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Structure semicoelevator for semitopological
categories

Semicoelevadores de estructura para categoŕıas semitopológicas

Wilson Forero1,a, Reinaldo Montañez1,b

Abstract. To search the formation of new semitopological categories the
semicoelevators of structure are introduced, whose fixed points form new semi-
topological categories. Additionally, if we add the notion of full functor, we can
prove the equivalence between reflective and semitopological subcategories, on
the other hand, the properties of the semitopological functors are studied.
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Resumen. En la busqueda de formación de nuevas categoŕıas semitopológicas
se introducen los funtores semicolevadores de estructura, cuyos puntos fi-
jos forman nuevas categoŕıas semitopológicas, este hecho permite junto a
la noción de plenitud probar la equivalencia entre subcategorias reflexivas y
semitopológicas, además, se estudian las propiedades de los funtores semi-
topológicos.
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1. Introduction

The topological functors [1] arise from the study of the forgetful functor of
the category of topological spaces to category of sets, these are defined with
the lifting of sources and sinks. On the other hand, not every subcategory of
a topological category is topological, for example the category of Haussdorf
spaces (see Example 2.2). Similarly, categories of algebraic type like the ca-
tegory of groups and vector spaces aren’t topological respect the category of
sets.

A candidate to solve that inconvenient is the topologically algebraic func-
tors, however the composition of topological functors is topological, but in case
of topologically algebraic functors that is not true [2]. For that reason we don’t

1Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia
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52 Wilson Forero & Reinaldo Montañez

work with these functors, the best candidate is the semitopological functors,
these functors are the central axis of this work.

On the other hand, Montañez in [8] presents a method to build topologi-
cal subcategories correspond to fixed points of endofunctors (these are called
coelevators). Moreover, these are reflective of the initial category, though this
method doesn’t capture important categories, example the Haussdorf spaces.
So we weaken this concept to semitopological categories, this creates again a
source of generation of semitopological categories.

2. Background

To study the semitopological functors we need some terminology, we assume
that the reader knows the basic notions of the category theory, references
around this are [1] and [4]. The main reference for categorical notions of this
paper is [1].

The first notion to define a topological category is a sink. Let A be a
category, a pair {(fi, A) : i ∈ I} will be called a sink, where A is an object of A
and fi : Ai → A is a morphism with codomain A. If F : A→ B be a functor,
a pair (fi, B) is a structural sink if B is an object of B and fi : FAi → B
is a morphism in B where Ai is an object of A. The dual notions of sink and
structural sink are source and structural source.

Let (fi, B) be a structural sink, if exist a sink (f ′i , A) in A such that Ff ′i = fi
and FA = B, we say that (fi, B) has a lifting. Lifting property for a structural
sink is illustrated in the following diagram:

Ai
f ′i // A A

F

��
FAi

fi

//�� B
��

B

Definition 2.1. Let F : A → B be a functor. F is a topological functor if
each structural sink has a unique lifting.

The main example is the forgetful functor from the category of topological
spaces to the category of sets. The lifting property in this case has the name of
the final topology for a sink. On the contrary, the category of Hausdorff spaces
isn’t topological with respect the forgetful functor to sets.

Example 2.2. Let O : Haus → Set be the forgetful functor on the category
of Hausdorff spaces to the category of sets. Let RtR be the space formed with
two copies of the real line R with the metric topology. If we take the quotient
function q : R t R → R t R/ ∼ where (a, 0) ∼ (b, 1) iff a 6= 0 and b 6= 0, this
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equivalence relation can be thought as identified all the points except when is
zero.

The final topology is the quotient topology over R t R/ ∼, this space is
called the line with two origins and isn’t a Hausdorff space. This happens
because if we take the two origins and build two open neighborhoods of their,
the intersection of these is always non-empty.

R t R

��

q

((

Haus

��
R t R/ ∼ Top

��
R t R

q
// R t R/ ∼

OO

Sets

3. Semitopological categories

Lifting a structural sink can be some restrictive. To weak this notion, Tholen
[9] works with factorizations of a structural sink.

A factorization for a sink (f ′i , A) is a pair (g, hi) such that hi ◦ g = f ′i for
each morphism fi in the sink. In case of working with structural sink (fi, B)
the notion of factorization is a pair (g, hi) where hi : Ai → A and g : B → FA
such that Fhi = g ◦ fi. To generalize the notion of lifting we use some special
factorization of a structural sink.

