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Abstract 
Studying future precipitation behavior in river basins is essential for adequate land-use planning within them, as this will help to reduce 
vulnerability and mitigate disasters. This study analyzed climate change scenarios in the Cali river basin using a monthly rainfall database 
from 35 stations and General Circulation Models (GCMs) from the CMIP5 data set. Statistical downscaling was performed on the data at 
RCP 2.6, 4.5 and 8.5 using Artificial Neural Networks. Subsequently, the changes that would take place by the year 2100 were analyzed, 
establishing that the different scenarios show that over the coming years, rainfall will move from the upper areas to the middle and lower 
areas of the river basin.  
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Predicción de precipitación mensual mediante Redes Neuronales 
Artificiales para la cuenca del río Cali, Colombia 

 
Resumen 
Estudiar el comportamiento futuro de la precipitación en las cuencas hidrográficas es un tema vital cuando se habla realizar un correcto 
ordenamiento territorial de estas, ya que esto permitiría disminuir la vulnerabilidad y mitigar desastres. Por esta razón, este estudio se 
enfocó realizar un análisis de los escenarios de cambio climático en la cuenca hidrográfica del río Cali; partiendo de una base datos de 
precipitación mensual de 35 estaciones y Modelos de Circulación General (GCM) del conjunto de datos CMIP5, con lo cual, se realizó una 
reducción de escala estadística de los escenarios RCP 2.6, 4.5 y 8.5 mediante Redes Neuronales Artificiales y posteriormente se analizaron 
los cambios que se presentaran en los periodos 2017-2058 y 2059-2100. Estos análisis permitieron establecer que los diferentes escenarios 
analizados afirman que en los años venideros existirá un desplazamiento de la precipitación de la zona alta a la media y baja de la cuenca. 
 
Palabras clave: reducción de escala; Redes Neuronales Artificiales; escenarios de cambio climático. 

 
 
 

1.  Introduction 
 
At present, projections of different hydrometeorological 

variables have been created worldwide using General 
Circulation Models (GCMs), a tool that allows the future 
behavior of variables such as precipitation and temperature 
to be examined in order to gain a better understanding of 
Climate Change (CC) and its after-effects in the near and 
distant future [1,2]. However, despite the practical uses of 
low-resolution projections, researchers have been working 
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on developing downscaled models that provide regional and 
local analysis of hydrometeorological variables [3-5].  

The downscaling of the GCMs and their respective 
projections is carried out using statistical and dynamic 
modeling [6,7]. As such, statistical downscaling has gained 
huge popularity, as, compared to the dynamic variety, it has 
a low computational cost and is simple to apply [8]. 
According to Jones et al. (2009) [9], it largely works by 
associating the hydro-climatic variables with the results of 
the GCMs, achieving high-quality results similar to those 
produced by dynamic downscaling.  
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In statistics, when compared with other regression 
techniques, automatic learning techniques like Artificial 
Neural Networks (ANNs) are more efficient and present 
more correlated values, due to their capacity for learning 
from the data and their use of computer algorithms [10]. 
Research has been carried out globally that involves ANNs 
in the downscaling of Climate Change scenarios, and these 
studies show this method to be adequate and with low 
computational cost [2,11,12].  

In Colombia, the analysis of Climate Change 
precipitation scenarios has been mainly carried out at a 
national and departmental level [13-15]. According to 
pronouncements by IDEAM (2015) [13], the impact of CC 
on the country’s precipitation will vary in magnitude and 
duration depending on the department. The present study 
found that by 2100, Valle del Cauca will see a 6% average 
increase in precipitation, mainly in the Andean and Pacific 
regions. The various changes in the behavior of the 
distribution and magnitude of rains create environmental, 
social and economic conflicts, thus, studies should be 
encouraged not only on a national or departmental level, but 
also at a local level. This will allow for adaptation plans and 
projects to be created that avert climate vulnerability and risk 
in specific areas like river basins [16,17]. 

Precipitation is a hydrological component that is highly 
influential on the different activities carried out in river 
basins. In Valle del Cauca, studies on the spatial and temporal 
behavior of precipitations have been conducted in different 
river basins, where it has been found that the phenomena of 
climate variability and change influence different parts of the 
department in different ways. For example, the department’s 
Pacific region has shown to be more greatly affected 
compared to the Andean region, due to its proximity to the 
ocean. In another study, Cardona et al. (2014) [18] examined 
trends in two of Valle del Cauca’s Andean river basins (the 

Cali and the Dagua), and affirm that in recent years, these 
have seen an increase in precipitation, and that this has been 
recognized in the local news with reports of an increase in the 
number of flash floods and landslides in these basins over the 
last few years.   

