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ABSTRACT. In the present work, several localization schemes developed by theMethod of Approximated Particular Solutions are evaluated. This meshless methoduses solutions of a non-homogeneous Poisson auxiliary equation to approximatethe dependent variable. Diffusion problems with Dirichlet and Neumann boundaryconditions are selected to evaluate the performance of the localization strategyby using cross-shaped, cross- elongated shaped and circular neighborhoods. Theresults obtained with the cross-shaped neighborhoods show greater stability withrespect to the shape parameter. Local formulations perform better on problemswith Dirichlet boundary conditions while the global formulation obtains better re-sults on diffusion problems with Neumann boundary conditions.
keywords: Particular solutions, Poisson equation, Analytic approximations.
RESUMEN. En el presente trabajo, se evalúan varios esquemas de localización conel Método de Soluciones Particulares Aproximadas (MAPS). Este método sin mallautiliza soluciones particulares de una ecuación auxiliar de Poisson no homogéneapara aproximar la variable dependiente. Problemas de difusión con condiciones defrontera tipo Dirichlet y Neumann son abordados para evaluar el desempeño de laformulación local mediante el uso de vecindades en forma de cruz, cruz alargaday circular. Los resultados obtenidos con las vecindades en forma de cruz mues-tran una mayor estabilidad con respecto al parámetro de forma. Las estrategias delocalización muestran un mejor desempeño en problemas con condiciones de fron-tera de Dirichlet, mientras que la formulación global obtiene mejores resultados enproblemas de difusión con condiciones de frontera de Neumann.
Palabras clave: Soluciones particulares, Ecuación de Poisson, Aproximaciones analíti-cas.
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104 Nelson F. et al.
1 | INTRODUCTION
The Radial Basis Functions (RBF) are defined in terms of the Euclidean distance between two points, obtainingfunctions with radial symmetry if one of the points remains fixed. RFBs are easy to implement and It isn’taffected by the problem dimension. Its potentiality has been studied since the 70’s when Hardy [1] reportedgood results in its use as a two-dimensional scattered data interpolation strategy. In a study conducted byFranke [2] to evaluate the behavior of 29 interpolation algorithms, the author found that multi-quadric (MQ)RBF yielded the best results. A large number of methods that use RBF have been used in the solution ofPartial Differential Equations (PDE) from the pioneering works of Kansa [3, 4] in which it was proposed toapproximate the variable of the problemwith a linear combination of RBF. Although this method showed greatperformance in solving flow problems, the system matrix tends to be ill-conditioned when a large number ofnodes are used in the geometry. To overcome these difficulties is the indirect use of the RBF as proposedby Mai-Duy and Tran-Cong [5, 6] in such a way that the RBFs are used to approximate the derivatives of theproblem variable instead of the variable itself as Kansa’s method does. The results obtained in [5, 6] showedgreater precision and better numerical stability in relation to the direct implementation of the RBF becausethe integration process has a smoother behavior than the derivation process.

