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Abstract 
This paper presents “EspiNet V2” a Deep Learning model, based on the region-based detector Faster R-CNN. The model is used for the 
detection of motorcycles in urban environments, where occlusion is likely. For training, two datasets are used:  the Urban Motorbike 
Dataset (UMD-10K) of 10,000 annotated images, and the new SMMD (Secretaría de Movilidad Motorbike Dataset), of 5,000 images 
captured from the Traffic Control CCTV System in Medellín (Colombia).    Results achieved on the UMD-10K dataset reach 88.8% in 
average precision (AP) even when 60% motorcycles were occluded, and the images were captured from a low angle and a moving camera. 
Meanwhile, an AP of 79.5% is reached for SSMD. EspiNet V2 outperforms popular models such as YOLO V3 and Faster R-CNN (VGG16 
based) trained end-to-end for those datasets. 
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EspiNet V2: un modelo basado en regiones de aprendizaje profundo 
para detectar motocicletas en escenarios urbanos 

 
Resumen 
Este artículo presenta "EspiNet V2", un modelo de aprendizaje profundo, fundamentado en el detector basado regiones Faster R-CNN. El 
modelo es usado para la detección de motocicletas en entornos urbanos, donde se presenta algún nivel de oclusión. Para el entrenamiento 
de dicho modelo, se utilizaron dos conjuntos de datos: el conjunto de datos de motocicletas urbanas (UMD-10K) que cuenta con 10,000 
imágenes anotadas, y el nuevo conjunto de datos de motos de la Secretaría de Movilidad (SMMD), con 5,000 imágenes capturadas 
obtenidas del Sistema CCTV de Control de Tráfico de la ciudad de Medellín (Colombia). Los resultados obtenidos en el conjunto de datos 
UMD-10K alcanzan el 88.8% en precisión promedio (AP), incluso con niveles de oclusión de un 60 %, utilizando imágenes capturadas 
desde un ángulo bajo y desde una cámara en movimiento. Por otro lado se alcanza un AP de 79.5 % para conjunto de datos de motos de la 
Secretaría de Movilidad (SMMD). EspiNet V2 supera modelos populares como YOLO V3 y Faster R-CNN (basado en VGG16), siendo 
estos entrenados de extremo a extremo utilizando los conjuntos de datos mencionados. 
 
Palabras clave: detección de vehículos; detección de motocicletas; Faster R-CNN; detectores basados en regiones; redes neuronales 
convolucionales; aprendizaje profundo. 

 
 
 

1.  Introduction 
 
The World Health Organization (WHO) reports in the 

Global status report on road safety 2018 that more than half 
(54%) of the road traffic deaths corresponds to Vulnerable 
Road Users (pedestrians, cyclists, motorcyclists) [1]. From 
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this rate, 28% corresponds to Motorcycles. The annual report 
Traffic Accidents of the Andean Community (Bolivia, 
Colombia, Ecuador and Perú) [2] documented 347,642 traffic 
accidents, 88% of them occurred in urban areas. In this 
region, for year 2017, Colombia has 57.35% of the total 
traffic accidentally rate, reporting 171,571 occurrences with 
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6,479 fatal victims. Although for 2017 deaths due to transport 
accidents were reduced by 7.23% compared to 2016, these 
numbers still high compared to world statistics [3]. 
Motorcyclist are the road users most affected by traffic 
accidents in Colombia, reporting 49.82% of deaths and 
56.36% injured victims [3]. This high accidentallity rate can 
be partially explained due to that 58% of the  14.880.823  
total vehicles registered in Colombia for 2019 2Q 
corresponds to Motorcycles [4], and 76.64% of these 
motorcycles belongs to the street sport segment which is used 
as a regular transport mean.  