The Cali river basin is of great importance to the 
department of Valle del Cauca, as it provides different 
ecosystem services that contribute to the wellbeing of people 
living in the municipality of Santiago de Cali, including 20% 
of their fresh water provision [19]. Taking into account the 
current rainfall trends for the Cali river basin and the different 
problems associated with them, this study’s primary 
objective is to create a monthly precipitation prediction using 
the statistic downscaling method for climate change 
scenarios and posterior analysis to determine whether this 
trend will be upheld over time.  

The present analysis of Climate Change precipitation 
scenarios employed historical monthly precipitation records 
from 35 meteorological stations from January 1972 to 
December 2016. Using this data, an estimation of the missing 
data was performed, and the GCM obtained from the 
Coupled Model Intercomparison Project version 5 (CMIP5) 
databases were downscaled.   

 
2.  Metodology 

 
2.1.  Study area 

 
The Cali river basin is located in the department of Valle 

del Cauca (Fig. 1), and has an area of approximately 215 km2, 
with altitudes between 4000 mamsl and 1000 mamsl, and 
precipitation varying between 3600 and 1200 mm in the 
upper and lower regions respectively. Its main channel 
originates in the Farallones de Cali mountains and discharges 
into the river Cauca [19]. 

 

 
Figure 1. Geographical location of the Cali River Basin. 
Source: The Authors. 
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Figure 2. Methodological design. 
Source: The Authors. 
 
 
2.2.  Methodological design 

 
The analysis of future precipitation scenarios was 

conducted using artificial intelligence (Artificial Neural 
Networks), where initially a refinement of the missing values 
was developed and then a precipitation prediction was carried 
out by downscaling the Representative Concentration 
Pathway (RCP) scenarios of climate change models compiled 
from CMIP5. Similarly, interpolations were applied to two 
periods of projected values, the near future (2017-2059) and 
the distant future (2059-2100), and these were compared to 
the precipitation observed over the period 1972-2016. The 
distribution was examined by comparing the standard 
deviation of these periods of analysis. Finally, using the 
Mann Kendall non-parametric test, the future precipitation 
trends from 2005 to 2100 were analyzed (Fig. 2). 

 
2.3.  Data and analysis period 

 
This study was conducted using monthly precipitation data 

from 35 meteorological stations. Of these, 11 are located within 
the river basin and the rest in the surrounding area (Fig. 1). 
 
Table 1. 
Stations located within the Cali river basin. 

Station Longitude Latitude Entity 
Aguacatal -76,606189 3,506601 CVC 
Brasilia -76,628423 3,452556 CVC 
Colegio San Luis -76,5366 3,460086 CVC 
La Leonera -76,633012 3,452657 CVC 
La Teresita -76,662901 3,449742 CVC 
Montebello -76,550582 3,487402 CVC 
Peñas Blancas -76,662484 3,415628 CVC 
Pichinde -76,601556 3,438194 IDEAM 
San Pablo -76,620675 3,517025 CVC 
Villa Aracelly -76,587885 3,530407 CVC 
Yanaconas -76,601796 3,438151 CVC 

Source: The Authors. 

The period of analysis considered was from January 1972 to 
December 2016; a total of 540 months [20,21] (Table 1). 
Additionally, historical data was used alongside climate 
scenarios of the models CNRM-CM5, MPI-ESM-LR and 
MRI-CGCM3 from CMIP5, taking into account that these 
correlated more with the observed values of precipitation of 
the majority of the meteorological stations [22]. 
 
2.3.1.  Estimation of missing data using artificial neural  
           network 

 
One of the greatest inconveniences when using the 

precipitation databases is the lack of or non-existence of 
some data, meaning that radial basis function networks (to 
use R programming language) had to be applied to process 
an estimate the missing data. This model achieves acceptable 
efficiencies for this type of processing, according to Nkuna 
and Odiyo, 2011 [23]. Initially, 8% of the data was missing, 
but the estimation managed to complete 100% of the 
information. It is important to note that, after applying this 
process, the dataset becomes continuous. 