Definition 3.1. [9] Let F : A → B be a functor and (fi, X) a structural
sink, with fi : FAi → X; the pair (A, g), where g : X → FA, is a semifinal
solution if satisfies:

1. For each fi, exist hi : Ai → A such that g ◦ fi = Fhi.

Ai
hi

!!

A

F

��

A

FAi

Fhi ((

fi

// X

g

��

B

FA
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2. If exist (A′, g′) and h′i : Ai → A′ such that g′ ◦ fi = Fh′i, then exist a
unique w : A→ A′ such that Fw ◦ g = g′ and w ◦ hi = h′i.

Ai

h′i ""

hi // A

w

��

A

F

��

A′

X

g

��

g′

""
FA

Fw
// FA′ B

Definition 3.2. A functor F : A → B is semitopological if each structural
sink has a unique semifinal solution.

If F : A → B is a semitopological functor, then A will be called a semi-
topological category.

Theorem 3.3. [1] Every topological functor is semitopological.

The forgetful functor O : Grp→ Set is semitopological but not topological.
The following example of a semitopological functor which is not topological was
proposed as an exercise in [1] and here we solved for understanding better the
behavior of the semifinal solution.

Example 3.4. Let B be the subcategory of Set generated by the following
objects {1}, {2} and N, and morphisms: r(1) = 2, s(2) = 1, gn(1) = kn(2) = n
and hn(m) = n+m.

{1}

r

��

gn

##
N 	hn

{2}

s

OO

kn

;;

and let A be a subcategory of B, generated by the sets: {1}, {2} and N, and
morphisms: s(2) = 1, gn(1) = kn(2) = n and hn(m) = n+m with g0 /∈ mor(A),
the diagram of A is,
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{1}
gn

##
N 	hn

{2}

s

OO

kn

;;

The inclusion functor ı : A → B isn’t topological because the structural sink
(g0,N) doesn’t have a lifting; but ı is semitopological, since A and B differ
only in g0 and r, we just need that these morphisms have semifinal solutions.

{1} r //

g1
!!

gn+2

..

{2}

kn+2

��

k1

��
N

hn+1 !!
N

{1}
g0 //

g1
  

gn

..

N

hn

��

h1

��
N

hn−1 ��
N

So the semifinal solution of r is (k1,N) and of g0 is (h1,N).

4. Some properties of semitopological functors

To prove the theorem 4.1, we need some preliminary facts, no relevant with
the object of the paper. In [1] can be found as proposition 25.12 and theorem
25.14.

Theorem 4.1. [1] Let F : A→ B be a semitopological functor then:

• F is faithful

• F has a left adjoint.

• F preserve and detect limits

• F detect colimits

Where we say that a functor F : A→ B detect limits if a diagram C : I→ A
has limit in A whenever F ◦ C has one in B.

The notion of source is dual to the notion of sink. The next theorem was
proposed in [9] and here the proof is presented completely.

Theorem 4.2. [9] F is a semitopological functor if and only if every structural
source has a semi initial solution.
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Proof. Let F : A → B be a topological functor and (fi, B) be a structural
source where fi : B → FAi. We define the sink (hj , B) formed with the
morphisms hj such that hj : Ai → B satisfies that fi ◦ hj is a morphism in A.
Since F is semitopological, the sink (hj , B) has a semifinal solution, which in
turn is the semi initial solution for the source (fi, B).

The previous construction doesn’t consider the case the sink (hj , B) is
empty. In this case, since F is semitopological has a left adjoint (see Theorem
4.1) and therefore B can be associated with its free object AB and a morphism
mB , this couple will be the semi initial solution of the source.

Conversely, if every source has semi initial solution and you take a structural
sink (fi, B) such that fi : FAi → B, form the initial source of objects Cj such
that exist a morphism hi : B → Cj complying hj ◦ fi is a morphism in A and
this source has a semi initial solution (g,A) then the sink (fi, B) has semifinal
solution.

Additionally, theorem 4.1 implies the following.

Corollary 4.3. [1] Let F : A → B be a semitopological functor and B a
complete category. Then A is complete.

To prove theorem 4.4 we use an epi-structural morphism. Let F : A → B
be a functor and g be a morphism in B, g will be called epi-structural if for
each two morphisms f, h : A→ A′ in A such that Ff ◦ g = Fh ◦ g then f = h.

In case of work with a semitopological functor, thanks to its faithful, it is
possible to prove that the morphism g of a semifinal solution(g,A) of a sink
(X, fi) is an epi-structural morphism [1].

Theorem 4.4. Let F : A→ B be a semitopological functor and α a monomor-
phism in A then Fα is a monomorphism in B.

