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Resumen

La mediana, una de las medidas de tendencia central más populares y utilizadas
en la práctica, es el valor numérico que separa los datos en dos partes iguales. A
pesar de su popularidad y aplicaciones, muchos desconocen la existencia de dife-
rentes expresiones para calcular este parámetro. A continuación se presentan los
resultados de un estudio de simulación en el que se comparan el estimador clási-
co y el propuesto por Harrell & Davis (1982). Mostramos que, comparado con el
estimador de Harrell–Davis, el estimador clásico no tiene un buen desempeño pa-
ra tamaños de muestra pequeños. Basados en los resultados obtenidos, se sugiere
promover la utilización de un mejor estimador para la mediana.

Palabras clave: mediana, cuantiles, estimador Harrell-Davis, simulación estad́ısti-
ca.

Abstract

The median, one of the most popular measures of central tendency widely-used
in the statistical practice, is often described as the numerical value separating the
higher half of the sample from the lower half. Despite its popularity and applica-
tions, many people are not aware of the existence of several formulas to estimate
this parameter. We present the results of a simulation study comparing the classic
and the Harrell-Davis (Harrell & Davis 1982) estimators of the median for eight
continuous statistical distributions. It is shown that, relatively to the latter, the
classic estimator performs poorly when the sample size is small. Based on these
results, we strongly believe that the use of a better estimator of the median must
be promoted.
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1. Introduction

LetX1, X2, . . . , Xn be a random sample of size n from a population with absolutely
continuous distribution function F , and let X(i) be the ith order statistic (i =
1, 2, . . . , n), e.g., X(1) < X(2) < · · · < X(n). Denote θ as the true median (a

parameter) and any estimator of θ as θ̂. The most common estimator of the median
is

θ̂1 =

{

X(n+1)/2 if n is odd,
1
2

(

X(n/2) +X(n/2)+1

)

if n is even.
(1)

Harrell & Davis (1982) proposed a new distribution-free estimator of the pth per-
centile, denoted as Qp. For the median, the estimator is given by:

θ̂2 = Q1/2 =
n
∑

i=1

Wn,iX(i) (2)

with

Wn,i =
Γ (n+ 1)

Γ
(

n+1
2

)2

∫ i/n

(i−1)/n

[z (1− z)]
(n−1)/2

dz.

Other estimators for the median have also been proposed in the literature, but
their complexity and dependence on arbitrary constants make them less appealing
and difficult to implement (see Ekblom, 1973). Comparative studies have been

performed to evaluate the equivalency and asymptotic properties of θ̂1 and θ̂2,
with the work by Yoshizawa (1984) being the first of them. The author showed
that both estimators are asymptotically equivalent, and gave regularity conditions
to guarantee the asymptotic normality of each of them. On the other hand, Bassett
(1991) showed that the traditional estimator of the median is the only equivariant

and monotonic with 50% breakdown, and Zielinski (1995) concluded the θ̂1 is not
a good estimator under asymmetric distributions.

In this paper we compare the performance of θ̂1 and θ̂2 for several continuous
distributions when the sample size n is small, and by considering the skewness as
the main factor (measure) to control. As explained further below, this measure
represents the relative efficiency of one of the estimators when B samples of size
n are draw from a specific distribution F .
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2. Simulation Study and Results

2.1. Simulation set up

In order to compare the performance of θ̂1 and θ̂2, we carried out a simulation
study in which eight continuous distributions were considered (see Table 1). The-
se distributions represent those most frequently encountered in the statistical
practice. For each of these distributions, a total of B = 5000 samples of size
n = {5, 10, 15, . . . , 200} were generated. The choice of theses sample sizes was
driven because of what is often seen in real-world applications.

Tabla 1: Probability distributions considered in this study. Source: compiled by
authors.

Distribution F (·) Parameters Median (θ̇)

Uniform 1
b−a a, b a+b

2

Normal 1
√

2πσ
e−

(x−µ)2

2σ2 µ, σ µ

Laplace 1
2τ e

−
|x−µ|

τ µ, τ µ
Cauchy 1

π(1+x2) – 0

t−Student
Γ( ν+1

2 )

Γ(ν/2)
√

νπ

(

1 + x2

ν

)

−
ν+1
2

ν 0

Exponential λe−λx λ λ log(2)

Gamma 1
Γ(α)βαx

α−1e−
x
β α, β No closed form

Weibull β
αβ x

β−1e−(
x
α)

β

α, β α(log(2))
1
β

We compare the performance of θ̂1 and θ̂2 using the following measure of relative
efficiency

γ =
MSE1

MSE2
(3)

with

MSEj =
1

B

B
∑

i=1

(θ̂ij − θ̇)2

the mean squared error (MSE) for the jth estimator (j = 1, 2), θ̇ the true median,
and B the number of samples of size n that are draw from a specific distribution
function F (see Table 1). Note that the lower the MSE, the better the estimator.
Here, γ = 1 indicates that both estimators perform equally well; γ < 1 indicates
that θ̂1 outperforms θ̂2; and γ > 1 indicates that θ̂2 outperforms θ̂1. In general, it
is possible to derive closed-form expressions for calculating θ̇ provided F . However,
when this is not the case, the use of computational routines is required. In our
case, the qgamma() function in R (R Core Team 2013) was utilised for estimating
θ̇ for the Gamma(α, β) distribution.

