990). Despite its apparent simplicity and the fact that the design
of effective statistical graphics has extensively been discussed by several authors
(Cleveland 1985, Burn 1993), it is often the case that a graphic conveys the wrong
impression and leads to the misinterpretation of the information represented there
(Cleveland & McGill 1985, Wainer 1984).

The Q-Q plot is a common tool to analyse the goodness-of-fit of sample data to a
theoretical distribution (Wilk & Gnanadesikan 1968, Easton & McCulloch 1990,
Marden 1998, Marden 2004, Dhar et al. 2014); it allows the user to compare a the-
oretical model, represented by a 45◦ slope line, with an empirical quantile function
represented by all sample points1. However, there are several drawbacks with the
Q-Q plot. First, sample variation, sometimes, makes it difficult to interpret the
plot, especially the behaviour in the tails (DasGupta 1985). We illustrate this situ-
ation in Example 1 where data from a normal distribution is generated, but natural
variation in the data leads to wrongly conclude, based on the Q-Q plot, that the
normal distribution is not a suitable probabilistic model for the data. Second, the
computational difficulties when the sample size is large, and third, the well-known
difficulties due to human perception (Cleveland 1985, Cleveland & McGill 1985).
For instance, it has been shown that the comparison between two functions with
different slopes is a difficult task unless one of them has zero slope, and that
human perception is not even close to acceptable when comparing differences be-
tween two functions unless one of them is constant (Cleveland 1985, Cleveland &
McGill 1985).

In this paper, we propose a modification of the traditional Q-Q plot such that
some of the known issues (Nair 1982, Rosenkrantz 2000) and drawbacks previ-
ously mentioned are overcome. This modification uses the sample percentiles and
compare them with their expected value under the theoretical distribution F0.
Subsequently, we plot these differences and, to make even simpler the analysis of
the resulting plot, compute and plot point-wise confidence intervals for them. Our
proposal is illustrated through three simulated data sets, and an implementation
of this approach is provided in R (R Core Team 2014).

1In the case of normally-distributed data, with mean µ and variance σ2, the model is repre-
sented by the equation y = µ+σx, with x and y the theoretical and sample quantiles, respectively.
If a straight line of equation y = x is desired, then the data needs to be standardised. Another
example is the QQ-plot for the Weibull distribution where the slope and intercept depend on
the parameters of the distribution. However, after estimating these parameters, the slope of the
resulting line associated with the QQ-plot has a 45◦ slope.
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2 Modified Q-Q plot

In general terms, we are interested in checking whether the data comes from a
pre-specified theoretical distribution F0 by testing a hypothesis of the form

H0 : X ∼ F0 (1)

against a suitable alternative hypothesis, say H1. In the expression above, X is
a random variable, F0 is the hypothetical cumulative distribution function of the
model that depends on the parameter vector θ, and it is assumed that F0 has
inverse F−1

0 . If θ is unspecified, we estimate it by using a consistent procedure.
Now, assuming a large sample size, Fθ ≈ Fθ̂.

Let X = (x1, . . . , xn) be a random sample of size n from an unknown distribution
F , α ∈ (0, 1) be the type I error probability, ξpi = F−1

0 (pi) be the ith theoretical

percentile, ξ̂pi its sample estimator, and

∆i = ξ̂pi − ξpi (2)

the difference between what is observed and what is to be expected under the
probability distribution F0. Under the normality assumption, E[∆i] = 0 as n →
∞.

Our proposal of a modified Q-Q plot is based on the following result in Serfling
(1980, pp. 80). Let 0 < p1 < · · · < pk < 1. Suppose that F has a density f in the
neighborhoods of ξp1 , · · · , ξpk , and that f is positive and continuous at ξp1 , · · · , ξpk .

Then (ξ̂p1 , · · · , ξ̂pk) is asymptotically normal with mean vector (ξp1 , · · · , ξpk) and
covariance n−1σij , where

σij =
pi(1− pj)

f (ξpi) f
(
ξpj
) for i ≤ j

is the ij-th element of the variance covariance matrix of X, and σij = σji.

Now, to check whether F0 is a plausible model, we proceed as follows:

Define 0 < p1 < · · · < pk < 1, and compute the sample percentiles ξ̂pi ,
i = 1, . . . , k.

Compute the theoretical percentiles ξpi = F−1
0 (pi), i = 1, . . . , k.

Compute ∆i, i = 1, 2, . . . , k, as in (2).

Calculate the standard deviation of each sample percentile as

σξ̂pi
=

√
pi(1− pi)

n
{
f0(F−1

0 (pi))
}2 ,
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and the 100(1− α)% confidence interval as

(−z1−α/2 σξ̂pi , z1−α/2 σξ̂pi ) (3)

with zγ the γ percentile of the standard normal distribution.

Plot ∆i against pi, and draw the corresponding confidence interval at each
pi, i = 1, 2, . . . , k. Empirical evaluation suggests that using 2 ≤ k ≤ 9
is sufficient to determine whether the distribution of interest fits the data
well.2

3 Examples

In this section we illustrate our approach with four sets of simulated data.3

Example 1: Normally distributed data. Let X = (x1, . . . , xn) be a random
sample of size n = 100 from a standard normal distribution, e.g., X ∼ N(0, 1).
In figure 1 we present both the classic and modified Q-Q plots; the former was
constructed using the qqnorm() and qqline() functions of R, and the latter using
our implementation in the same statistical language.