Proof. If f, g : X → FA are morphisms in B and α : A→ C a monomorphism
in A such that Fα◦f = Fα◦g. The source (X, {f, g}) has semi initial solution
given by w : X → FL and li : FL → FA with i = 1, 2, as w is epi-structural
and Fα ◦Fl2 ◦w = Fα ◦Fl1 ◦w then α ◦ l2 = α ◦ l1, since α is monomorphism
l1 = l2 thus f = Fl1 ◦ w = Fl2 ◦ w = g, that is f = g when Fα ◦ f = Fα ◦ g,
as f and g were arbitrary then Fα is a monomorphism.

L
l1 //

l2

// A
α // C A

F
��

X
g //

f
//

w !!

FA
Fα // FC B

FL

Fli

OO
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5. Structures semicoelevators

The structure elevator and coelevator proposed by Montañez in [8] constitutes
an alternative in the formation of new topological categories. In this section, we
translate this notion for semitopological categories and prove that the category
formed by the fixed points of these functors is a semitopological category.

Let F : A→ B be a topological functor, an endofunctor C : A→ A will be
called a coelevator if F ◦C = F and for every object X in A exist a morphism
cx : X → C(X) such that Fcx = idFX .

Example 5.1. [6] Let X be a topological space. X is completely regular iff for
each closed subset A of X and for each x ∈ X with x 6∈ A, exist a continuous
function f : X → I such that f(x) = 0 and f(A) = 1, where I = [0, 1] with the
usual topology. Additionally a topological space is completely regular iff has
the initial topology with respect the bounded and continuous functions of real
value, then we can define the coelevator CI : Top → Top such that for each
topological space X, sends to the topological space CI(X), this has the initial
topology of the set of all arrows of X to I.

Definition 5.2. If F : A → B is a semitopological functor and SC : A → A
a functor, it will be called structure semicoelevator if for every object X
in A exist an epimorphism gx : X → SC(X) in A such that the gx form a
natural transformation of the identity functor of A to the functor SC.

An example of the previous concept is the structure coelevators, since
Fgx = idFX . The dual notion of semicoelevator is structure semielevator,
which is a functor SE : A→ A such that for every X in A exist a monomor-
phism fx : SE(X) → X in A such that the fx form a natural transformation
of the functor SE to the identity functor of A.

In case to work with an idempotent functor S : A → A, the fixed points
of S coincides with its image, since if we take a fixed point A ∈ Obj(S(A))
and applying S then S(A) ∈ Im(S) where S(A) = A, therefore A ∈ Im(S).
Now, let C in Im(S), then exist X such that S(X) = C applying S is met
that S(S(X)) = S(C) = S(X) = C i.e. C ∈ Obj(S(A)). The structure semi-
coelevators generalize the concept of coelevation for semitopological functor, it
is pertinent to ask under what conditions the category SC(A) formed by the
fixed points of SC is semitopological, this motivates the theorem 5.3.

Theorem 5.3. Let F : A → B be a semitopological functor and
SC : A → A an idempotent structural semicoelevator. Then SC(A) is a
semitopological category relative to B.

Proof. Let Ai ∈ SC(A) and fi : FAi → X as F is semitopological functor
the sink (fi, X) has semifinal solution (g,A) in A. With this in mind, we build
the semifinal solution in SC(A), as SC is a semicoelevator, it will be exist
morphism h : A → SC(A), as SC is idempotent SC(A) ∈ Obj(A), whereby
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applying F , we have the following commutative diagram in B:

FAi

Fgi
((

Fhi

""

fi // X

g

��
FA

Fh

��
F (SC(A))

With hi = h ◦ gi, we will prove that (h ◦ g, SC(A)) is the semifinal solution in
SC(A) of the sink (fi, X); for this, let C be an object of (SC(A)) such that
exist l : X → FC, li : Ai → C and l ◦ fi = Fli. Since A is the semifinal
solution of (fi, X) there is a morphism of w : A → C satisfying l = F (w) ◦ g
and li = w ◦ gi. Applying SC to w, we have SC(w) : SC(A) → SC(C), since
C is a fixed point, SC(w) can be rewritten as SC(w) : SC(A)→ C. Applying
F , the following diagram is commutative:

FAi

F li

..

Fgi
((

Fhi

""

fi // X

g

��

l



FA

Fh

��
FwF (SC(A))

F (SCw)

%%
FC

Therefore (F (h) ◦ g, SC(A)) is the semifinal solution in SC(A) of the sink
(fi, X), where the morphism F (h) ◦ g is an epi-structural because g is an epi-
structural and F (h) is an epimorphism from the definition 5.2. So
F : SC(A) → B is semitopological and SC(A) is a semitopological cate-
gory.