Chen et al. [7] proposed the Method of Approximated Particular Solutions (MAPS) to solve linear PartialDifferential Equations (PDE). In this method, an RBF is used as the source term of an auxiliary PDE in whichthe differential operator may be the same as the problem to be solved or part of it. The problem variable isapproximated with a linear combination of particular solutions of the auxiliary PDE, obtained analytically. Al-though the vast majority of the global formulation of theMAPS has been implemented in the solution of scalarand linear problems [8, 9, 10, 11], it has recently been used to solve vector and nonlinear two-dimensionalproblems related to electrokinetic flows [12], Stokes flow [13], incompressible flow to high Reynolds numbers[14], electrically conductive flux in the presence of magnetic fields [14], among others, showing great potentialfor this meshless method. In all cases, a system of Stokes equations is taken as an auxiliary system and an MQRBF is taken as the source term. The problems addressed in this work are solved with the MAPS proposed in[7] using as basis functions the particular solutions of the Poisson equation in which an MQ RBF is used as asource term.
Although global RBF-based methods tend to be very flexible and exhibit high-order convergence rates,systems with full matrices lead to the problem described by Shaback [15] as the uncertainty relation; betterconditioning is associated with worse accuracy, and worse conditioning is associated with better accuracy. Asthe system size increases, this problem becomes more pronounced. Many techniques have been developedto reduce the effect of the uncertainty relationship, such as RBF-specific pre-conditioners and adaptive datacenter selection. However, at present the only reliable method to control numerical ill-conditioning and com-putational cost as the size of the problem increases is domain decomposition or localization strategies. One ofthe first attempts in this direction was made by Lee et al. [16] who proposed the local MQ approach in whichonly the nodes within the influence subdomain of a central node are used in the asymmetric method to solvethe Poisson equation. This work was followed by others who have explored various strategies for RBF-basedmethods [17, 18, 19]. The development of localization schemes for the MAPS has become a topic of interestin recent years. Among others, it is worth mentioning the proposals made in the references [20, 21, 22] inwhich neighborhoods with five nodes in two-dimensional problems and neighborhoods with seven nodes forthree-dimensional problems are considered. In this work, a localization strategy for the MAPS is implementedthrough the use of cross-shaped, elongated and circular cross neighborhoods. The elongated cross-shapedneighborhood is considered by the authors as an alternative to the cross-shaped and circular-shaped neighbor-hoods widely studied in the literature. The goal of this work is to solve diffusion problems in a two-dimensionalcavity to evaluate the behavior of the global formulation of the MAPS compared to the local formulation con-sidering different shapes and sizes of neighborhoods. Additionally, the results obtainedwith both formulationsare compared with the results reported in [20] when solving a Poisson equation through the use of the globalformulation of the MAPS and a localization strategy similar to one of those implemented in this work. Thisarticle is structured as follows: the section 2 presents the problem to be solved. The global and local formula-
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105 Evaluation of Localization Strategies with the Meshless Method of Approximate Particular Solutions
tions for the MAPS are described in section 3. Numerical examples showing the results obtained with all theschemes are addressed in section 4.

2 | GOVERNING EQUATION
Let be Ω a two-dimensional region with boundary Γ, and u a scalar function satisfying a Laplace equation. Thisboundary value problem (BVP) is defined as follows

∆u(x) = 0, x ∈ Ω, (1)
Bu(x) = g(x), x ∈ Γ

where g is a known function, B is a Dirichlet or Neumann boundary operator and x is a point in Ω ∪ Γ. Ad-ditionally, ΓD y ΓN are set of boundary nodes where Dirichlet and Neumann conditions are imposed, respec-tively. We consider regular nodal distributions with NB nodes in the boundary, NBD boundary nodes withDirichlet condition, NBN boundary nodes with Neumann conditions and NI nodes in Ω where NB + NI =
NBD +NBN +NI = N .

3 | LOCALIZATION METHOD
TheMethod of Approximate Particular Solutions (MAPS) is part of themeshlessmethods based on Radial BasisFunctions (RBF) and is used in this work to solve the (BVP) (1) in the plane. The MAPS is indirect because itdoes not use the BVP as base functions in the proposed interpolation to approximate the variable values inthe problem. This section presents the global (GMAPS) and local (LMAPS) formulation of the method. First,the fundamentals of the GMAPS are reviewed as proposed in [7], then the local formulation implemented forthe MAPS is studied in this work.

3.1 | Global formulation
The GMAPS proposes approximate the BVP solution with a function û found with a superposition of basisfunctions as follows

ũ(x) =
N

∑
j=1

αjψ(rj), (2)

where {αj}Nj=1 is a set of real coefficients and ψ is the particular solution of the the following auxiliaryequation

∇2ψ(r) = φ(r). (3)
In this document a multi-quadratic (MQ) RBF is used as source term in Eq. (3) since other authors reportedrelevant improvements of this function choice by comparing it with other RBF. In particular, a exponentialerror convergence and positive localization matrices are reported in [23][24] when the interpolation schemeis used. Hence, φ(r) = √

r2 + c2 and

ψ(r) = 1

9
(4c2 + r2)

√
c2 + r2 − c

3

3
ln (c +

√
c2 + r2) , (4)
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106 Nelson F. et al.
where c is the shape parameter and r = r(x) = ∣x − ξ∣ is the Euclidean distance between a trial node at xand the source node ξ. In the current document both nodes are included in the local distribution in each case,thus the following notation is used

rj(r) = ∣x − ξj ∣ and ψi(rj) = ψ(rj(xi)) = ψ(∣xi − ξj ∣). (5)
The approximation given by Eq. (2) is forced to fulfill the partial differential equation PDE as well as theboundary conditions, then the following relationships

