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Abstract 
In this article, a method to infer the parameters of a conic given a set of rectangular coordinates that belong to the geometric entity is shown. 
The methodology consists of solving a Tikhonov regulation problem where the unregulated term introduces the non-linear nature of the 
conical body and the regulated the restriction associated to the discriminant of the quadratic equation, then the solution is computed 
minimizing the resulting cost function where the Regularization parameter is tuned using the L-Curve technique. The model was validated 
with synthetic and real data from digital images, as well as subject to comparison against other state of the art alternatives. The results show 
that the method is robust against atypical values and the phenomenon of occlusion present in the data. 
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Sintonización de los parámetros de una cónica utilizando 
regularización Tikhonov y simulación L-Curva 

 
Resumen 
En este artículo se muestra un método para inferir los parámetros de una cónica dado un conjunto de coordenadas rectangulares que 
pertenecen a la entidad geométrica. La metodología consiste en resolver un problema de regulación de Tikhonov donde el término no 
regularizado introduce la naturaleza no lineal de cuerpo cónico y el regularizado la restricción asociada al discriminante de la ecuación 
cuadrática, luego la solución es computada minimizando la función de costo resultante donde el parámetro de regularización es sintonizado 
utilizando la técnica de L-Curve. El modelo fue validado con datos sintéticos y reales provenientes de imágenes digitales, así como sometido 
a comparación contra otras alternativas del estado del arte. Los resultados muestran que el método es robusto frente a valores atípicos y al 
fenómeno de oclusión presente en los datos. 
 
Palabras clave: segmentación; optimización; estimación de parámetros 

 
 
 

1.  Introduction 
 
A type of geometric entities very common in computer 

vision, in physics, medicine and in general in nature are those 
caused by intercepting a plane with a cone [1-3,27]. The 
interception of these generates a type of curves that in 
geometry are called conical. Depending on the cut these are 
classified as parabola, ellipse, circumference, hyperbola and 
degraded conic [4].  

The mathematical model that describes the behaviour of 
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 a conic obeys a quadratic equation with an independent 
variable and uniform parameters. A thematic that arises in the 
application of the conics to different physical problems, 
consists in determining the parameters of the quadratic 
equation given a set of coordinates in rectangular plane. To 
solve this, in the literature different approaches and 
methodologies have been proposed, which can be classified 
into three large groups. First, we have the methods based on 
geometric distance where the purpose is to minimize a cost 
function given a constraint; usually the cost function and 
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constraint are associated with the parameters of the conic. 
Secondly, we have the approaches based on parametric 
models and Euclidean distance, where the purpose is to solve 
an unrestricted optimization problem by means of an iterative 
method in this category can also be classified the methods 
based on the Hough transform (HT) [25], and third, 
probabilistic methods where a probability distribution 
function is assumed on parameters and data [5,6]. 

Naturally, each approach has characteristics of the 
proposed model. As an example, the methods based on 
probabilistic models are highly robust to noise, as well as to 
atypical information; however, they have a high cost of 
computation [6]. On the other hand, the algorithms based on 
Euclidean distance are relatively simple to implement, 
unfortunately they present drawbacks with data with a high 
level of curvature. On third place, methods based on 
geometric distance usually have optimal local solution, 
although they are sensitive to noise, occlusion and atypical 
information present in the data [7]. Therefore, the application 
of a particular approach depends on the nature of the data. 

The detection of ellipses using HT has been introduced 
since the last two decades due to the robustness to occlusion, 
although the most common variants of HT (standard HT, 
probabilistic HT, combinatorial HT, geometric symmetry) 
are not suitable for locating ellipses [25], there are 
modifications of the HT that seek to solve this problem, such 
as fast ellipses HT, random HT, Hybrid HT, which compute 
good results but present some restrictions such as sensitivity 
to disconnected pixels, projective distortion, besides, these 
only detect ellipses and circles due to their application in 
digital images [26] .  

The methods based on geometric distance with non-
convex restriction on the parameters ignore the discriminant 
of the quadratic equation to infer the parameters of an ellipse 
or hyperbola, because the conditions of Karush Kuhn Tucker 
(KKT) establish that to compute the global minimum in this 
case is not a guarantee, but it allows to compute a local 
minimum or saddle point [7-9].  