Air quality is also an issue in the main cities of Colombia. 
The National Planning Department (DNP) estimated that, 
during 2015, the effects of air pollution were associated with 
10,527 deaths and 67.8 million symptoms and diseases [5]. 
The contaminant with the greatest potential for affectation is 
Particulate Material Less than 2.5 microns (PM2.5), which is 
made up of very small particles, produced mainly by heavy 
vehicles that use diesel as fuel, and which can carry very 
dangerous material for human body such as heavy metals, 
organic compounds and viruses, thus affecting the respiratory 
tract [6]. In Colombia, 59% of PM2.5 is produced by land 
transportation, from which 40% corresponds to motorcycles. 
It is therefore desirable to monitor urban motorcycle traffic 
to reduce incidents and air pollution on what are becoming 
very congested roads. 

Video analytic techniques for vehicle detection have been 
used in urban traffic analysis, reporting success for detecting 
regular vehicles (bus, cars, trucks), but there is scarce 
literature on the analysis of motorcycles as major users in 
many urban environments, characterised by frequent 
occlusion between vehicles in congested traffic conditions.  

In this paper, we introduce EspiNet V2  a deep learning 
model based on the two-stage detector Faster R-CNN [7] 
(Faster Regions with Convolutional Neural Networks 
features). The model is used to detect motorcycles in 
congested urban traffic scenes. The paper is structured as 
follows; section 2 reviews the literature on motorcycles 
detection, section 3 gives a brief introduction to deep CNN 
and Faster R-CNN, section 4 explains the proposed EspiNet 
V2 model, detailing its architecture and main differences 
w.r.t Faster R-CNN. Section 5 describes the different 
experiments done employing the UMD-10K and SMMD 
datasets, providing a results analysis. The article finishes 
with section 6 with conclusions and proposed future work. 

 
2.  Motorcycle detection 

 
Video analytics supports most of the current urban traffic 

analysis and vehicle detection systems. Traditional 
approaches for vehicle detection extract discriminative 
features for vehicle representation, which later implement 
classification, usually using classifiers trained on those 
features. Features are generally extracted from object 
appearance or derived from motion information [8].  

Motorcycle detection works based on appearance features 
 such as edge maps are introduced in [9] using Gabor filters 
and the Sobel operator [10] to reduce illumination variances. 

Other approaches use corner detection with Harris corners 
[11], or even using Haar-like features [12,13], despite the 
poor correlation under different view angles. Feature 
descriptors such as Histogram of oriented gradients (HOG), 
Scale-invariant feature transform (SIFT), and Local binary 
patterns (LBP) are compared in [14] and [15] for motorcycle 
detection. For helmet detection in motorcycles riders 
Speeded up robust features (SURF), Haar-like features 
(HAAR) and HOG [16] have been used as feature 
descriptors. Meanwhile, in [17], they use hybrid descriptor 
based on colour for helmet identification.  Appearance 
features based on computer-generated 3D models are used to 
discriminate between motorcycles and bicycles in [18], and 
between car/taxi, bus/lorry, motorbike/bicycle, van, and 
pedestrian in [19]. Background subtraction uses spatio-
temporal information for detecting a moving object in a 
giving scene. Motorcycle detection [20,21] starts with this 
technique and uses segmentation to detect and separate 
motorcycles in the analysis. In some works, a similar 
approach is used, even to detect motorcycle riders without a 
helmet [24-29].  

The most used algorithm for background subtraction is 
Gaussian Mixture Models (GMM) [22], used in [23,24]. For 
dealing with object shadows and for continuous update of 
parameters, Self Adaptive GMM [25] is used in [26] or 
adaptive background modelling used in [14] and [15]. 
Nevertheless, background subtraction may fail in congested 
scenarios or where the objects overlap each other, difficulting 
their detection, with camera movements, or when objects 
tend to become part of the background, after a prolonged 
static sequence as typical in traffic jams. 

Motorcycle detection in [24] uses spatial features in 
conjunction with motion features obtained from optical flow,  
this type of features is useful for obstacle detection in a Lane 
Change Assistant (LCA) system [10]. 

