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Abstract—In the present paper, we perform a numerical study of 

the Sitnikov problem aiming to characterize the orbits of a 

variable mass particle (e.g., comet, rocket, asteroid or spacecraft) 

and determine the uncertainty in the prediction of the final state 

of the test particle. The classification of final states was done 

through the well-known exit basins, while the determination of 

the uncertainty was calculated using a new tool named Basin 

entropy. It is found that for small values of the initial mass of the 

test particle, the number of initial conditions leading to bounded 

orbits gets increased, thus reducing the uncertainty in the final 

states. The same behavior in uncertainty is observed for 

increasing values of the exponent in Jeans law for the variation of 

the mass. Our results allow us to conclude that: i) an accelerated 

fuel consumption in the initial stages of stabilization of a satellite 

can keep the object in an oscillatory state around the primaries 

and ii) if the mass of the satellite is less than one hundredth of the 

mass of each primary, it is possible to predict with a very high 

certainty the final state of the satellite, regardless of the accuracy 

in the initial conditions of the system. 

 

Index Terms— Basin entropy; Sitnikov problem; Variable 

mass, Jeans law 

 

 Resumen—En el presente trabajo, se realiza un estudio numérico 

del problema de Sitnikov que busca caracterizar las órbitas de 

una partícula de masa variable (e.g. un cometa, un cohete, un 

asteroide o una nave espacial), y determinar la incertidumbre en 

la predicción de los estados finales del sistema. La clasificación de 

los estados finales se realiza a través de las conocidas cuencas de 

salida, mientras que la determinación de la incertidumbre se 

calcula usando una nueva herramienta denominada entropía de 

las cuencas. Se encuentra que, para valores pequeños de la masa  

inicial de la partícula de prueba, el número de condiciones 

iniciales conducentes a órbitas acotadas aumenta 

significativamente, reduciendo así la incertidumbre en los estados 

finales. El mismo comportamiento en la incertidumbre se observa 

para valores grandes del exponente en la Ley de Jeans para la 

variación de la masa. Nuestros resultados permiten concluir que: 

i) un acelerado consumo de combustible en las etapas iniciales de 
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estabilización de un satélite puede mantener el objeto en un 

estado oscilatorio en torno a las primarias y ii) si la masa del 

satélite es menor a una centésima parte de la masa de cada 

primaria, es posible predecir con una altísima certidumbre el 

estado final del mismo, sin importar la exactitud en las 

condiciones iniciales del sistema. 

 

 Palabras claves— Entropía de cuencas; Problema de Sitnikov; 

Masa variable; Ley de Jeans. 

 

Resumo—No presente trabalho, realizamos um estudo numérico 

do problema Sitnikov com o objetivo de caracterizar as órbitas 

de uma partícula de massa variável (por exemplo, cometa, 

foguete, asteróide ou espaçonave) e determinar a incerteza na 

previsão do estado final da partícula de teste . A classificação dos 

estados finais foi feita através das conhecidas bacias de saída, 

enquanto a determinação da incerteza foi calculada usando uma 

nova ferramenta chamada entropia da bacia. Verificou-se que, 

para pequenos valores da massa inicial da partícula de teste, o 

número de condições iniciais que levam a órbitas limitadas 

aumenta, reduzindo assim a incerteza nos estados finais. O 

mesmo comportamento na incerteza é observado para valores 

crescentes do expoente na lei de Jeans para a variação da massa. 

Nossos resultados permitem concluir que: i) um consumo 

acelerado de combustível nos estágios iniciais de estabilização de 

um satélite pode manter o objeto em um estado oscilatório em 

torno das primárias e ii) se a massa do satélite for menor que um 

centésimo da massa de cada primário, é possível prever com uma 

certeza muito alta o estado final do satélite, independentemente 

da precisão nas condições iniciais do sistema. 

 

Palavras-chave— Entropia de bacias; Problema de Sitnikov; 

massa variável; lei de jeans. 