The methods taught in the state of the art generally 
convert the nature of the discriminant into an equality as a 
restriction, in this manner the solution is computed by means 
of the Lagrange function where the optimal solution is found 
by means of the generalized eigenvectors of the covariance 
matrix [7,10]. Similar models are detailed in [11,12,27]. 
However, these remain bound to a convex function as a 
restriction, restricting the solution to a particular case. 

In this article a method that uses the discriminant of the 
quadratic function to suggest using the Tikhonov 
regularization model to estimate the parameters of a 
hyperbola or ellipse (Tikhonov L-Curve Conic Fitting 
(TLCCF)) is proposed. On the other hand, the procedure 
introduces an instrument that allows to automatically 
determine the optimal value of the regularization parameter 
that maximizes the curvature of L-Curve, that is, a search is 
performed on the entire solution space without simplifying 
the nature of the restriction function; in this manner a strategy 
that emerges from the traditional solution, which is linked to 
the eigenvectors associated with the design matrix of the 
model is explored.  The obtained results show that the method 
is robust against significant noise variations because the 

method regularizes the solution without ignoring the 
dynamics of the discriminant of the quadratic equation. On 
the other hand, an application of the method for the detection 
of conics present in a digital scene (image) is introduced as 
an exploratory mode. The main contributions of the article 
submitted are the following: 
• Documentation of a methodology that allows to infer the 

parameters of a conic given real observations, which is 
robust to the noise present in the data. 

• Report of the evaluation of the methodology against 
different methods proposed in the state of the art. 
This article consists of two sections, which are described 

below: 
• On section two the methodology is introduced, describing 

each of the stages that conform it, as well as the 
mathematical development of the model and its solution.  

• On section three the experiments are described along with 
the results debating the cons, the benefits; as well as the 
future works that must be addressed. Lastly the research 
conclusions. 
 

2.  Methodology 
 

The working methodology consists of adapting the 
Tikhonov regularization method for the paradigm of tuning 
the parameters of a conic given a set of coordinates in the 
two-dimensional plane. The test procedure considers noise 
both in a real context (digital image scene) and synthetic 
(simulated data contaminated with noise), the construction of 
the method considers three sequential stages. In the first 
place, a database constituted with ellipses and synthetic 
hyperboles is made from a structure used in the literature 
used for this purpose [10]. Secondly, it solves a restricted and 
regularized optimization process that computes the 
parameters of the conic given a set of correspondences on the 
rectangular plane; finally, in the fourth stage a validation 
process of the methodology is performed, in this it is 
determined the confidence of the method for different noise 
levels making a comparison with two classic methods 
documented in the state of the art. Fig. 1 shows a block 
diagram summarizing the methodology. 

 

Figure 1. Work methodology general scheme. 
Source: The Authors. 
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2.1.  Generation of Random Conics for the Monte Carlo 
        Experiment 
 

In this stage an algorithm is built for the generation of 
points (x,y) belonging to a conic with the purpose of 
generating different inputs for the Montecarlo analysis and 
thus evaluate the behaviour of the algorithm under different 
cases. The generation of synthetic conics is achieved through 
an algorithm that allows the random generation of ellipses 
and hyperboles using the discriminant of the quadratic 
equation. In this way, each rectangular coordinate belonging 
to the synthetic conic is contaminated with different levels of 
Gaussian noise.  

The design of the algorithm takes into account as input 
variables the number of minimum coordinates with which we 
want to work and the option to generate an ellipse or a 
hyperbola. The flow diagram of this algorithm is shown in 
the algorithm 1.  

The rectangular coordinates are contaminated with white 
noise, with distribution N (0, σ), where the value of σ depends 
on the signal to noise ratio. 
 
2.2.  Conic adjustment using Tikhonov regularization 
        with adaptive λ 
 
2.2.1.  Estimation of parameters with Tikhonov 
           regularization 
 

Considering the least squares problem, the idea is to find 
the minimum distance solution of the eq. (1) 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 min 𝑚𝑚 (‖𝜗𝜗𝑚𝑚 − 𝑏𝑏‖2),  (1) 
 

where ϑ is the design matrix, b is a known solution vector 
and x is the unknown. The problem described above is badly 
conditioned; therefore, it is resorted to impose such a 
restriction. 
 

min 𝑚𝑚 (‖𝜗𝜗𝑚𝑚 − 𝑏𝑏‖2 +  λ∁(x)), (2) 
 