∇2ũ(x) =
N

∑
j=1

αj∇2ψ(rj) =
N

∑
j=1

αjφ(rj) = 0 and Bũ(x) =
N

∑
j=1

αjBψ(rj) = g(x) (6)

must be satisfied. The first one is a consequence of Eq. (3). Eqs. (3) to (6) show that theGMAPS is an indirectmethod since the FRB is used as source term in the auxiliary Eq. (3) rather than base function in Eq. (2). Onthe other hand, the MQ RBF is used to approximate derivatives of the variable, thus a integration is requiredto obtain a close form of ψ. This goal is achieved by using a procedure to remove singularities in the functionby eliminating terms responsible of the singularity. If the Eq. (6) is satisfied in the inner and boundary nodesrespectively and assuming a numbering where boundary nodes are first, then it is found

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bψ1(r1) ⋯ Bψ1(rN)
⋮ ⋮

BψNB
(r1) ⋯ BψNB

(rN)
φNB+1(r1) ⋯ φNB+1(rN)

⋮ ⋮
φN(r1) ⋯ φN(rN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

⋮
αNB

αNB+1
⋮
αN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1)
⋮

g(xNB
)

0

⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

The values found for the set {αj}Nj=1 by solving the system defined in Eq. (7) are replaced in the linearcombination given by Eq. (2) to calculate ũ. The matrix in Eq. (7) tends to be ill-conditioned as the number ofnodes in Ω ∪ Γ grows. Some authors have implemented strategies to face this problem with the aim to avoidinaccuracies it their results.
3.2 | Local Formulation
In order to reduce the computation time, due to the construction of a dispersed matrix associated to thesystem of equations, in this work a local formulation of the MAPS is used in which several types of neigh-borhoods for the nodes in the geometry are considered: neighborhood is cross-shaped, neighborhood in theform of elongated cross and circular neighborhood. The procedure described below is implemented for eachneighborhood.

Let us define {xi}Ni=1 as a nodal distribution in Ω ∪ Γ. For each xi ∈ Ω ∪ ΓN a neighbourhood is built,
V (x), where x is included and several close nodes are chosen according to the neighborhood shape. Hence,if x ∈ Ω∪ΓN then V (x) = {xi(k)}ni

k=1, where ni is the number of nodes in the neighborhood and xi(k) is a localindexation. The set of neighborhoods satisfies V (xi)∩V (xj) ≠ 0 for some values of i and j. The interpolationin Eq. (2) is used at each neighborhood to approximate u through a set ofNBN +NI functions ũ. The followinginterpolation

ũ(x) =
ni

∑
k=1

αi(k)ψ(ri(k)) (8)
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107 Evaluation of Localization Strategies with the Meshless Method of Approximate Particular Solutions
is proposed for each x ∈ V (xi). In this case, the sub-index i(k) refers to a local indexing where ri(k) =

ri(k)(x) = ∣x − xi(k)∣. The localization of the interpolation given by Eq. (8) in each node of V (xi) results in arelationship among interpolation coefficients and the values of ũ in the ith-neighbourhood with the followingmatrix system

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ũ(xi(1))
ũ(xi(2))

⋮
ũ(xi(ni))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψi(1)(ri(1)) ψi(1)(ri(2)) ⋯ ψi(1)(ri(ni))
ψi(2)(ri(1)) ψi(2)(ri(2)) ⋯ ψi(2)(ri(ni))

⋮ ⋮ ⋮
ψi(ni)(ri(1)) ψi(ni)(ri(2)) ⋯ ψi(ni)(ri(ni))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

αi(1)
αi(2)
⋮

αi(ni)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where ψi(j)(ri(k)) is understood according to the notation defined in Eq. (5). The right hand side matrix inEq. (9) is not singular (see Duchon [25]) and it is denoted as Ψi, therefore

⎡⎢⎢⎢⎢⎢⎢⎢⎣

αi(1)
αi(2)
⋮

αi(ni)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [Ψi]−1
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ũ(xi(1))
aũ(xi(2))

⋮
ũ(xi(ni))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

The interpolation (8) is used to build the system of algebraic equations associated to the problem by im-posing the differential operator or the one defined in the boundary when V (xi) corresponds to an inner point
xi ∈ Ω or a boundary point xi ∈ ΓN respectively. Eq. (10) allows to establish a straightforward procedure inthe LMAPS where the unknowns of the algebraic system of equations are values of ũ for each x ∈ Ω ∪ ΓN ,
{ũk}NBN+NI

k=1 , instead of the set of coefficients as occurs in the GMAPS.