 
2.4.  Downscaling 

 
The downscaling of future precipitation scenarios 

consists in comparing a General Circulation Model (GCM) 
with actual local or regional data (precipitation values taken 
from the meteorological stations). In other words, the 
resolution of the GCM is increased with the aim of 
eliminating the existing bias and, in this way, concentrating 
the data to a local level [9,24]. The ANNs can be used for this 
method, thanks to their capacity for associating both input 
and output non-lineal variables [11]. First, the historical data 
and the future scenarios of the CNRM-CM5, MPI-ESM-LR 
and MRI-CGCM3 models downloaded from CMIP5 
databases are obtained for the specific coordinates of each 
meteorological station. The neural network is trained using 
the historical databases and a monthly precipitation 
prediction is made using the scenarios. This process is shown 
in the diagram in Fig. 3. 
 

 
Figure 3. Methodological design of downscaling. 
Source: The Authors. 
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Analysis of climate change scenarios of precipitation in Cali river 
basin, Colombia. 
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Table 2. 
Extraction of data for station-specific coordinates. 

Data extraction for specific coordinates 
library(readxl) 
library(ncdf4) 
Models <- “NC format file location” 
StationLocation <- “Excel file with station location” 
OpenNC<- nc_open(Models) 
lon <- ncvar_get(ncin1,"lon") 
lat <- ncvar_get(ncin1, "lat") 
Prec <- ncvar_get(ncin1, "pr") 
prec <- Prec1*2592000 
A<- StationLocation$Latitude[#Station_Position] 
NumberLat <- which.min(abs(lat-A)) 
B<- Stations$Longitude[#Station_Position] 
NumberLon <- which.min(abs(lon-B)) 
PrecModels <- prec[NumberLon, NumberLat,] 
setwd("Destiny file location") 
write.table(PrecModels, file="StationName and Model.txt") 

Fuente: The Authors. 
 
 
It is important to note that the downscaling process does 

not create precipitation forecasting; rather, it makes 
predictions based on the forecasts already established in the 
GCM described above for each of the RCP scenarios, with 
the goal of generating future information specific to each of 
the stations.  

After downloading the historical and future data for the 
models described in Fig. 3 from the official Earth System 
Grid Federation (2018) [22] website, the data for the specific 
coordinates was extracted using the statistical software R 
using the script outlined in table 2, based on the NCdf4 
package [25]. 

 
2.4.1.  Artificial Neural Network 

 
The ANN method is inspired by biological models and 

elaborates a series of mathematical models with a large 
number of elements that are organized in hierarchical levels 
[26,27]. An ANN is made up of neurons that are organized in 
layers and interconnected to each other. The neurons 
regularly have three or more layers (Input layer, Hidden 
layers and Output layer), and with this structure the said 
method can associate the input variables with the output 
variables and weight those that are most relevant [27]. 

The downscaling was carried out using the “nnet” 
package. Venables and Ripley (2002) [28] explain that the 
ANN used in this package are of the Multilayer Perceptron 
variety, and as their name suggests, they are classified as 
having a multilayer topography, that is, the input units are 
distributed among the hidden layers where a constant or bias 
is added and they take on a fixed function (eq. 1) [29]. 

 

𝑦𝑦(𝑘𝑘) = 𝐹𝐹 �𝑏𝑏(𝑘𝑘) + �𝑤𝑤𝑗𝑗𝐺𝐺(𝑆𝑆𝑖𝑖)

ℎ

𝑗𝑗=1

� (1) 

 
Where F represents the function activation of the output, 

wj corresponds to the weight of the connections between the 
hidden layers and bk is the bias or threshold value that is 
generated during processing. This applies when taking into 
account the lineal output j with a hidden layer with h nodes 

and 𝐺𝐺(𝑆𝑆𝑖𝑖) as the activation function of the hidden layer 
(hyperbolic tangent) as defined by eq. (2) [29]. 
 

𝐺𝐺(𝑆𝑆𝑖𝑖) =
𝑒𝑒𝑆𝑆𝑖𝑖 − 𝑒𝑒−𝑆𝑆𝑖𝑖
𝑒𝑒𝑆𝑆𝑖𝑖 + 𝑒𝑒−𝑆𝑆𝑖𝑖  (2) 

 
Where Si is the weighted sum of all the input information, 

xi corresponds to the values inputted into the network and wi 
is the weight of the connection between the nodes in the input 
layer and the hidden layer, as is described in eq. (3) [29]. 
 