I. INTRODUCTION 

nalyzing the dynamics of a gravitational system has given 

the possibility of accurately predicting gravitational 

events such as the collision of two stars or the motions of the 

stars, moons, planets, satellites, and comets (see e.g. [1]). The 

theoretical framework to model the interaction of 𝑛 point 

masses moving under the influence of their mutual 

gravitational attraction is the so-called 𝑛-body problem. Here, 

it is known that for 𝑛 ≥ 3 there is no general analytical 

solution and hence several simplifications must be introduced, 

for example, the restricted 𝑛-body problems [2]. 

 

In the restricted three-body problem (hereafter RTBP) the 

primaries move in circular or elliptic trajectories (solutions of 
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a two-body problem), while the mass of the third body is 

negligible in comparison with the masses of the primaries [3]. 

Since the formulation of the RTBP, it was proved by Lagrange 

that this system possesses five equilibrium points, nowadays 

named Lagrangian points [4]. Since then, the existence of 

Trojan asteroids near the Lagrangian points L4 and L5 of the 

Sun-Jupiter system [5], significantly increased the interest of 

the scientific community on this problem [6].  

 

On the other hand, it is a well-known fact that many 

realistic systems vary their mass during the evolution of the 

system [7], e.g., comets lose mass with each passage near the 

Sun and satellites moving around a star surrounded by a cloud 

of dust vary their mass due to friction. In a seminal paper, 

Shrivastava & Ishwar derived the equations of motion for the 

RTBP with variable mass, showing that the system of 

equations is equivalent to the RTBP with perturbing forces 

[8]. Despite this important step in the field of astrodynamics, 

the true dynamical nature of the system has been evaded for 

decades, and therefore, the dynamics of this particular system 

has never been considered in the literature.  

 

In this paper, we shall analyze the Sitnikov problem [9, 10], 

which corresponds to a simplified version of the RTBP, by 

assuming that the mass of the satellite decreases with respect 

to time according to the Jeans law [11]. The variation of the 

parameters inherent to the equation for mass loss rate, allow us 

to determine the exit basins for orbits escaping through the 

positive or negative 𝑧-direction and their respective basin 

entropies. To our knowledge, this is the first time that this 

system is analyzed by performing a systematic classification 

of orbits in phase space.  

 

The paper is organized as follows: section II deals with the 

mathematical formulation of the system. In section III, the 

numerical methodology used to classify the orbits is presented. 

We close this section showing the basin diagrams in phase-

space associated with the exit basins of the system. Next, in 

section IV, we discuss the basin entropy related to the 

numerical classification carried out in the present study. The 

most important conclusions of our work are summarized in 

section V.   

II. EQUATIONS OF MOTION 

In the Sitnikov problem, the test particle 𝑚 oscillates along 

an axis that is perpendicular to the plane of motion formed by 

the elliptic trajectories of two equal mass primaries 𝑚1 =
𝑚2 = 𝑀. Given that the mass of the test particle 𝑚 is 

negligible in comparison with the mass of the primaries, 

𝑚3 ≪ 𝑀, it does not affect their motion.  

 

Fig. 1.  The configuration of the Sitnikov problem. 𝑟(𝑡) denotes the distance 

of the center of mass to each primary, while 𝑎 is the semi-major axis of the 
ellipse. 

 

Let us assume that the motion of the test particle (which 

varies its mass) takes place along the 𝑧-axis, as shown in Fig. 

1. Under this condition, the Lagrangian for the Sitnikov 

problem reads as  

 

𝐿 =
1

2
𝑚 �̇�2 +

2𝐺𝑚𝑀

√𝑟(𝑡)2 + 𝑧2
 (1) 

with 𝑟(𝑡) the distance of the center of mass to either primary 

𝑟(𝑡) = 𝑎(1 − 𝜀 cos 𝑡) + 𝑂(𝜀2) (2) 

while the equation of motion to the 𝜀2 order (see e.g. equation 

(3) in Ref. [9]) is given by   

𝑚�̈� + �̇��̇� +
2𝐺𝑚𝑀

(𝑧2 + 𝑎2)3/2
+

6𝐺𝑚𝑀𝑎2𝑧𝜀 cos 𝑡

(𝑧2 + 𝑎2)5/2
= 0 (3) 

 

In all what follows we shall use standard units for the RTBP, 

i.e., the period of the primaries as 2𝜋, the total mass of the 

primaries as mass unit 2𝑀 = 1, the larger distance between 

the primaries as distance unit 2𝑎 = 1, and the gravitational 

constants set as 𝐺 = 1. It should be noted that setting 𝜀 = 0 in 

equation (3) we obtain the well know MacMillan problem 

[12].  