(a) Geometry used the study in all cases with uniformdistribution. (b) Analytical solution of the case 1 in section 4.1.
F IG . 1 Domain and analytical solution.

The interpolation in Eq. (8) is forced to fulfill the differential equation and the boundary conditions taking
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108 Nelson F. et al.
into account Eqs. (3) and (10), as a result

∇2ũ(xi) =
ni

∑
k=1

αk∇2ψ(ri(k)) = [φi(ri(1)), φi(ri(2)), . . . , φi(ri(ni))] [Ψi]−1
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ũ(xi(1))
ũ(xi(2))

⋮
ũ(xi(ni))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, xi ∈ Ω (11)

Bũ(xi) =
ni

∑
k=1

αkBψ(ri(k)) = [Bψi(ri(1)),Bψi(ri(2)), . . . ,Bψi(ri(ni))] [Ψi]−1
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ũ(xi(1))
ũ(xi(2))

⋮
ũ(xi(ni))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, xi ∈ ΓN

A system of equations associated to a dispersed matrix is obtained from Eq. (11) and its solution allows tofind {ũk}NBN+NI

k=1 .

(a) Cross (b) Elongated cross

(c) Circular
F IG . 2 RMS Error vs the shape parameter for different neighborhoods under Dirichlet boundaryconditions.
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109 Evaluation of Localization Strategies with the Meshless Method of Approximate Particular Solutions
4 | RESULTS
The global and local formulation of the MAPS shown in Section 3 are used to solve Eq. (2) under Dirchlet andNeumann boundary conditions. Results are obtained using uniform nodal distributions of 5× 5, 10× 10, 17× 17and 31×31 nodes on the region [0, 1]× [0, 1]. Fig. 1 - (a) shows the geometry and one of the nodal distribution.The cases considered have analytic solution which allows to compute the error as follows

ErrorRMS =

¿
ÁÁÀ 1

n

N

∑
k=1

∣ui − ũi∣2 (12)

where u and ũ are the analytical and numerical solution respectively.

(a) Cross (b) Elongated cross

(c) Circular
F IG . 3 RMS Error vs the shape parameter for different neighborhoods under Neumann boundaryconditions.

4.1 | Study cases with Dirchlet boundary conditions
Four neighborhoods are used in the current study to implement the local scheme: cross, cross H (horizontallyelongated), cross V (vertically elongated), and the circle. In this work, we propose to compare elongated crossneighborhoods with cross and circular neighborhoods commonly studied by other authors. Additionally, fourconfigurations with Dirchlet boundary conditions are considered on the geometry sides in Fig. 1 to validate
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110 Nelson F. et al.
the global and local MAPS (see Table 1).

TABLE 1 Study cases for the GMAPS and LMAPS with Dirchlet boundary conditions
case 1 case 2 case 3 case 4

a 1 1 1 1
b 0 1 0 1
c 0 0 1 1
d 0 0 0 0

The case 1 and the distribution of 17 × 17 nodes ares used to find the optimal value of c for the globaland local MAPS. Fig. 1 - (b) shows the analytical solution for the case 1. Fig. 2 shows the behaviour of theerror as a function of c. The error profile of the GMAPS is larger than the one computed in the LMAPSat any neighborhood since the localization strategies reproduce better the gradients of u in Ω. All types ofneighborhoods (except the cross of 5 nodes) change importantly with c and its associated error tends to growas c is increased. Similarly, error in the LMAPS decreases for small values of c. Such error becomes smaller asthe number of nodes in the neighborhood is increased. This behaviour occurs since the profiles of the LMAPSapproach to the GMSPA profiles as the number of nodes becomes larger. Error in the circular neighborhood iseven larger than error in the enlarged cross studied in this document. Neighborhood corresponding to a crosswith 9 nodes behaves well for small values of c ∈ [0.4,5] where error does not change importantly with thisparameter even when its behaviour can change drastically for larger values of c.
TABLE 2 Optimal values in the global and local MAPS for each neighborhood type in the case 1.