𝑆𝑆𝑖𝑖 = �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (3) 

 
Using the actual data and the information obtained from 

the 3 GCMs and their respective climate scenarios RCP 2.6, 
4.5 and 8.5, the Multilayer Perceptron neural network was 
trained with data from January 1972 to December 2016. 
Additionally, 3 layers (input layer, hidden layer and output 
layer) were used in the network, with 600 neurons for the 
hidden layer with a tangent hyperbolic activation function 
and 6000 interactions. Subsequently, with this same network, 
the future precipitation from January 2017 to December 2100 
was predicted, using the projected data of the above-
mentioned GCMs and their scenarios. Fig. 4 shows the 
diagram of the procedure design, as well as the script that was 
used for its implementation in table 3, based on the R package 
“nnet” [30]. 
 
Table 3.  
Downscaling of climate change scenarios for precipitation. 

Downscaling for RCP 2.6, 4.5 y 8.5 scenarios 
library(readxl) 
library(nnet) 
Training <- read_excel("Historic GCM data and stations location - 
excel") 
name= names(Training) 
Prediction <- read_excel("RCP data (from GCM models) location - 
excel") 
Training= ts(Training, start =c(1972,1), end =c(2016,12),   

frequency = 12) 
Prediction= ts(Prediction, start =c(2006,1), end =c(2100,12),  frequency  

= 12) 
##### Same is done for the others scenarios 
Predictor2 <- Prediction[1:132,2:4]  
colnames(PredictorNoRCP) <- c(name[2:4]) 
inputs <- cbind(Training[1:408,2:4]) 
inputs <- rbind(inputs,Predictor2) 
outputs <- Training[,5] 
modelnnet<- nnet(inputs, outputs, size = c(600),  
                 linout = TRUE, entropy = FALSE, softmax = FALSE,  
                 censored = FALSE, skip = FALSE, rang = 0.7, decay = 1, 
                 maxit = 6000, MaxNWts = 4000, 
                 abstol = 1.0e-4, reltol = 1.0e-8) 
Auji2 <- fitted.values(modelnnet) 
Predictor2.6 <- Prediction[,2:4] 
Auji2.6 <- predict(modelnnet,Predictor2.6) 
setwd("Ubicación carpeta destino") 
write.table(Auji2.6, file="Auji2.6.txt") 

Fuente: The Authors. 
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Figure 4. Artificial Neural Network design. 
Source: The Authors. 

Where u represents the number of interactions, b 
corresponds to the bias and G is the hyperbolic tangent 
activation function. 

2.4.2.  Validation 

The validation of the downscaling of future precipitation 
scenarios was implemented using the Pearson correlation 
coefficient defined in eq. (4) [31]. In the same vein, box and 
whisker plots were elaborated to compare the distribution of 
the estimated data with the actual data.  

𝑟𝑟 =
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2𝑛𝑛

𝑖𝑖=1
(4) 

2.5.  Analysis of the trends and changes in the distribution 
 of future precipitation. 

An analysis of the future precipitation trends on a yearly 
basis was performed by applying the non-parametric Mann-
Kendall test that can present a null hypothesis (H0) that 
indicates that no considerable trend exists or an alternative 
hypothesis (H1) that indicates that an increasing or decreasing 
trend exists. 

Additionally, for the distribution analysis, the historic 
total average annual precipitation (1972-2016) was compared 
with the same measurement for the near future (2017-2058) 
and the distant future (2059-2100), employing the percentage 
change analysis outlined in eq. (5). 

%𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝑋𝑋𝑓𝑓��� − 𝑋𝑋𝑝𝑝����

𝑋𝑋𝑝𝑝����
(5) 

Where 𝑋𝑋𝑓𝑓��� represents the average future precipitation and 
𝑋𝑋𝑝𝑝���  is the average historic precipitation.  

2.6.  Interpolations 

Interpolations of the spatial distribution of future 
precipitation data were attained, and the dispersion was 

compared with the historic precipitation using the Empirical 
Bayesian Kriging (EBK) method, employing the 
Geostatistical Analyst extension of the Arcmap10.3 software. 
This method uses eq. (6) as the foundation of its functionality 
[32]. 

