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Abstract

This paper is aiming to identify the presence of variability over time and space for
water temperature in Santa Marta, Colombia. The modeling process consider an
approach through linear models, the use of additive models as an alternative to
capture nonlinear patterns, evaluation of the need for a non parametric effect for
each of the covariates and finally, a diagnostic test for the residuals to assess the
need to include a covariance structure over time and/or space.
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Resumen

Este articulo está dirigido a identificar la presencia de variabilidad sobre tiempo
y espacio para la temperatura del agua en Santa Marta, Colombia. El proceso de
modelamiento considera una aproximación a través de un modelo lineal, el uso de
modelos aditivos como una alternativa para capturar patrones no lineales, evalua-
ción de la necesidad de un efecto no paramétrico para cada una de las covariables y
finalmente un diagnóstico sobre los residuales para valorar la necesidad de incluir
una estructura de covarianza sobre tiempo y/o espacio.

Palabras clave: efecto no paramétrico, estructura de covarianza sobre el tiempo
y espacio, modelos aditivos, variabilidad.

1. Introduction

Nowadays the analysis of environmental information has become an important
topic in the agenda for governments and academics, trying to understand changes
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in patterns and how these changes affect us. This represents a challenge from a
statistical point of view to provide an accurate representation and understanding
of these changes, considering the presence of spatial and temporal components
besides of the large number of variables involved.

These reasons make it harder to identify the presence, the magnitude and the
factors involved in a change. For this reason, it is necessary to move from classical
approaches to modern statistical methodologies and in some cases to use more
than one methodology simultaneously.

The motivation of this article is to provide a methodology that is quite useful
for environmental studies where it is necessary to analyse temporal and spatial
variability in a combined way to capture both sources of variability.

This paper is aiming to assess changes in the temperature of the sea in Santa
Marta, Colombia, using information collected unevenly over time and space at 17
places from August 2001 to January 2006. The goal is to identify variability over
time and space using the date and location where the temperature was measured.

In section 2 a summary of previous works show different approaches that may lead
to a clear understanding of the behavior of sea temperature as variable of interest or
as a covariate. In section 3 a description of Santa Marta, by geographical location,
temperature and economical activities is presented. Section 4 corresponds to a
data description, showing the location of each of the 17 sites as well as the time
series by site over the observed period. Section 5 which represent the main part
of this article describes the modeling process. As a first approach a linear model
is used to capture variability over time and space simultaneously, a diagnostic
check for the residuals was carried out, confirming that a linear model is not
a suitable approach. As an alternative, the use of additive models provides an
useful approach, where the smooth functions are not restricted in shape, allowing
us to capture non linear relationships. In section 6 a test to confirm the need for
a non parametric effect for each variable was carried out, as well as a sensitivity
analysis to assess changes in the conclusions under different degrees of freedom.
Once the final model has been identified, a diagnostic check for the residuals allow
us to evaluate the need to include a covariance structure over time and/or space.
Finally section 7 includes a summary, explaining the findings in respect to the
variability over time and space for sea temperature in Santa Marta, Colombia,
as well as further steps which could lead to include more covariates and applied
additive models to understand different problems in this area.

2. Previous Works

Previous papers which may be mentioned as a reference are Lewis & Ray (1997),
which explains the use of time series adaptive regression splines (TSMARS) to fit a
model for daily sea surface temperature, measured off the California coast, dealing
with non linear effect and long range dependence, G.Bernal et al. (2006), which
corresponds to the analysis of monthly sea surface time series in the colombian
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caribbean coast at 8 different places and Beare & Reid (2002), which explains the
use of generalized additive models to investigate the spatial-temporal change in
spawning activity by Atlantic mackerel.

Looking for an alternative approach, this paper is aiming to show the analysis of
spatial and temporal components simultaneously rather than in a marginal way
(Rincón 2010). This approach is useful if the purpose is to capture both sources of
variability and in addition, to capture tendencies properly, when the information
is collected unevenly.

3. Santa Marta, Colombia

Santa Marta, is located in the North-East of the Caribbean coast (Figure 1), with
an average temperature of 34o, a maximum and minimum of 39o and 31o Celsius
degrees respectively. The main economical activity is based on tourism, commerce,
harbor activities and fishing.