On the other hand, based on the mass-luminosity relation, 

Jeans derived a law for the variation of mass in an 

astrophysical system [11]. In compact form, the equation for 

mass loss rate can be written as  

�̇� = −𝛼 𝑚𝑛  (4) 

 

with 𝛼 a positive constant and 𝑛 an integer larger than 2. 

Equation (1) can be analytically integrated to give the 

following expression for the mass as a function of time 
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𝑚(𝑡) = 𝑚0[1 + 𝑚0
𝑛−1 𝛼(𝑛 − 1)𝑡]1/(1−𝑛) (5) 

 

where 𝑚0 is the initial mass at 𝑡 = 0. Setting 𝑛 = 2 and 𝑛 = 3 

in equation (5), the first and second law of Meshcherskii are 

obtained [13]. In Fig. 2, we present the variation of 𝑚 as a 

function of time. Here, it can be seen that for larger values of 

𝑛, the mass decays faster in time. 

 

 
Fig. 2.  Solutions for the mass as a function of time in the Jeans law. In all 

cases, we assume 𝑚0 = 1 and 𝛼 = 2.7.  

 

After replacing equations (4) and (5) into equation (3), we 

obtain the explicit second-order differential equation for the 

Sitnikov problem with variable mass. This equation must be 

solved numerically and will depend on: the value of the 

parameter 𝑛 which characterizes the decay rate for the mass of 

the third body, the initial value of mass of the third body 𝑚0, 

the parameter 𝛼, and the eccentricity for the orbit of the 

primaries 𝜀.  

 

In order to check the dynamical behavior of the system, in 

Fig. 3 we present the phase portrait Mod [2𝜋] for the Sitnikov 

problem, under the approximation of low eccentricity orbits 

for the primaries. The chaotic behavior of the system is clearly 

observed when 𝜀 > 0. In agreement with previous studies 

[14], the number of KAM islands are reduced for increasing 

values of the eccentricity. The interval of initial conditions 

was 𝑧0 = [0, 2.5] with ∆𝑧0 =  0.05, and initial velocity 𝑧0̇ =
0 in all cases. 

III. EXIT BASINS 

It is a well-known fact that in a particular dynamical system 

with a single attractor or exit channel, the destination of any 

initial condition can be clearly and uniquely determined. 

However, the majority of dynamical systems often exhibit 

multistability, then, the determination of the set of orbits that 

tend to a specific attractor becomes a fundamental question. 

The study of these basins can provide information about the 

system since its topology is related to the dynamical nature of 

the system. 

For an open system, we can define as exit basin the set of 

initial conditions escaping through some specific channel. As 

noted in the previous section the Sitnikov problem has three 

possible final states: exit 1 (𝑧 → ∞), exit 2 (𝑧 → −∞), and 

non-escaping orbits. The criteria used to determine if a test 

particle escapes to one of the exit channels is that |𝑧| ≥ 104, 

because at that point the gravitational force has been reduced 

by eight orders of magnitude, making it practically negligible. 

According to the exit channel through which the test particle 

escapes, the initial condition is colored, i.e., escape through 

channel 1 with blue color, escape through channel 2 with red 

color, and the green regions denote initial conditions of non-

escaping orbits. 