The most frequently classifiers used for motorcycles 
classification are Support Vector Machines (SVM), used for 
classifying and counting motorcycles in [9], where object 
occlusion is avoided capturing images from a top-view point. 
For helmet detection, different types of kernels are compared 
in  [14] and [15] using background subtraction for object 
detection. Head regions described by histograms are also 
used for helmet detection in [27], which are later classified 
by a linear SVM. This method may fail with drastic changes 
of illumination. SVMs are also used for classifying a multi-
shape descriptor vehicle [25,26] demanding high 
computational resources for the descriptor construction and 
evaluation.  There is also a proposed Real-Time on Road 
Vehicle Detection system [10], which uses a binary SVM 
classification by hierarchies, boosting its performance thanks 
to an Integrated Memory Array Processor (IMAP) 
architecture. Nonetheless, the model can fail in adverse 
weather conditions with low illumination. SVMs for 
motorcycles detection are also used in conjunction with Bag 
of Visual Words (BoVW) [28] with a Radial basis function 
kernel (RBF) or using HOG as a feature descriptor [29], even 
with 3D models as appearance features [18,19].  
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Other classifiers used are decision trees for Overhead 
Real-Time Motorbike Counting [30], where the method 
relies on the camera specification for decision tree rule 
construction. Neural networks (NN) such as the Multilayer 
Perceptron (MLP) have been proposed for motorcycle 
detection and classification, even though their architectures 
require tuning of many parameters and the implemented loss 
function may not converge to a local optimum. Nevertheless, 
NN are used for helmet detection in  [16,31]. There is also  
Fuzzy neural network (FNN) [24], but without a significant 
number of motorcycles to detect in their dataset. Finally, K-
Nearest Neighbor (KNN) is also used for Helmet detection 
[23]; nevertheless, this model relies on the background 
subtraction accuracy for motorcycle individualisation, which 
may fail in occluded scenarios. 
 
2.1.  Deep learning for motorcycle detection 
 

In recent years deep learning has erupted in the field of 
computer vision showing impressive results, mainly due to 
the computing capacity that GPUs (Graphics Processing 
Units) provide for training models, as well as the creation of 
vast manually labelled datasets of generic objects. 

The work of Vishnu et al. [32] use Convolutional Neural 
Networks (CNNs) as feature extractors in combination with 
background subtraction for object detection. Once the object 
is detected, for instance using GMM, the features extracted 
using the CNN model (e.g., AlexNet), are used to perform 
classification [33]. Instead of background subtraction, object 
localisation uses selective search as in [34]. Nevertheless, the 
work in [35] proposes a straightforward CNN for detecting 
and classifying motorcycles. The input image is passed 
through the feature extraction layers generating a motorcycle 
score map. This score map is thresholded followed by non-
maximal suppression for individual motorcycle detections.  
Most recent works are oriented to detect helmet violation for 
motorcycle users. For instance, in  [36], motorcycles are 
detected using HOG+SVM, and later, the riders head area is 
supplied to a CNN model for helmet presence detection. The 
work in [32] proposes a similar approach.  Meanwhile, in 
[37], moving objects are detected using motion detection 
algorithms, a pedestrian CNN model is used to detect 
humans, later a CNN is used again to detect the presence of 
helmet and the colour of it. 

Unfortunately, the analysed literature lacks a unified 
metric for reporting results and most of the methods use 
proprietary datasets which are seldom available for 
comparison and use by the research community.   
 
3.  Deep CNN networks and Faster R-CNN 
 

Convolutional Neural Networks (CNNs) are a type of 
neural network, whose architecture is based on convolutional 
filters able to capture spatial patterns and that reduce the 
computational burden of learning parameters.  This approach 
produces features invariant to scale, shift or rotation as the 
receptive fields provide the neurons access to primitive 
features such as oriented edges and corners in the initial 

convolutional layers, which are then aggregated generating 
more complex features going deeper in the model. Features 
derived from CNNs often outperform feature descriptors 
such as HOG, SIFT, SURF, LBP [38,39]. 