4. Data Description

The data set used for this analysis, corresponds to temperature of the water collec-
ted unevenly, since August 2001 to January 2006 at 17 sites for a total number of
65 observations. The information was obtained from dives provided by the scuba
diving school Naowa.

Figure 2 depicts the location of the 17 places with four points of reference Isla
Aguja, Taganga, Punta Granate and Bah́ıa Concha (left hand side) and the code
assigned to each one of the 17 sites where X (direction North-South) and Y (direc-
tion East-West) corresponds to artificial coordinates in kilometers for the 17 sites
(right hand side). Figure 3 shows the time series for each site, indicating a large
number of observations for sites 1, 2, 7, 9 and 13. For sites 4, 10 and 14 there are
2 dives at the same day while for site 5 there is only one observation.

Further descriptions of the sites are as follow:

i For sites 1, 2, 9 and 13 the highest temperature was observed in 2005.

ii For site 7 the temperature shows an upward tendency, reaching the highest
value in 2004, while in 2005 and 2006 there is a downward tendency.

iii For sites 3, 6, 8, 15 and 16 there is an upward tendency, although it is important
to highlight that there is less number of observations.

iv For sites 11, 12 and 17 a downward tendency is observed, but as well as in the
previous case there is less number of observations.
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Figure 1: Map of Colombia, indicating the location of Santa Marta
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Figure 2: 17 sites where the information was collected as well as the code assigned
to each point
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Figure 3: Time series for water temperature by site

5. Modeling Process

The first approach corresponds to a linear model, using as covariates the date
where the information was collected in decimal form, the day (being the 1st of
January 1 and the 31st of December 365 or 366 ) and the covariates X (direction
North-South) and Y (direction East-West). These later corresponds to artificial
coordinates in kilometers for the 17 sites.

To capture properly the seasonal component, the day covariate was introduced

into the model as cos

(

2π
(

day

366

)

)

and sin

(

2π
(

day

366

)

)

(Esterby 1993).

These variables were included in model (1), under the the assumption that E(εi) =
0 and V ar(εi) = σ2. The idea is to include in the model both sources of variability
to provide results for the data analyzed over time and space simultaneously, rather
than in a marginal way.

yi = β0 + β1yeari + β2cos

(

2π
(dayi

366

)

)

+ β3sin

(

2π
(dayi

366

)

)

+ β4Xi + β5Yi + εi i = 1, ..., n (1)
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Table 1 shows that for variables year and day, the linear model captures suitably
the variability over time as well as the seasonal component, however for the co-
ordinates X and Y the outcome is not the same. Figure 4 depicts the residuals
against fitted values showing a linear pattern, indicating that a linear model may
not be the more adequate approach.

Table 1: Parameter estimated and p-values under linear model (1)

Parameter Estimate
Standard
Error

t-value p-value

year 1.133 0.313 3.611 <0.001

sin(day) -3.609 0.586 -6.156 <0.001

cos(day) -2.215 0.611 -3.623 <0.001

X -0.617 0.451 -1.370 0.175

Y 0.291 0.233 1.247 0.217

Figure 4: Residuals against fitted values under linear model (1) for water tempe-
rature

When the data observed is not easily described by a linear model, a suitable
approach is to fit a nonparametric model of the form.

yi = m(xi) + εi i = 1, ..., n

where m(xi) corresponds to a smooth function, E(εi) = 0 and V ar(εi) = σ2.
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There are different ways to obtain an estimate for m̂(x), one such approach is
to use kernel estimators. Some of the most common are kernel smoothers, local
regression, smoothing splines, regression splines, orthogonal series and wavelets
(Green & Silverman 1994), (Wood 2006) (Fan & Gijbels 1996).

Throughout this paper a kernel smoother was chosen because the similarities with
standard linear models, leading to useful statistical properties. An estimate for
m̂(x) can be obtained by a local mean estimator (Watson 1964), (Nadaraya 1964)
as

m̂(x) =

∑n

i=1 w(xi − x; h)yi
∑n

i=1 w(xi − x; h)
,

where w(xi − x; h) the weight function chosen, corresponds to a normal density
centered on zero with standard deviation equal to h (Bowman & Azzalini 1997).