 

In order to classify the orbits, we numerically solve the 

second-order differential equation for the Sitnikov problem 

with variable mass, by using a Runge-Kutta-Fehlberg Method 

(RKF45) implemented in C++. This numerical code needed 

between 1 and 10 hours of CPU time on an Intel Xeon 3.0 

GHz PC. Moreover, all graphical illustrations for the two-

dimensional color-coded diagrams have been created using the 

version 10.4.1 of the software Mathematica. 
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A. Case 𝜀 = 0 

Let us start considering the case in which the eccentricity of 

the primaries is zero, i.e., the MacMillan problem. The exit 

basins for the MacMillan problem (𝜀 = 0) using different 

values of the decay rate 𝑛 and the initial mass 𝑚0 are shown in 

Fig. 4. Here, it can be observed that the three possible final 

states take place. The first row of Fig. 4 corresponds to the 

situation in which 𝑛 = 2, panel (a) corresponds to 𝑚0 = 1, 

panel (b) to 𝑚0 = 0.5, and (c) to 𝑚0=0.1. The second row 

corresponds to 𝑛 = 3, with 𝑚0 = 1 in panel (d), 𝑚0 = 0.5 in 

panel (e), and 𝑚0=0.1 in panel (f). Finally, the third row 

depicts the case 𝑛 = 4, with 𝑚0 = 1 in panel (g), 𝑚0 = 0.5 in 

panel (h), and 𝑚0=0.1 in panel (i).  

 

In the first row of Fig. 4, some complex structures of spiral-

type are observed, these structures let us infer that despite the 

basins are smooth, the system becomes unpredictable when 

choosing a random initial condition belonging to the region of 

phase space [−1 ≤ 𝑧0 ≤ 1] and [−1 ≤ 𝑧0̇ ≤ 1]. It is also 

observed that when the initial mass decreased in magnitude, 

the basin corresponding to non-escaping orbits decreases. 

 

In the case 𝑛 = 3 (panels (d), (e) and (f)), again, complex 

structures are present, and the region that characterizes 

bounded orbits grows as the initial mass of the test particle 

decreases. The main difference with the previous case is that 

the region related to non-escaping orbits, not only is larger for 

 
 

Fig. 3.  Poincaré surfaces of sections for the Sitnikov problem in terms of the eccentricity of the primaries. Panel (a) corresponds to the MacMillan problem.   

 

 
Fig. 4.  Exit basins for the MacMillan problem using different values of the decay rate 𝑛 and the initial mass 𝑚0. The first row corresponds to 𝑛 = 2, second 

row to 𝑛 = 3, and third row to the case 𝑛 = 4. Concerning the initial values of mass for the third body: the first column corresponds to 𝑚0 = 1, second column 

to 𝑚0 = 0,5, and the third column to 𝑚0=0.1. In all cases, we set 𝜀 = 0 and 𝛼 = 2.7. 
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𝑚0 = 1 in comparison to the previous case (𝑛 = 3), but also 

grows considerably faster. 

 

For the group of basins corresponding to 𝑛 = 4, panels (g), 

(h) and (i) of the third row, the complex structures that were 

observed for 𝑛 = 2 and 𝑛 = 3 are no longer present, on the 

contrary, the basins correspond to well-defined smooth 

regions. Due to the fact that the area occupied by the green 

region is significantly larger than in the previous cases, the 

region of phase space [−1 ≤ 𝑧0 ≤ 1] and [−1 ≤ 𝑧0̇ ≤ 1], gets 

almost totally filled with non-escaping orbits for small 

variations of the initial mass e.g. 𝑚0 = 0.5. 

 

B. Case 𝜀 = 0.1 

The second set of basins under consideration correspond to 

the case in which the eccentricity of the primaries is 𝜀 = 0.1. 

As in the previous case, the first row of Fig. 5 depicts the 

situation in which 𝑛 = 2, second row 𝑛 = 3, and third row 

𝑛 = 4. Each column is also associated to a value of the initial 

mass, i.e., panels (a), (d) and (g) correspond to 𝑚0 = 1, panels 

(b), (e) and (h) to 𝑚0 = 0.5, and panels (c), (f), and (i) to 

𝑚0=0.1. It is observed that the spiral-like structures seen in 

Fig. 4, also take place in this case, however, the boundaries of 

the green basins are dimmed. This result suggests that the 

chaotic nature of the Sitnikov problem is also reflected in the 

shape of the basins. The basins corresponding to 𝑛 = 4 are 

practically the same observed in the third row of Fig. 4. Also, 

 