For our simulation study, we implemented the following algorithm in R:
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Figura 1: γ as a function of the sample size when (a) n ≤ 50 and (b) n > 50 for
the first six distributions in Table 1. Here, the dotted horizontal line represents
a comparable performance between the classic and the Harrell–Davis estimators.
Note that all probability distributions but the Exponential are symmetric. Source:
elaborated by authors.

1. Generate a sample of size n from F (see Table 1 for details).

2. Calculate θ̂1 as in (1), and θ̂2 as in (2).

3. Repeat 1–2, B times, calculate the MSE for each estimator and then the
ratio of the resulting quantities.

2.2. Results

The results of our simulation study are presented in figures 1 and 2. Figure 1
depicts the value of γ as a function of the sample size n for the first six continuous
distributions in Table 1. Figure 2 shows, for fixed n, a 3D representation of γ as a
function of α and β, for the Gamma(α, β) and Weibull(α, β) distributions.

As shown in figure 1, γ is always greater than one except for the t2 distribution
when n < 10, and the t3 distribution when n < 25. Another interesting finding is
that, regardless of n, the highest values of γ were obtained for the U(0, 1) followed
by the N(0, 1) and the Laplace distributions. It is intriguing that, despite not
being a symmetric distribution, the values of γ for the exponential distribution
with parameter λ = 1 were the forth highest. In addition, note that γ → 1 as
n → ∞, which is consistent with the assymptotic equivalency of both estimators
described by Yoshizawa (1984).

In figure 2 we present the results for the Gamma(α, β) and Weibull(α, β) distri-
butions for different values of α and β for n is fixed. These results suggest that,
regardless of n, the Harrell–Davis estimator outperforms the classic estimator, e.g.,
γ > 1. On the other hand, the higher γ values were obtained when n = 5, and the
lowest when n = 200, supporting the assymptotic equivalency of both estimators
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Figura 2: γ as a function of n and the parameters (α, β) for the Gamma(α, β) and
Weibull(α, β) distributions. Note that γ > 1 regardless of n, α and β, showing that
the Harrell–Davis estimator of the median outperforms the traditional estimator.
Source: elaborated by authors.

(Yoshizawa 1984).

3. Conclusions

We have shown under a large number of scenarios that the Harrell–Davis estimator
of the median behaves better than the traditional estimator in terms of the MSE.
In particular, it is found that, for small sample sizes, the MSE of the Harrell–
Davis estimator of the median is lower than that of the traditional estimator for
most of the continuous statistical distributions considered in this study, and often
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seen by data analysts. Despite the use and popularity of the traditional estimator
of the median, and the fact that it is taught in most of statistics textbooks, we
strongly believe that, with the current computational capability, the use of a better
estimator must be promoted. In Appendix A we provide R code to facilitate this
process.
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A. Harrell–Davis estimator in R

A generalisation of the Harrell–Davis estimator for any quantile p ∈ (0, 1) can be
found in the Hmisc package (Harrell, 2012). Our implementation, as follows, deals
only with the case p = 1/2.

### Harrell-Davis estimator of the median

HD <- function(x, n = length(x)) {
## auxiliary function

prob.beta <- function(limits, n) diff(pbeta(limits, (n + 1)/2, (n + 1)/2))

i <- 1:n

limits <- cbind((i - 1)/n, i/n)

Wi <- apply(limits, 1, prob.beta, n)

sum(Wi * sort(x))

}
## Example: theoretical median is log(2) = 0.6931472

set.seed(123) # to replicate the results

x <- rexp(150, 1) # X~Exp(1)

HD(x) # Harrell-Davis estimator

## [1] 0.7959

median(x) # traditional estimator

## [1] 0.8431

## calculating gamma (see section 2.1) using B = 1000, n = 20 and X~Exp(1)

out <- replicate(1000, {
x <- rexp(20, 1)

theta1 <- median(x)

theta2 <- HD(x)

mse1 <- (theta1 - log(2))^2

mse2 <- (theta2 - log(2))^2

c(mse1, mse2)

})
out <- rowMeans(out)

gamma <- out[1]/out[2]

names(gamma) <- "gamma"

gamma

## gamma

## 1.086
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