While features obtained from CNNs are very useful for 
classification, the problem of object detection not only 
involves the classification of the objects but their localisation 
in the image. When Spatio-temporal information is available 
(video sequences), approaches such as background 
subtraction, optical flow or motion detection algorithms, help 
to identify moving objects, extracting features from the 
detected blobs, which are later classified. This approaches 
may fail due to camera movement, static objects, or even 
illumination changes. The lack of Spatio-temporal 
information as in single or static images (frames) forces the 
use of approaches that combine sliding window search 
(which slides a window e.g. from left to right, and from up to 
down in the image extracting patches later used for 
classification) with binary classifiers (object vs background). 
Object proposal algorithms, like Branch & Bound [40], 
Selective search [41] Spatial Pyramid Pooling [42] and Edge 
boxes [43] are approaches designed to deal with the large 
numbers of windows useful to cover different aspect ratios 
and scales. 

Two-stage detectors as R-CNN (Regions with CNN 
features) [44] use selective search to generate up to 2,000 
regions which are provided to a CNN to produce a feature 
vector later fed into SVM to determine the occurrence of an 
object and the values necessary to adjust the bounding box to 
the detected object. Since the number of selective search 
proposals is fixed and is a time-consuming task, Fast R-CNN 
[45] feeds the input image to the CNN to generate a feature 
map, identifying the proposal regions which are later warped 
and fed into a fully connected layer using a Region of Interest 
(RoI) pooling layer. This model reduces computational time 
due to the use of only one convolution operation per image 
instead of 2000 of the R-CNN model. Nevertheless, the 
Region Proposal is still the bottleneck during testing time.  

Faster R-CNN [7] speeds up the detection process, 
eliminating the use of selective search and using a CNN 
model which simultaneously learns region proposal and 
perform object detection. As in Fast R-CNN, the input image 
is passed through the CNN model generating a feature map, 
over this feature map the Region Proposal Network (RPN) 
deploys a sliding window to generate n bounding boxes with 
their associated scores per window. These n boxes are called  
 

 
Figure 1. The components of Faster R-CNN. 
Source: Image modified from [46] 
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anchor boxes and represent common sizes and aspect ratios 
that objects can have. A RoI pooling layer is used to reshape 
predicted region proposals, classifying the image inside the 
proposed region and generating the offset values for 
bounding boxes using regression (Fig. 1). 
 
4.  EspiNet V2  

 
EspiNet V2  (Fig. 2) is a deep learning model proposed 

here that is based on the region based detector Faster R-CNN. 
This model is used to detect motorcycles in congested urban 
traffic scenes. Occluded scenarios are frequent on urban 
traffic analysis (Fig. 3). General vehicle detection in urban 
conditions has been studied by many authors. Occluded 
situations has been analysed using the KITTI dataset [47], 
which unluckily lacks a motorcycle category. EspiNet V2  is 
an improved version of the one presented in [48]. This new 
model increases the number of convolutional layers, pursuing 
to capture more aggregate features that contribute to identify 
motorcycles in the given images.  

EspiNet V2 is publicly available for download 
(https://github.com/muratayoshio/EspiNet). The model can 
detect motorcycles in congested urban scenarios and, as in 
Faster R-CNN, unifies two networks: a Region proposal 
network (RPN) and a Fast R-CNN [45] detector, sharing the 
convolutional layers between the two architectures. The main 

difference between EspiNet V2  and Faster R-CNN lies in the 
CNN implemented.  The best results of Faster R-CNN are 
obtained working with quite deep models such as VGG-16 
[49] having 16 weight layers, 13 of them convolutional and 
~ 138 million parameters to be learned.     EspiNet V2 uses a 
more concise   CNN   network   with   only six layers (4 
convolutional)  

reducing the number of parameters to learn (~2 million), still 
outperforming Faster R-CNN in the chosen task (see section V). 

Table 1 shows in detail the configuration and parameters 
of the EspiNet V2 model. 

The input size for classification is the size of the training 
images. Meanwhile, for detection task, the input layer is a 
tensor of 32x32x3 (32x32 pixels, 3 channels), considering 
that in UMD-10K and SMMD datasets the smallest annotated 
object has a size of 25 pixels.  This input layer is zero-center 
normalised, and its size is determined according to the 
processing time and the spatial detail the CNN model has to 
resolve.  The first convolutional layer has 64 filters of size 
3x3. The same filter size is used for all the convolutional 
layers to produce a small receptive field, to capture smaller 
and complex features in the image and optimise the weight 
sharing process. Each convolutional layer is followed by a 
ReLU (rectified linear unit) layer, making the learning 
process computationally efficient, speeding up 
convergence and reducing the vanishing gradient effect.  