Where λ is known as the regularization parameter and the 
amount ∁(x) the restriction. When ∁(x)= ‖𝐿𝐿𝑚𝑚‖2 is used, the 
above problem is called Tikhonov regularization [23]. i.e.: 
 

min 𝑚𝑚 (‖𝜗𝜗𝑚𝑚 − 𝑏𝑏‖2 +  λ‖Lx‖2) (3) 
  

𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 ((𝜗𝜗𝑚𝑚 − 𝑏𝑏)𝑇𝑇(𝜗𝜗𝑚𝑚 − 𝑏𝑏) + 𝜆𝜆𝑚𝑚𝑇𝑇𝐿𝐿𝑇𝑇𝐿𝐿𝑚𝑚) (4) 
 

If 𝑏𝑏 = 0, the above formulation takes the following form: 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑇𝑇𝜗𝜗𝑇𝑇𝜗𝜗𝑚𝑚 + 𝜆𝜆𝑚𝑚𝑇𝑇𝐿𝐿𝑇𝑇𝐿𝐿𝑚𝑚) (5) 
 

The formulation can be used to estimate the parameters 
of a conic. Firstly, the conic 𝑄𝑄(𝑚𝑚,𝑦𝑦) is defined quadratically 
as shown in eq. (6). 
 

𝑄𝑄(𝑚𝑚, 𝑦𝑦) = 𝐴𝐴𝑚𝑚2 + 𝐵𝐵𝑚𝑚2 + 𝐶𝐶𝑚𝑚 + 𝐷𝐷𝑦𝑦 + 𝐸𝐸𝑚𝑚𝑦𝑦 + 𝐹𝐹 = 0, (6) 
 

This is a convex entity where the parameters 𝑊𝑊𝑇𝑇= 
[𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐹𝐹] describe and define the conic’s nature. 

Algorithm 1:  Synthetic generation of conics. 
 
 

This can be expressed in matrix form as shown in eq. (7). 
 

 𝑄𝑄(𝑚𝑚,𝑦𝑦) =  [𝑚𝑚 𝑦𝑦 1]

⎢
⎢
⎢
⎢
⎡𝐴𝐴

𝐹𝐹
2

𝐶𝐶
2

𝐹𝐹
2

𝐵𝐵 𝐷𝐷
2

𝐶𝐶
2

𝐷𝐷
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𝐹𝐹⎥
⎥
⎥
⎥
⎤
�
𝑚𝑚
𝑦𝑦
1
� =   

 

[𝑚𝑚 𝑦𝑦 1] ∗ 𝐺𝐺 ∗ �
𝑚𝑚
𝑦𝑦
1
� 

 

(7) 

With 𝐺𝐺 =  

⎢
⎢
⎢
⎢
⎡𝐴𝐴

𝐹𝐹
2

𝐶𝐶
2

𝐹𝐹
2

𝐵𝐵 𝐷𝐷
2

𝐶𝐶
2

𝐷𝐷
2

𝐹𝐹⎥
⎥
⎥
⎥
⎤
 

 
Now the idea is to formulate a restricted optimization 

problem to compute the parameters 𝑊𝑊 of the conic, given a 
set of correspondences in the rectangular plane, this is: 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊) 
𝑆𝑆𝑆𝑆𝑏𝑏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑔𝑔(𝑊𝑊) (8) 

 
Which is equivalent to: 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑊𝑊(‖𝑚𝑚(𝑊𝑊)‖2 + 𝜆𝜆‖𝑔𝑔(𝑊𝑊)‖2) (9) 
 

𝑚𝑚(𝑊𝑊) is the cost function and is given by the following 
equation: 

𝑚𝑚(𝑊𝑊) = ∑ 𝑄𝑄2(𝑚𝑚𝑘𝑘, 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1  = 𝑊𝑊𝑃𝑃𝑇𝑇𝑃𝑃𝑊𝑊𝑇𝑇 (10) 

Input: Number of points and Q(X,Y) model 
Output: Parameters [A, B, C, D, E, 1] and Set of points (X,Y) 
Start         
    Initialize the amount of points accepted (pu) 
    If it is a hyperbole, then: 

1. Generate random numbers between [0 20] for    
[A,B,C,D,E].  

2.  Define range of (x) and number of samples. 
3. Define range of (y) and number of samples. 
4. Evaluate the Q(x,y) model in the range of (x,y). 
5. Count the number of point Q(X,Y) with real solution ans    

store in (pu) 
6. If  𝑬𝑬 − 𝑨𝑨𝑨𝑨 ≤ 𝟎𝟎 𝑶𝑶𝑶𝑶 𝒕𝒕𝒕𝒕 < 𝒑𝒑𝒑𝒑 then: 

a. Go to step 1. 
                     Else:   

a. Create vector with parameters X2.  
X2=[A B C D E 1]. 