Remark 5.4. In case gx isn’t an epimorphism in the definition 5.2, the constant
functors are semicoelevators and therefore the previous theorem would be false.
A counterexample will be to consider the category of topological spaces and
build a constant functor to a point of a topological space.

An example of the theorem 5.3 is the category of Hausdorff spaces, let (X, τ)
be a topological space, if we consider the source formed by the
f : (X, τ) → (Y, η) such that (Y, η) is a Hausdorff space and the relation of
equivalence ∼ in X ×X given by a ∼ b if and only if for all f : (X, τ)→ (Y, η)
such that (Y, τ) is a Hausdorff space and f(a) = f(b), thus (X/ ∼, τ∗) is a
Hausdorff space where τ∗ is the quotient topology.
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The previous construction induces an endofunctor in Top, designated by
H : Top → Top, which acts on objects by H(X) = (X/ ∼, τ∗), where
∼ is the τ−closure of {(x, x) : x ∈ X)} and τ∗ is the quotient topology. In
morphisms H(f) = f ; where f(a) := f(a), whose fixed points correspond to
the category of Hausdorff spaces Haus.

If we remember that Top is a topological category, especially semitopo-
logical and applying theorem 5.3 to H then Haus is semitopological category
relative to category of sets. Note that in this case, the functor H is left adjoint
to the inclusion functor of ı in Top, in other words the category Haus is a
reflective subcategory of Top.

The scheme used in the proof that Haus is a semitopological category when
it view as the fixed points of an endofunctor of Top motivates the corollary
5.5.

Let C be a reflective subcategory of A. The reflection induces an endofunc-
tor RC : A→ A such that every object A in A goes to its reflection in C, which
consists of an object RC(A) and a morphism hA : A→ RC(A) in A. Additio-
nally, let f : A→ B be a morphism in A, exist a morphism hB : B → RC(B)
and the composition f ◦ hB is a morphism of A to RC(B). Since RC(A) is the
reflection of A in C exist a morphism RC(f) : RC(A) → RC(B), this mor-
phism is the image of f under the functor RC. Note that the fixed points of
the functor RC correspond to the category C and where the image of an object
of C is the same object, therefore RC is an idempotent functor.

Corollary 5.5. Let F : A→ B be a semitopological functor and C a reflective
subcategory of A then C is a semitopological category.

Proof. Let C be a reflective subcategory, so exist a morphism rX : X → CX
where CX is the reflection of X in C. If f : X → Y is a morphism in A, there
is a morphism rY ◦ f : X → CY with rY : Y → CY , therefore exist a morphism
g : CX → CY in C such that rY ◦ f = g ◦ rX . Applying F to f we have the
following commutative diagram:

FX

Ff

��

F (rX)// F (CX)

Fg

��
FY

F (rY )
// F (CY )

If τx = FrX for each X ∈ Obj(A) then RC is a semicoelevator, it is idempotent
since RC ◦RC(X) = CX = RC(X), the fixed points are exactly the objects of
C and applying theorem 5.3, C is a semitopological category.

If we think in a reflective subcategory of a topological category, it couldn’t
be topological. For example the forgetful functor of Hausdorff spaces to Sets.
The corollary 5.5 only generates semitopological categories despite the fact that
category A is topological; some examples of the corollary 5.5 are the following:
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Example 5.6. • The abelian group category Ab is a reflective subcate-
gory of the category of groups Grp.

Let (G, ∗) be a group and the normal subgroup G′ = 〈aba−1b−1| a, b ∈ G〉
of G, then (G/G′, ∗) is an abelian group [3]. The canonical homomor-
phism qG : (G, ∗) → (G/G′, ∗) is the reflector morphism. In case of
existing (H, ◦) in Ab and a homomorphism h : (G, ∗) → (H, ◦), there is
a natural homomorphism h : (G/G′, ∗) → (H, ◦) such that h ◦ qG = h.
Therefore Ab is a semitopological category.

• The category of torsion free abelian groups LTAB is a reflective subcate-
gory of Ab. Let (H, ∗) be an abelian group, using the torsion subgroup
T = {a ∈ H | ∃n, an = e} , the group (H/T, ∗) is torsion free abelian
group and the canonical homomorphism qH : (H, ∗) → (H/T, ∗) is the
reflector morphism. Therefore LTAB is a semitopological category.