�̂�𝑍(𝑆𝑆0) = �𝜆𝜆𝑖𝑖𝑍𝑍(𝑆𝑆𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (6) 

Where: 𝑍𝑍(𝑆𝑆𝑖𝑖) represents the median value in the location 
𝐶𝐶 , 𝜆𝜆𝑖𝑖   is an unknown weighting of the mean value for the 
location 𝐶𝐶, 𝑆𝑆0 corresponds to the location of the prediction and 
N is the quantity of mean values.  

3. Results and discussion

The statistic downscaling of the Climate Change 
precipitation scenarios using Artificial Intelligence models 
(Neuron Networks) managed to simulate the hydrological 
behavior of the different stations analyzed with an 
acceptable resolution. However, the results obtained 
establish that anomalous extreme large-scale events (heavy 
precipitation) are not adequately represented, as is the case 
of the Aguacatal station presented in Fig. 5.

The validation of the training using the Pearson 
correlation test indicates that the correlations obtained in 
the different stations oscillate between 70% and 98%, 
which are results that align with the study carried out in La 
Guajira by Bernal et al. (2000) [5] where, in the calibration 
(training) phase, correlations of between 69% and 90% 
were achieved. Similarly, a study for Bangkok by Vu et al. 
(2016) [33] found a correlation of 80% for the training phase 
of their downscaling methodology for precipitation data. 

Additionally, it was observed that the stations with less 
correlation to the GCMs are those that related least closely to 
the actual data.  

It should also be noted that the validation of the different 
Climate Change precipitation scenarios has an average 
correlation of 86.4% for the RCP8.5 scenario, 85.8% for 
RCP4.5 and 84.1% for RCP2.6. To demonstrate said 
distribution, Fig. 6 presents the estimated and projected 
values for each scenario. The Aguacatal station reached a 
correlation of 95% for the training period (1972-2005) and 
98% for the validation period (2005-2016) in conjunction 
with scenario RCP2.5 and 93% for scenarios RCP 4.5 and 
8.5. 

For the majority of the stations, the ANNs achieve an 
acceptable representation of the precipitation distribution that 
adequately reflects the data’s median. However, for some 
stations, mainly those located in the upper and lower areas of 
the basin, the ANNs do not manage to estimate the maximum 
and minimum values of the different scenarios with precision 
(Fig. 7). This is because the precipitation variable has a high 
spatial and temporal heterogeneity that makes the estimation 
of the values difficult. Furthermore, part of the precipitation 
that is generated by small-scale atmospheric structures 
cannot be recreated adequately at the resolution of the GCMs 
[34,35]. 
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Figure 5. Downscaling of RCP 2.6 scenario at Aguacatal station. 
Source: The Authors. 
 
 

 
Figure 6. Correlation of the artificial neural network training in MGC historical and RCP scenarios, Aguacatal station. 
Source: The Authors. 
 
 

 
Figure 7. Box and whisker plot for historical vs. estimated precipitation data of the Cali river basin, period 2006-2016. 
Source: The Authors. 
 
 

The analysis of the trends using the Mann Kendall non-
parametric test found that, over the coming years, the river 
basin will be subject to an upward trend. However, it is 
important to note that in the middle area of the basin, for 
some stations, in the RCP scenarios 4.5 and 8.5, there are 
downward trends. Additionally, the size of the precipitation 

depth, calculated using Sen’s slope, ranges between 0.3 and 
2.2 mm/year in the upper area, 3.5 and -1.4 mm/year in the 
middle area, and between -0.2 and 1.1 mm/year in the lower 
area, from which it can be inferred that the middle zone will 
suffer the greatest changes in the future (table 4). These 
results match those obtained by Cardona et al. (2014) [36] 
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from an evaluation of precipitation trends in the Cali river 
basin for the 1954-2010 period, where they found that 
precipitation trends generally increased by 67% in the 
stations located within the basin, especially those in the east, 
with an average increase of 0.3 mm/year. For these reasons, 
it is predicted that precipitations in the basin will continue to 
rise in the future, as has been seen historically.  
The distribution of the average annual precipitation in the 
different Climate Change scenarios presented higher levels in 
the basin’s upper and middle areas in comparison with its 

lower areas for Period a (2017-2058) and Period b (2059-
2100). Similarly, precipitation in scenario RCP2.6 presents 
higher maximum average precipitation levels in both periods 
with values of 3125 and 3128 mm respectively. For scenario 
RCP4.5, on average, the maximum levels are lower with 
values of 3045 and 3043 mm, and the minimum levels have 
values of 1138 and 1132 mm consecutively for each period. 
Finally, for scenario RCP8.5, there are maximum levels of 
precipitation of 3086 and 3096 mm and minimum levels of 
1131 and 1175 mm respectively (Fig. 8).  