 
Table 1. 
Architecture and learnable parameters of EspiNet V2. 

Name Type Activations  Learn- 
enables 

Total of 
Learneables 

Imageinput 
32x32x3 images with zero center normalization Image Input 32x32x3 - 0 

Conv_1 
64 3x3x3 convolutions with stride [1 1] and padding [1 1 1 1] Convolution 32x32x64 Weights 3x3x3x64 

Bias 1x1x64 1792 

Relu_1 
ReLU ReLU 32x32x64 - 0 

Conv_2 
32 3x3x64 convolutions with stride [1 1] and padding  [1 1 1 1] Convolution 32x32x32 Weights 3x3x3x32 

Bias 1x1x32 18464 

Relu_2 
ReLU ReLU 32x32x32 - 0 

Conv_3 
64 3x3x32 convolutions with stride [1 1] and padding [1 1 1 1] Convolution 32x32x64 

Weights 3x3 
x32x64  
Bias 1x1x64 

18496 

Relu_3 
ReLU ReLU 32x32x64 - 0 

Conv_4 
128 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1] Convolution 32x32x128 

Weights 3x3 
x64x128  
Bias 1x1x128 

73856 

Relu_4 
ReLU ReLU 32x32x128 - 0 

maxpool 
3x3 max pooling with stride [2  2] and padding  
[0 0 0 0] 

Max Pooling 15x15x128 - 0 

Fc_1 
64 fully connected layer Fully Connected 1x1x64 Weights 64x28800 

Bias 64x1 1843264 

Relu_5 
ReLU ReLU 1x1x64 - 0 

Fc_2 
2 fully connected layer Fully Connected 1x1x2 Weights 2x64 

Bias 2x1 130 

softmax 
softmax 

Soft- 
max 1x1x2 - 0 

classoutput 
crossentropyex Classification Output . - 0 

Source: The Authors. 
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Figure 2. EspiNet V2, the Proposed CNN Model.  The same model 
implements RPN and classification. 
Source: The authors. 
 
 

 
Figure 3. Example image of the Urban Motorbike Dataset. The smallest 
object size is 25 px. Occlusions are frequent between motorcycles and other 
vehicles.  
Source: The Authors. 
 
 

The last two convolutional layers duplicate the number of 
filters, capturing more complex features, later used for 
motorcycle recognition due to its enriched image 
representation [50]. As in Faster R-CNN Faster R-CNN [7] 
architecture, a  max RoI pooling layer is used after the four 
convolutional filters for detection purposes, it removes 
redundant spatial information, reduces and fixes the feature 
map spatial size.   

This layer is set to a 15x15 pixels grid covering the 
smallest detected object. It is the only max-pooling layer in 
the model since prematurely down-sampling data can lead to 
loss of important information necessary for learning [51]. 
After the first fully connected (FC) layer (64 neurons) 
combines all features extracted in the previous layers, which 
is corrected next by a ReLU layer, finally combined in the 
second fully connected layer. The last layer of the model is a 
softmax layer, which normalises the output of the previous 
FC layer, providing a confidence measure and computing the 
loss of the model.  Fig. 2 shows the schematic model of 
EspiNet V2 network. 

The multi-task loss function defined for one image is: 
 

    𝐿𝐿({𝑝𝑝𝑖𝑖}, {𝑡𝑡𝑖𝑖}) =
1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

�𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖

(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖∗)

+ 𝜆𝜆
1

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟
�𝑝𝑝𝑖𝑖∗𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖

(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗) 
(1) 

In eq. (1) i is the anchor index in a mini-batch (with 
positives and negatives examples anchors),  pi is the predicted 
probability 

that the anchor i is an object. The ground truth (gt)  𝑝𝑝𝑖𝑖∗  
has label 1 if the anchor is positive, 0 is the anchor is 
negative. ti represents the predicted bounding box using a 
vector of 4 parametrised coordinates, where 𝑡𝑡𝑖𝑖∗ is the gt box 
coordinates vector related to a positive anchor.   