 
Fig. 5.  Exit basins for the Sitnikov problem using different values of the decay rate 𝑛 and the initial mass 𝑚0. The first row corresponds to 𝑛 = 2, second row 

to 𝑛 = 3, and third row to the case 𝑛 = 4. Concerning the initial values of mass for the third body: the first column corresponds to 𝑚0 = 1, second column to 

𝑚0 = 0,5, and the third column to 𝑚0=0.1. In all cases, we set 𝜀 = 0.1 and 𝛼 = 2.7. 
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it should be noted that a small value of the initial mass 𝑚0 <
0.1, along with a value of the decay rate larger than 2, are 

enough to fill the phase space with bounded orbits. 

 

C. Case 𝜀 = 0.2 

The last case under consideration refers to a larger 

eccentricity value 𝜀 = 0.2 (see Fig. 6). The ergodic 

distribution of the initial conditions tending to a particular 

basin becomes more marked. For 𝑛 = 2, it is observed that the 

spirals are destroyed independently of the initial mass value. 

Also, it can be noted that the dense green region associated 

with bounded orbits is reduced, but at the same time, there are 

some random initial conditions distributed along with the 

available phase space. Panels (d) and (e) in Fig. 6 are similar 

to the ones presented in Fig. 5, however the main difference is 

related to the basins of panels (f), where the highest value of 

eccentricity in Fig. 6 erases the smooth and uniform 

distribution on the basin of bounded orbit, allowing the 

possibility to obtain final states of the exits 1 and 2.  

 

In the last row of Fig. 6, panels (g) and (h), it is observed 

that some blue and red basins invaded the inner green region, 

such that the uncertainty about the final states is also 

increased. Finally, as for the distribution of basins shown in 

panels (i) of Figs. 4 y 5, the last panel of Fig. 6 exhibits a 

homogeneous filling of the phase space.        

IV. BASIN ENTROPY 

The concept of basin entropy is a new quantitative measure 

 
Fig. 6.  Exit basins for the Sitnikov problem using different values of the decay rate 𝑛 and the initial mass 𝑚0. The first row corresponds to 𝑛 = 2, second row 

corresponds to 𝑛 = 3, and third row to the case 𝑛 = 4. Concerning the initial values of mass for the third body: the first column corresponds to 𝑚0 = 1, second 

column to 𝑚0 = 0,5, and the third column to 𝑚0=0.1. In all cases, we set 𝜀 = 0.2 and 𝛼 = 2.7. 
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recently introduced to determine the uncertainty of a given 

basin [15]. In this context, the term uncertainty can be 

understood as the difficulty to easily predict the final state of a 

given set of initial conditions. The methodology to calculate 

the basin entropy consists of subdividing the phase space into 

𝑁 small cells, such that each cell must include at least one 

final states 𝑁𝐴. The entropy associated with the cell 𝑖, is given 

by the expression 

𝑆𝑖 = ∑ 𝑝𝑖,𝑗

𝑚𝑖

𝑗=1

log (
1

𝑝𝑖,𝑗

) (6) 

 

where 𝑝𝑖,𝑗 denotes the probability to find a state 𝑗 in the cell 𝑖, 

and 𝑚𝑖 ∈ [1, 𝑁𝐴] represents the number of final states inside 

the 𝑖-th box. 

 

The total entropy for the basin 𝑆𝑏, is then calculated as the 

sum of individual entropies normalized by the total number of 

boxes 𝑁, i.e.,  

𝑆𝑏 =
1

𝑁
∑ ∑ 𝑝𝑖,𝑗

𝑚𝑖

𝑗=1

log (
1

𝑝𝑖,𝑗

)

𝑁

𝑖=1

 (7) 

 

At this point, it is important to point out that the basin 

entropy 𝑆𝑏 directly depends on the total number of boxes of 

the basin. To avoid this limitation, we use a Monte Carlo 

procedure to randomly select the boxes inside the basin. In the 

present paper, following the suggestion presented in Ref. [16] 

we use 𝜖 = 5, for the size of the boxes and 𝑁 = 1 × 105 for 

the total number of boxes, aiming to get a constant and 

realistic value for 𝑆𝑏.  