• The category TopT0
whose objects are topological spaces that meet the

first axiom of separability T0, is a reflective subcategory of Top. Let
(X, τ) be a topological space, defining in X the relation a ∼ b if only if
{a} = {b} (the closure of a is equal to the closure of b), this relationship is
an equivalence relation and determines the quotient space (X/ ∼, τ∗) that
results T0 and the continuous function qX : (X, τ) → (X/ ∼, τ∗) is the
reflector morphism [7]. Therefore, TopT0

is a semitopological category.

From the corollary 5.5, reflective subcategories are semitopological. The
reciprocal motives the following theorem:

Theorem 5.7. Let F : A→ B be a full and a semitopological functor with C
a full subcategory of A. Then C is a semitopological category relative to B if
only if C is a reflective subcategory of A.

Proof. Let C be a semitopological category relative to B and A ∈ Obj(A).
Applying F , FA has a free object CA in C and there is a morphism
mA : FA → FCA, since the functor F is full, there exist rA such that
FrA = mA applying this construction to each object A of A, the inclusion
functor from C to A has a left adjoint, which implies that C is a reflective
subcategory.

From corollary 5.5 it follows that C is a reflective subcategory of A, the
category C is a semitopological category.

Example 5.8. The theorem 5.7 shows another way to prove that the category
Haus is reflective in Top, which is happens because the functor
i : Haus ↪→ Top is semitopological, a fact seen as a consequence of theorem
5.3.

Let A be a semitopological category and an object W of A, an endofunctor
is determined in A using the semifinal solutions, we will denote this functor as
SW , where SW sends an object X to the semifinal solution of the sink formed
by all the morphisms from W to X.
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To establish the theorem 5.9, we need the notion of idempotent functor. Let
G : A→ B be a functor. G will be called an idempotent functor if G2(X) is
isomorphic to G(X).

Theorem 5.9. Let F : A→ B be a full semitopological functor, then given an
object W in A, the functor SW : A→ A is an idempotent semicoelevator.

Proof. It will be seen that SW is a semicoelevator. Let f : X → Y be a
morphism in A and fi : Wi → X all the possibles arrows to X in A. Applying
F to fi then Ffi : FW → FY is a morphism in B. Since F is semitopological
functor exist the semifinal solution of (Ffi, FX) denote that object SW (X).
Additionally, exist w : SW (X) → Y such that Fw ◦ τX = Ff , therefore we
have the morphism τy ◦ (Ff ◦ Ffi) : FW → FSW (Y ) then there will be
SW (f) : SW (X)→ SW (Y ) such that SW (f)◦τX = Ff◦τY , the above generates
that commutes the following diagram:

FW

Fli

..

Fgi ((

Fhi

!!

Ffi // FX

τX

��

l

��

FSW (X)

Fw

�� FSW (f)
FY

τY

&&
FSW (Y )

i.e., SW is a semicoelevator,

FX

Ff

��

τX // FSW (X)

FSW (f)

��
FY

τY
// FSW (Y )

From the idempotent condition of SW is clear the uniqueness of the semifinal
solutions.

Example 5.10. Let C be a small category, the functor R : C → SetC
op

is full, faithful and injective in objects [5]. An object A of C goes to the
representable functor R(A), that assigns to each object X of C, the set [X,A]
of all morphisms of X to A and each morphism f : X → Y goes to the function
R(f) : [Y,A]→ [X,A] where H(f)(g) = f ◦ g.

Let C be a small category and F : C → D a full semitopological functor,
so the functor R : C→ SetsC

op

is a full semitopological functor.
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The previous example motivates the construction of representable subcate-
gories.

Definition 5.11. Let F : A→ B be a full semitopological functor, a subcate-
gory C of A is representable if exist an object W in A such that C = SW (A).

Theorem 5.5 and 5.9 help to connect the reflective subcategories and repre-
sentables under conditions of fullness.

Corollary 5.12. Let F : A → B be a full semitopological functor and C a
representable subcategory of A then C is a reflective subcategory of A.

6. Conclusions

To generalize the concept of coelevator for semitopological categories, we need
to use the notions of semifinal solutions and epi-structural morphisms, these
functors received the name of semicoelevator and give new semitopological
categories, the formed by the fixed points of the semicoelevator.

On the other hand the generalization of concept of elevator (dual of the
coelevator) didn’t give new semitopological categories. Other relevant thing
was the study of the equivalence of semitopological functors and the notion of
reflection under the fullness of the semitopological functor. Also interesting
examples were drawn from that equivalence.
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