The classification loss 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 part uses a logistic regression 
cost function. Meanwhile for the bounding box regression 
loss part 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗), the robust loss function (smooth L1) is 
used. 
 

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗) = � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡ℎ𝐿𝐿1(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖∗)
𝑖𝑖∈{𝑥𝑥,𝑦𝑦,𝑤𝑤,ℎ}

, (2) 

 
in which 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡ℎ𝐿𝐿1(𝑥𝑥) =  � 0.5 𝑥𝑥2         𝑖𝑖𝑖𝑖 |𝑥𝑥| < 1

|𝑥𝑥| − 0.5    𝑠𝑠𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒,
  (3) 

 
In this bounding box regression, each coordinate is 

parameterized as follows: 
 

𝑡𝑡𝑥𝑥 = (𝑥𝑥 − 𝑥𝑥𝑎𝑎)/𝑒𝑒𝑎𝑎 ,  𝑡𝑡𝑦𝑦 = (𝑦𝑦 − 𝑦𝑦𝑎𝑎)/ℎ𝑎𝑎,

𝑡𝑡𝑤𝑤 = 𝑙𝑙𝑠𝑠𝑙𝑙(𝑒𝑒/𝑒𝑒𝑎𝑎), 𝑡𝑡ℎ = 𝑙𝑙𝑠𝑠𝑙𝑙(ℎ/ℎ𝑎𝑎)

𝑡𝑡𝑥𝑥∗ = (𝑥𝑥∗ − 𝑥𝑥𝑎𝑎)/𝑒𝑒𝑎𝑎 , 𝑡𝑡𝑦𝑦∗ = (𝑦𝑦∗ − 𝑦𝑦𝑎𝑎)/ℎ𝑎𝑎,

𝑡𝑡𝑤𝑤∗ = 𝑙𝑙𝑠𝑠𝑙𝑙(𝑒𝑒∗/𝑒𝑒𝑎𝑎), 𝑡𝑡ℎ∗ = 𝑙𝑙𝑠𝑠𝑙𝑙(ℎ∗/ℎ𝑎𝑎)

 (4) 

 
where x, y, corresponds to the boxs center coordinates, w, 

and h its width and height. Variables x corresponds to 
predicted box,     xa anchor box and 𝑥𝑥∗ ground-truth box, 
(similarly for y, w and h variables). This can be assumed as a 
bounding-box regression from an anchor box to the closest 
ground truth box. The coordinates of the bounding box are 
values [0,1] which are relative to a specific anchor. For 
example, ty denotes the coefficient for y (box center x,y). If  ty 
is multiplied by ha and then add ya we get the predicted y. The 
rest of parameters can be calculated in the same way.  

Training comprises four steps using an alternating 
optimisation. The first two steps train the RPN and the 
detector network separately. For these first two steps, 
EspiNet V2  uses a learning rate of 1e-5 trying to obtain a fast 
convergence, as it is trained from scratch, and no pre-trained 
models are used for the shared convolutional layers [7]. Once 
the shared convolutional layers are trained and fixed, the last 
two steps fine-tuning the unique layers of the RPN and Fast 
R-CNN detector, using a learning rate of 1e-6 for a smoother 
process. 

The optimisation training algorithm used in all the 
described steps is Stochastic Gradient Descent with 
Momentum (SGDM) (eq. (5)). 

 𝜃𝜃ℓ+1 = 𝜃𝜃ℓ − 𝛼𝛼∇𝐸𝐸(𝜃𝜃ℓ) + 𝛾𝛾(𝜃𝜃ℓ − 𝜃𝜃ℓ−1) (5) 
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where ℓ is the iteration number, the learning rate is 
defined as 𝛼𝛼 > 0, weights and biases define the parameter 
vector 𝜃𝜃 and 𝐸𝐸(𝜃𝜃) is the loss function. The algorithm is 
stochastic since it uses a subset of the training set (minibatch) 
to evaluate and update the parameter vector. One iteration 
corresponds to each evaluation of the gradient using the mini-
batch. At each iteration, the algorithm takes one step towards 
minimising the loss function. One epoch encompasses the 
full pass of the training algorithm over the entire training set 
using mini-batches. For EspiNet v2, the number of epochs is 
defined after training analysis [48]. The momentum term 𝛾𝛾 
regulates the contribution of the previous gradient step to the 
current iteration and is used to avoid oscillation along 
steepest descent to the optimum. 