A two dimensional estimate for m̂(x1, x2) can be obtained from minimizing the
weighted least squares

n
∑

i=1

yi − α − β1(xi1 − x1) − β2(x2i − x2)
2w(x1i − x1; h1)w(x2i − x2; h2),

over α, β1 and β2. It is very helpful to assess the combined effect of two variables
in spatial data.

In the case of cyclical variables or seasonal effects, quite common in environmen-
tal information, an estimate for m̂(x) can be obtain using a local mean approach,

where the weight function chosen corresponds to w(xi−x; h) = exp

[

r
h
cos

(

2π(xi−x)
r

)]

,

allowing us to obtain an estimate with period r.

Having chosen the way to obtain an estimate for m̂(x), we can introduce the
additive models developed by Hastie and Tibshirani (1990).

The additive model used corresponds to model (2) under the assumption that
E(εi) = 0 and V ar(εi) = σ2.

yi = β0 + m1(yeari) + m2(dayi) + m3(Xi, Yi) + εi i = 1, ..., n (2)

Each of the mj(xj) j = 1, ..., p smooth functions are estimated by the backfitting
algorithm (Hastie & Tibshirani 1990), while β0 corresponds to ȳ.

Figure 5 depicts each of the component for the additive model. The solid line
corresponds to the smooth function fitted, the dashed line corresponds to a + 2
standard error band and the surface corresponds to a smoothing function in two
dimensions to capture the variability over space.

The degrees of freedom chosen for each covariate was 4, while for (X,Y) was 10.
This provides enough flexibility, beyond of a linear shape while ensure that we
capture large scale trend rather than small scale fluctuations.
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The selection of degrees of freedom throughout this article is performed by a
subjective method, as the main objective is to assess different models to capture
tendency over time and space rather than choose a model based on automatic
methods. In addition, the assessment of the partial residuals to evaluate the effect
of each variable allows us to explore whether the degrees of freedom chosen is
capturing well the relationship between the covariates and the dependent variable.

Figure 5: Components for additive model for water temperature under model (2)

Figure 6 depicts the residuals against fitted values under model (1) and model (2),
showing that the linear pattern observed under model (1), (left hand side) is less
marked under model (2) (right hand side). The odd behavior observed corresponds
to temperature values 72, 75, 79 and 80 which have a frequency of 7, 7, 7 and 27
over the observed period respectively. This explains the pattern observed in the
graphs where the same temperature is observed at different points over time and
space.
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Figure 6: Residuals against fitted values under model (1) and model (2)

6. Testing for No Effect and Sensitivity Analysis

As part of the modeling process, it is necessary to assess the need for a non
parametric effect rather than a linear effect for each variable. Following the idea of
Hastie and Tibshirani (1990), the test used corresponds to an approximate F-test.
This test statistic does not follow the exact F distribution, although results based
on simulations (Hastie & Tibshirani 1990) provide enough evidence to support it
as a guide to choose between different models. The approximate F-test is defined
as

(RSS1 − RSS2)/(df2 − df1)

RSS2/(n − df2)
∼ Fdf2−df1,n−df2

,

where RSS1 and RSS2 are the residual sum of squares and df1 and df2 are the
degrees of freedom of the models fitted.

The RSS is defined as RSS =
∑n

i=1(yi−m̂(xi))
2 or as a quadratic form as RSS =

ytQy where Q = (I − P )t(I − P ). Each of the smooth functions can be expressed
as a set of n x n projection matrices, providing the fitted values for an additive
model as Py = (

∑p

k=0 Pk)y, where P0 corresponds to a matrix with the value 1/n
to estimate ȳ (Bowman & Azzalini 1997).

In the same way as in a linear model, it is possible to obtain an analogous definition
of approximate degrees of freedom for an additive model, where the approximate
degrees of freedom for error can be defined as df = tr[(I − P )t(I − P )], with
P =

∑p

k=0 Pk.