 

 
In Tables 1, 2, and 3, we present the resulting values for the 

basin entropy of Figs. 4, 5, and 6. From Table I, it can be 

noted that in the MacMillan problem (𝜀 = 0) the largest value 

of the basin entropy corresponds to the panel (c) of Fig. 4. 

This result can be explained by considering that this plot does 

not contain large zones of red, blue or green basins, in other 

words, the number of basin boundaries is larger than in the 

other panels. The same result is observed for 𝜀 = 0.1 and 𝜀 =
0.2, in Tables II and III, respectively. In the same vein, the 

smaller values of the basin entropy correspond to panels (i), 

because in this case all the diagrams only possess one final 

state. 

 

 
As a general result, it can be noted that the increase in the 

eccentricity of the primaries also increases the values of the 

basins entropies, for example panels (g) of Figs. 4 and 5 have 

a zero value for the entropy, but for the case 𝜀 = 0.2, this 

value is about 0.1. 

 

 

V. CONCLUSIONS 

The scope of this paper was to investigate the basins of 

escape or exit basins of the Sitnikov problem with variable 

mass. For describing the variation of mass of the third mass, 

we used the Jeans law, which reduces to the first and second 

law of Meshcherskii for 𝑛 = 2 and 𝑛 = 3, respectively. The 

resulting autonomous second-order differential equation was 

numerically integrated for a large set of initial conditions in 

the region of phase space [−1 ≤ 𝑧0 ≤ 1] and [−1 ≤ 𝑧0̇ ≤ 1]. 
By means of color-coded basin diagrams and with the aid of 

the basin entropy, we demonstrate the influence of the 

eccentricity in the final states of the orbits as well as in the 

degree of fractality of the system. The main results of our 

study can be summarized as follows: 

 

 It is found that at a lower value of the initial mass the 

number of initial conditions that end up in bounded 

orbits is greater. 

 

 The fractal degree of the system is increased with in- 

creasing value of 𝜀, since all the basin boundaries 

become less smooth, and at the same time, all the 

noisy (chaotic) regions are amplified. The increment 

in the fractality was confirmed by the computation of 

the basin entropy.  

 

 In all cases, it is found that by increasing the value of 

the mass loss rate, the value of the basin entropy 

tends to be reduced. Then, it can be conjectured that a 

fast drop on the mass of the satellite should decrease 

the uncertainty in the determination of its final state. 

 

 The results indicate that a residual character of the 

TABLE I 

BASIN ENTROPY FOR 𝜀 = 0 

 𝑚0 = 1.0 𝑚0 = 0.5 𝑚0 = 0.1 

𝑛 = 2 0.12 0.18 0.36 

𝑛 = 3 0.07 0.05 0.0 

𝑛 = 4 0.01 4𝑥10−3 0.0 

 

TABLE II 

BASIN ENTROPY FOR 𝜀 = 0.1 

 𝑚0 = 1.0 𝑚0 = 0.5 𝑚0 = 0.1 

𝑛 = 2 0.12 0.19 0.42 

𝑛 = 3 0.12 0.13 0.00 

𝑛 = 4 0.01 4𝑥10−3 0.00 

 

TABLE III 

BASIN ENTROPY FOR 𝜀 = 0.2 

 𝑚0 = 1.0 𝑚0 = 0.5 𝑚0 = 0.1 

𝑛 = 2 0.13 0.20 0.46 

𝑛 = 3 0.21 0.28 0.10 

𝑛 = 4 0.04 0.03 0.00 
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chaotic dynamics of bounded orbits, is reflected in 

the increase of the uncertainty of basins for 

unbounded orbits. 

 

 Our findings are in agreement with previous studies 

related to the influence of perturbing terms in the 

dynamics of open and closed astrophysical systems 

[17, 18, 19].  
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