 
5.  Experiments and results 

 
5.1.  Motorbikes datasets 

 
To train and evaluate the proposed model, two datasets 

are used: The UMD-10K dataset, which is an extension of  
[48], with 10,000 annotated images including 317 
motorcycles with 56,975 individual annotations (bounding 
boxes). 60% of the annotated data corresponds to occluded 
motorcycles (See Fig. 3). Moreover, the Secretaría de 
Movilidad de Medellín created the Sistema Inteligente de 
Movilidad de Medellín (Intelligent Mobility System of 
Medellín) [52], which includes a CCTV with 80 cameras to 
monitoring urban traffic conditions in this Colombian city. 
From this network of cameras, we selected six strategic 
surveillance located cameras (Fig. 4) to create the SSMD 
dataset with 5,000 images, containing 21,625 annotated 
motorcycles (817 different motorcycles). (Fig. 5). These 
dataset are available from 
http://videodatasets.org/UrbanMotorbike. 
 
5.2.  Results on the UMD-10K dataset 
 

The performance of previous experiments in [48] 
achieved a 75.23% of Average Precision (AP) [53], training 
and evaluated on the UMD-7.5k, with  7,500 examples.  

EspiNet is now compared with two models: YOLO  V.3 
[54] as a single-stage detector and for a two-stage detectors, 
the original Faster R-CNN [49] (VGG16 based).  We selected 
these models    since they have been   extensively   used to 
compare new proposals, and because of their good 
performance and their availability in the public domain. All 
these models were trained end to end from scratch, using the 
challenging UMD-10k dataset. 

As is recommended by [55] an due to the large number of 
examples needed to train, the three models use 90% (9,000 
images) of the UMD-10k dataset for training data, while the 
remaining 10% (1,000 images) are used for validation. The 
selection of training and test set is done randomly to avoid 
any bias in the distribution.  

The proposed EspiNet V2 model obtain of 88.8% of AP 
  

 
Figure 4. Localisation map of the 80 cameras of the  CCTV Secretaría de 
Movilidad de Medellín  [52]. Six cameras are selected for this research. 
Source: The Authors. 

 
 

 
Figure 5. Images examples of the six selected cameras. Each camera covers 
an important urban zone; from left to right: Belalcazar, Carlos E., Oriental 1 
and 2, Zenú and finally Sura. Note the rather poor quality of the images. 
Source: The Authors. 
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Table 2. 
EspiNet model against  Faster-RCNN (VGG16 based) [49] and YOLO V3 
[54], comparative results -  Results on UMD dataset. 

Metrics EspiNet Faster 
RCNN  YOLO V3 

Precision (%) 93.7 57.3 93.0 
Recall (%) 90.0 76.3 81.0 
F1-score (%) 91.8 65.4 86.6 
AP (Average 
Precision) 88.84 68.75 80.75 

Source: The Authors. 
 
 
and 91.8% of F1-score [56], which outperforms results for 
YOLO and Faster R-CNN (VGG16 based). Table 2 shows 
the comparative results. Fig. 6 presents a graphic comparison 
of the three models Average Precision (AP). 

In all metrics, EspiNet obtains better results than the other 
two detectors, being YOLO V3 the closest performance. 
YOLO achieved almost equal precision but a reduced recall 
since the single stage detector architecture has not Region 
Proposal Network (RPN), failing to detect too small objects 
or that appear too close each other.  

The results of the detectors applied to the UMD-10K 
dataset can be seen on https://goo.gl/bJM3HF 

 
5.3.  Results on SMMD dataset 

 
On the Secretaría de Movilidad de Medellín dataset 

(SMMD), we train EspiNet, Faster R-CNN (VGG based) and  
YOLO  V3 end to end using the same proportion of training 
and evaluating sets of UMD-10k.  