Table 2 shows the results under model (2) for each covariate, indicating that for
the covariate day a non parametric effect is not required. This test was applied
under different values of degrees of freedom to evaluate changes in the conclusion
under different values.
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Table 2: Assessment of the need for a nonparametric effect rather than a linear
effect and sensitivity analysis under different values of degrees of freedom

p-values

parameters df=4 df=6 df=8 df=10 df=12 df=14

year <0.001 <0.001 <0.001 (X,Y) <0.001 <0.001 <0.001

day 0.804 0.751 0.065

According to this result the final model corresponds to model (3) under the as-
sumption that E(εi) = 0 and V ar(εi) = σ2. This model corresponds to a semi-
parametric model with a linear effect for day and a non parametric effect for year
and (X,Y).

yi = β0+β1cos

(

2π
(dayi

366

)

)

+β2sin

(

2π
(dayi

366

)

)

+m1(yeari)+m2(Xi, Yi)+εi i = 1, ..., n

(3)

Figure 7 depicts the graph for the residuals against fitted values and the graph of
the fitted values against the observed values. According to the graphs the semi-
parametric model fits properly the temperature of the sea. The systematic pattern
as well as in model (2) corresponds to the values 72, 75, 79 and 80.

Figure 7: Diagnostic check under semi-parametric model (3)

Since the data was collected over time and space, it is necessary to assess the need
to include a covariance structure over time and/or space, although given that the
information was collected unevenly it is not possible to build the autocorrelation
function. An alternative explained by Diblasi and Bowman (2001) is to build a
variogram for the residuals. This test was originally developed to assess indepen-
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dence over space for a single sample, although it is also useful as a diagnostic check
for regression models.

Using γ̂(h) = 1
2

1
|N(h)|

∑

N(h) |Y (si)−Y (sj)|
1

2 as an estimator, where N(h) denotes

the collection of pairs of observations separated by a distance h, with h the dis-
tance between locations, independence over time or space is reflected in a constant
variogram of the form γ(h) = σ2, where γ(h) is the theoretical variogram that ex-
plains the degree of dependence in two dimensions for space and one dimension
for time.

Diblasi and Bowman (2001) provide a test to assess the presence of spatial corre-
lation, allowing us to obtain a p-value under a null hypothesis that γ(h) = σ2.

To assess correlation over time, the date where the information was collected was
taken in Julian format. Figure 8 shows the variogram, indicating no evidence for
correlation over time with a p-value of 0.145.

In the same way Figure 8 depicts the variogram to test independence over space,
indicating no evidence of correlation over space with a p-value of 0.111. It is
important to highlight that the reason why the test to assess independence over
space can be applied, is because of the lack of evidence of autocorrelation over
time.

Figure 8: Test of independence over time and space for the residuals of model (3)

7. Discussion and Summary

Throughout this paper, different approaches have been evaluated, looking for the
best way to capture variability over time and space simultaneously with infor-
mation collected unevenly. The linear model did not offer a suitable description

Comunicaciones en Estad́ıstica, diciembre 2010, Vol. 3, No. 2



Use of Additive Models to Assess the Time and Space Variability in 3D Data 131

of water temperature in Santa Marta, Colombia, mainly for the variability over
space. The use of additive models provided a suitable tool based on the ability to
capture non linear relationships through smooth functions unrestricted in shape.

Water temperature in Santa Marta, Colombia, collected since August 2001 to
January 2006, showed a fluctuation over time with an upward tendency, reaching
a peak in 2005 and a drop until 2006, although the temperature in 2006 is higher
than 2004 and previous year. This is confirmed by the reports presented by the
IPCC (IPCC 2007), where 2005 was identified as one of the years with the highest
temperatures.

In respect to the variability over space, it is observed higher temperature in di-
rection north-west, while the lowest temperature are observed in the south. This
can be explained by the effect of the Sierra Nevada de Santa Marta, a snowy peak
mountain in the central cordillera with an altitude of 5.770 meters, in the rivers
Cesar, Palomino, Don Diego and Aracataca, rivers that end in the Caribbean sea.

In this particular case, the assessment of independence over time and space, sug-
gested no evidence in both cases, however additive models can be use for correlated
data, making easier the application on environmental information. In the case of
correlated data, the main effect is in the calculation of standard errors and compar-
ison models (Giannitrapani et al. 2005), where and approach through generalized
least square allows this structure to be included.

As a further steps, will be interesting to include more information given the large
dependency of the economical activities in this area in Colombia, looking for ap-
plication on economical development, tourism and modeling fishing patterns.
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