 
Table 4. 
Summary of non-parametric Mann-Kendall trend test and the Sen's slope. 

Basin Stations 
Trend analysis summary for period 2005 -2100 

RCP 2.6 RCP4.5 RCP 8.5 
z Sen’s slope (mm/year) z Sen’s slope (mm/year) z Sen’s slope (mm/year) 

Upper Teresita 1.13 1.13 2.06 2.18 1.24 1.08 
Blancas 0.73 0.94 0.63 0.66 0.16 0.27 

Middle 

Leonera 0.51 0.56 0.05 0.03 -1.42 -1.39 
Aguacatal 0.45 0.40 -0.21 -0.14 0.16 0.17 
Pablo 1.97 2.32 2.36 3.48 2.01 2.57 
Brasilia -0.56 -0.35 0.68 0.54 1.49 1.54 
Yanaconas 0.36 0.38 -0.81 -0.84 -0.91 -1.04 
Villaaracelly -0.10 -0.14 0.65 0.65 0.79 0.65 
Pichie -1.05 -1.20 2.30 2.44 0.41 0.46 

Lower Montebello 0.88 0.71 0.73 0.82 0.24 1.09 
Colsanluis -0.25 -0.19 0.50 0.59 0.90 0.71 

Source: The Authors. 
 
 

 
Figure 8. Precipitation distribution in Climate Change scenarios RCP 2.6, 
4.5 and 8.5 in period a (2017-2058) and period b (2059-2100) in the Cali 
river basin. 

Source: The Authors. 

 
Figure 9. Precipitation change distribution of the RCP 2.6, 4.5 and 8.5 
Climate Change scenarios for period a (2017-2058) and period b (2059-
2100) in the Cali river basin. 
Source: The Authors. 
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The analysis of the Climate Change scenarios showed that 
when compared with Periods a and b, the 1972-2016 period 
presented changes that range between -3.4 and 10.4% for the 
different RCP scenarios (fig. 9). It also showed that these 
changes are generally positive, results that match the trends 
presented in the Mann Kendall Table 4 where the most 
significant changes are found in the middle area.  

Additionally, according to a study developed by IDEAM 
et al. (2015) [37] that predicted precipitation and temperature 
(2011-2100) in Valle del Cauca, the Cali river basin area will 
see a change in conditions that is categorized as normal with 
a range of -10 y 10%, which aligns with the results described 
above that refer to the changes in precipitation in the basin. 
IDEAM (2015) [37] also establishes that the reduction in 
rainfall alongside changes in land use will directly impact 
agricultural and forestry production, human health, and the 
regional economy and its competitiveness, thanks to the 
acceleration and increase of desertification and the loss of 
water sources. Furthermore, an increase in rainfall will cause 
flooding (in flat areas) and an increase in the risk of 
landslides, damage to road infrastructure and harm to rural 
aqueducts. 
 
4.  Conclusions 

 
Analysis of the Climate Change scenarios in the basin 

found that the statistic downscaling of monthly precipitation 
using ANNs presented acceptable correlations, the results of 
which were affected by the location of the different stations 
and their initial correlation with the chosen GCMs. 
Additionally, the precipitation trends of the different 
projected scenarios are generally positive, and so it can be 
inferred that over the coming years, precipitation events will 
increase in either intensity or duration. Similarly, the 
distribution of precipitation in the river basin for the 2017-
2058 and 2059-2100 periods will present varying reductions 
at specific points in the upper and lower parts of the basin and 
increases elsewhere. Finally, it was found that this 
distribution would present changes ranging between -3.4 and 
10%, where increases in precipitation will be observed 
mainly in the middle area of the basin, anticipating that if the 
same trends continue, there will be an increased risk of 
landslides, considering that the basin’s Development and 
Management Plan [19] states that this area has steep slopes, 
unsustainable livestock activity, and high erosion zones.  
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