Global Cross Cross H Cross V Circular
Nodes 289 5 9 13 7 9 7 9 9 13 21
c 0.05 3.5 0.6 0.4 3.5 0.8 3.5 2.5 4 29.5 5
RMS(a) error 92.37 8.42 1.66 2.69 7.41 11.26 7.36 10.98 18.34 28.88 17.38
(a) All the RMS error values are multiplied by 10−4

The optimal values of c in the interval (0,30] and its root-mean-square (RMS) error associated to eachneighborhood are shown in Table 2. The error in the global strategy is larger than the one computed for theoptimal values of c in other cases. It implies that the local MAPS reproduce better the gradients in Ω whenDirichlet boundary conditions are considered. RMS error found in the elongated cross and cross neighbor-hoods are similar. The RMS error profiles of the elongated cross and circular neighborhoods with 9 and 13nodes show a similar growing behaviour. However, better results are obtained when optimal values of c areused in the elongated cross case as it is shown in Fig. 2 and Table 2.
4.2 | Study cases with Neumann boundary conditions
In this section the MAPS formulation is presented by using the solution of problem given by Eq. (2) on the unitsquare shown in Fig. 1. The Dirchlet and Neuman Boundary conditions of the problem are defined by

u(x1,0) = 0, x1 ∈ [0,1]
u(x1,1) = 1, x1 ∈ [0,1] (13)

∂u

∂x1
(0, x2) =

∂u

∂x1
(1, x2) = 0, x2 ∈ [0,1]

The gradients of the analytical solution are constant then the expected error is small. The error profilesRMS with respect the shape parameter on the 17×17 nodal uniform distribution is shown in Fig. 3. Those pro-files change with c as occurs with the Dirichlet boundary problem. An exception is the cross with 5 nodes. TheRMS error decreases as c grows in the local MAPS formulation which uses the cross with 5 nodes. Errors asso-
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111 Evaluation of Localization Strategies with the Meshless Method of Approximate Particular Solutions
ciated to elongated cross-shaped neighborhoods behave similar to the ones computed for the cross-shapedneighborhoods. The RMS error profile of the globla MAPS is optimal when c is small. The best behavior of theGMSPA error profile in this case is related to the type of problem in which a constant gradient is considered.Additionally, the results suggest that global MAPS reproduce better the Neumman boundary conditions thanlocal MAPS.

TABLE 3 RMS error for both formulations considering the 4 cases described in Table 2.
Formulation 5 × 5 10 × 10 17 × 17 31 × 31

Case 1 Gobal MAPS(a) 0.032464935 0.016508911 0.009237024 0.005080164
Cross with 5 nodes(b) 0.003489350 0.001605290 0.000842775 0.000461830

Case 2 Gobal MAPS 0.022073199 0.01223995 0.007258954 0.004264315
Cross with 5 nodes 0.003896699 0.001539830 0.000836309 0.000455119

Case 3 Gobal MAPS 0.0548441 0.026071524 0.014397534 0.007817114
Cross with 5 nodes 0.004424285 0.002166386 0.001196665 0.000650008

Case 4 Gobal MAPS 0.029364895 0.014530504 0.008384832 0.00478309
Cross with 5 nodes 0.003605916 0.000532882 0.000075190 0.000008358

(a) where c = 0.05

(b) where c = 3.5

Optimal values of c ∈ (0,30] for both formulations including four types of neighborhoods are shown inTable 4. The smaller RMS error for the optimal value of c corresponds to the global MAPS since the analyticalsolution reproduce better the constant gradient. The RMS error profile of the global MAPS tends to grow butit is damped. Similarly, the local MAPS may not reproduce properly the Neumann boundary conditions. Asimilar profile behaviour is observed in the elongated cross and circular neighborhoods having 9 and 13 nodes,where profiles preserve near the error profile of the cross neighborhood with 5 nodes.
5 | CONCLUSIONS
In this work the global and local MAPS are implemented. Both formulations are used to solve diffusion prob-lems in the unitary cavity under Dirchlet and Neumann Boundary Conditions. Four neighborhoods are definedin the local formulation : cross, horizontal elongated cross, vertical elongated cross and Circular. A error sen-sibility study is performed of each case in terms of the shape parameter c.

The results show that global and local formulations depends drastically on c, then it is necessary to findan optimal value of this parameter. Optimal values of c in the global MAPS are small. On the other hand,optimal values of the shape parameter are large in the local formulation. This optimal value decreases asthe node number grows, which shows that local scheme approaches to global one when a large value ofnodes are employed. Results obtained in the current study (Laplace problem) and the ones reported in [20](Poisson problem) show that the RMS error dependence with c are similar. Both studies show that increasingthe number of nodes in the neighborhood under Neumann boundary conditions can affect the local MAPSperformance.
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