Table 3 shows that EspiNet V2  over-perform YOLO V3 
and Faster R-CNN in the terms of AP, reaching 79.52 and 
with a Recall of 83.39. This can be explained again by the 
absence of RPN in YOLO V3, which fails to detect objects 
that appear too close or too small. Nevertheless, YOLO V3 
can deal better with false detections, outperforming the 
region based detectors (EspiNet V2 and Faster R-CNN) in 
terms of Precision, consequently improving the final F1 
score.   Fig. 7 shows the comparative performance of the 
three detector in terms of Average Precision (AP). 

EspiNet V2  and the Faster R-CNN (VGG 16 based) 
models were trained on a Windows 10 Machine with a CPU  
core i7 7th generation 4.7 GHz, with 32 GB of RAM using a 
NVIDIA Titan X (Pascal) 1531Mhz GPU. 

On UMD-10k dataset, the training process of EspiNet V2 
model took 32 hours and 47 hours for training Faster R-CNN 
(VGG 16) model. A Linux machine running Ubuntu 16.04.3, 
with a Xeon E5-2683 v4 2.10GHz CPU, 64 GB of RAM 
 
Table 3. 
Comparative detection results - Results for the SMMD dataset 

Metrics EspiNet Faster 
RCNN  YOLO V3 

Precision (%) 65.6 54.6 85.8 
Recall (%) 83.3 82.5 77.6 
F1-score (%) 73.43 65.7 81.5 
AP (Average 
Precision) 79.52 74.96 76.65 

Source: The Authors. 

and a NVIDIA Titan Xp 1582 Mhz GPU was used for 
training YOLO V3. This model took 18 hours for training on 
UMD-10k dataset. All models were trained end to end from 
scratch.  

The time employed for training the model for the SMMD 
dataset were 24 hours for EspiNet V2, 35 hours for Faster R-
CNN (VGG 16) and 14 hours for YOLO, using the same 
environments described previously. 

 
6.  Conclusions and future work 

 
This paper has introduced EspiNet V2, a model derived 

from Faster R-CNN, for motorcycle detection in urban 
scenarios. The model can deal with occluded objects 
achieving an Average Precision of nearly 90% for UMD-
10K, as far as we know the most challenging urban motorbike 
detection dataset at present. It achieves almost 80% AP in the 
new SMMD, also a challenging dataset made public for other 
researchers to improve on these baseline results. 
 

 
Figure 6 Average Precision (AP) of the model compared with YOLO V3 
and Faster R-CNN (VGG16 based). Results on UMD-10K dataset. 
Source: The Authors 
 
 

 
Figure 7 Average Precision (AP) of the model compared with YOLO V3 and 
Faster R-CNN (VGG16 based). Results on Secretaría de Movilidad de 
Medellín Dataset (SMMD). 
Source: The Authors. 
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EspiNet V2 and the deep learning detectors models as 
YOLO V3 and Faster R-CNN (VGG16 based) are compared 
in this study. The models were trained in the UMD-10k and 
SMMD datasets, and EspiNet V2 was found to outperform 
the others in terms of Average Precision (AP). 

As per most deep learning architectures, and is also 
evaluated in [57], the model obtains better results as the 
number of training examples increases. It is important to have 
enough representative data for each distribution of examples 
used for train a deep learning model. The amount and 
distribution of examples used in these two datasets explain 
the quality of the classification obtained. 

The use of spatio-temporal information could be 
integrated to the model to improve detection capabilities. 
EspiNet V2 could be used as a neural network layer that 
incorporates not only the current time step input information 
(frame) but also the activation values of previous time steps 
(previous frames). This architecture corresponds to Recurrent 
Neural Networks (RNNs) such as Gated Recurrent Units 
(GRUs) or Long short-term memory (LSTM) which apply 
sequence modelling for predicting next stages after initial 
detection according to historical information. This   
improvement could lead to detection by tracking, where the 
models can spread their detection class scope to include other 
urban road users like pedestrians, cyclists, trucks, buses, etc. 
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