Does the data follow a Normal distribution? Observe that in figure 1(a) the be-
haviour of the sample points is erratic and misleading, especially in the tails, which
may lead us to conclude that the data is not normally distributed. Conversely, the
modified Q-Q plot using the deciles is easier to read and interpret, and the conclu-
sion is direct: the data follows a Normal distribution. In addition, the confidence
interval around each decile gives a better sense of the sample variation, which is
not possible using the classical Q-Q plot. A Shapiro-Wilks normality test confirms
what we already knew (W = 0.9793, p-value = 0.1167).

Example 2: Exponentially distributed data. In this example, we simulate
n = 50 observations from an Exponential distribution with parameter λ = 1, e.g.,
X ∼ Exp(1). As in Example 1, we constructed both the classic and modified Q-Q
plots for this data (see figure 1(c)–(d) for more information), the latter using the
10th, 20th, 30th, 40th and 50th percentiles.

Note that even when the data is generated from an Exponential distribution, figure
1(c) seems not to show this properly. For instance, several points are below the
expected value under theoretical distribution being tested, which may lead the
data analyst to wrongly conclude that the data is not exponentially distributed.
Despite natural variation in the sample, the modified Q-Q plot in figure 1(d),
on the contrary, shows that the difference between the observed and theoretical

2Here, a value of k = 5 implies the comparison of the 20th, 40th, 60th and 80th percentiles
of the sample distribution with those of the theoretical distribution of interest, F0.

3R code for generating the results presented herein is at the end of this document.
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Figure 1: Classic (left) and modified (right) Q-Q plots for the simulated data in
the Examples section5. Source: Own elaboration.

percentiles under the Exponential distribution is within the limits of the 95%
confidence intervals. Hence, we can conclude that the simulated data comes, in
fact, from an Exponential distribution. It is also worth noting the “triangular”
shape of the 95% confidence intervals compared to the “U” shape displayed in
Example 1.
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Example 3: Gamma distributed data. Consider n = 1000 observations from a
Gamma distribution with parameters α = 20 and β = 4, e.g., X ∼ Gamma(20, 4).
The classic and modified versions of the Q-Q plot are presented in figures 1(e)–(f).

In this example, the sample size can be considered “large” compared to that used
in examples 1 and 2. Three important points are worth noting: (1) both the classic
and modified Q-Q plots indicate that, in fact, the sample data follows a Gamma
distribution; (2) in the classic Q-Q plot, the behaviour in the tails is not as bad
as it was in examples 1 and 2 (this is consequence of a considerable increase in
the sample size); (3) the modified Q-Q plot, once again, shows that the expected
difference between the theoretical and sample percentiles is within the limits of
the 95% confidence intervals.
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Figure 2: Modified Q-Q plot for different sample sizes when X ∼ N(0, 1)7. Source:
Own elaboration.

Example 4: Normally distributed data with variable sample size. Here
we consider samples of size n = 103, 104, 105, and 106 from a standard normal
distribution. Our results are presented in figure 2. Note that, as n increases,
∆→ 0. Hence, the length 95% confidence intervals decreases.
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4 Discussion
Q-Q plots have become one of the most used graphical tools for verifying whether
a particular statistical distribution (e.g., the normal distribution) fits the data.
In this paper, we have described and exemplified a modification of the Q-Q plot,
using percentiles, that overcomes some of the technical problems of the classic Q-Q
plot (and which have been addressed long time ago but many users are unaware
of).

Three main aspects of this modification are noteworthy. First, the graphical rep-
resentation is similar to that in residual plots used in regression analysis and hence
can be interpreted likewise. However, it is important to take into account that in
our procedure the horizontal line at zero represents the theoretical distribution,
and both the observed percentiles and their corresponding confidence intervals
fluctuate around it. Second, if the difference between the observed and theoretical
percentile falls outside the 100(1 − α)% confidence interval, it indicates that the
probability distribution F0 does not fit the data well in that percentile. Clearly,
this type of comparison cannot be done using the traditional Q-Q plot. Third,
a similar approach based on the difference between the theoretical and observed
values of the cumulative distribution F0 was proposed by van der Loo (2010) to
detect univariate outliers; the method is robust against chosen parameter settings
and uses a Q-Q plot to show these differences and label data points as “not be-
longing to the bulk” (van der Loo 2010). Likewise, Ueda (1996/2009) proposed
the detection of discordant outliers using the cumulative distribution of Normal
distribution. A recent simulation study concluded that Ueda’s method is sensi-
tive to outliers when the distribution is not symmetric, and that such sensitivity
increases with the sample size (Marmolejo-Ramos et al. 2015).

Three examples are shown to illustrate the use of the QQ-plot proposed herein.
Of particular interest is Example 3 in which simulated data from a Gamma dis-
tribution is analysed to determine wether, in fact, this distribution fits the data.
Although in this example the parameters and the distribution generating the data
were known, the example reinforces the usefulness of the method. A natural im-
provement of the proposed plot is the automatic estimation of the parameters for
some known distributions.

Future research plans can be aimed at calculating, instead of point-wise, simulta-
neous 100(1−α)% confidence intervals (Roy & Bose 1953, Schaffer 1995, Benjamini
& Hochberg 1995, Hsu 1996) for the percentiles in the modified Q-Q plot, as well as
to systematically study, using statistical simulation, its performance. The deriva-
tion of a formal statistical test based on the modified Q-Q plot may also be an
area of research worth pursuing.

5 Computational details

R code for all examples is available from the first author by request, or can be down-
loaded in https://dl.dropboxusercontent.com/u/9601860/qqplotcode/suppl_material.pdf.
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