   End-if 
     Else:   

7. Repeat steps 1 to 5 
8. If  𝑬𝑬 − 𝑨𝑨𝑨𝑨𝑨𝑨 ≥ 𝟎𝟎 𝑶𝑶𝑶𝑶 𝒕𝒕𝒕𝒕 < 𝒑𝒑𝒑𝒑 then: 

a. Go to step 1. 
                     Else:   

b. Create vector with parameters X2.  
X2=[A B C D E 1]. 

                    End-if 
     End-if 

 
    Create vector of points x than belong to Q(X,Y). 
    Create vector of points y than belong to Q(X,Y).        
End      
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Eq. (10) is equivalent to the first term of the eq. (5), where 
𝑃𝑃 is the design matrix containing the information of the 
rectangular coordinates to which the conic belongs, and 𝑚𝑚 is 
the total set of correspondences in the rectangular plane. 
Finally, 𝑔𝑔(𝑊𝑊) is given by the eq. (11). 
 

𝑔𝑔(𝑊𝑊) = 𝑊𝑊𝑇𝑇𝛽𝛽𝑊𝑊, (11) 
 
with 𝛽𝛽 given by the following expression: 
 

𝛽𝛽 =

⎝

⎜⎜
⎛

0 −2 0 0 0 0
−2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0⎠

⎟⎟
⎞

 

 
The value of the matrix 𝛽𝛽 is inferred like this, if we define 

the point ∆ as the cut point of the conic 𝑄𝑄(𝑚𝑚,𝑦𝑦) with a straight 
line at infinity, it can be shown that if: 

∆> 0 the conic 𝑄𝑄(𝑚𝑚,𝑦𝑦) is a hyperbola. 
∆= 0 the conic 𝑄𝑄(𝑚𝑚,𝑦𝑦) is a parabola. 
∆< 0 the conic 𝑄𝑄(𝑚𝑚,𝑦𝑦) is an ellipse. 
We proceed to define two points at infinity 𝑃𝑃1𝑇𝑇 =

[𝑚𝑚′ 𝑦𝑦′ 0] y 𝑃𝑃2𝑇𝑇 = [𝑚𝑚 𝑦𝑦 0], therefore the parameter ∆ 
can be written like this 
 

∆= �𝑃𝑃1𝑇𝑇𝐺𝐺𝑃𝑃2�
2 − �𝑃𝑃1𝑇𝑇𝐺𝐺𝑃𝑃1��𝑃𝑃2𝑇𝑇𝐺𝐺𝑃𝑃2� (12) 

 
Operating we get the following: 

 
∆=

1
4𝐸𝐸

2 − 𝐴𝐴𝐵𝐵 = 𝐸𝐸2 − 4𝐴𝐴𝐵𝐵 
(13) 

 
Which is known in the literature as a discriminant of the 

conic, note that this is independent from the point at infinity 
selected and follows a non-homogeneous behaviour (in the 
case of the ellipse and hyperbole), it also only depends on the 
parameters of the conic: additionally for the case of an ellipse 
and hyperbole the behaviour of ∆ is not convex [7] Note 
further that the value ∆can be written in a matrix form like 
this: 
 

∆= [𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷𝐸𝐸𝐹𝐹] ∗ 𝛽𝛽 ∗

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴
𝐵𝐵
𝐶𝐶
𝐷𝐷
𝐸𝐸
𝐹𝐹⎦
⎥
⎥
⎥
⎥
⎤

= 𝑊𝑊𝑇𝑇𝛽𝛽𝑊𝑊  (14) 

 
Which obeys to the restriction of the optimization 

problem posed previously on the eq. (9). In this manner, 
performing the comparison with the problem of Tikhonov 
regularization we have in this case that the term 𝜗𝜗𝑚𝑚 = 𝑃𝑃𝑊𝑊, 
𝑏𝑏 = 0 and finally 𝐿𝐿𝑚𝑚 = 𝐶𝐶𝑊𝑊𝑇𝑇𝑤𝑤𝑚𝑚𝑆𝑆ℎ 𝐶𝐶 = 𝛽𝛽

1
2. Thus, the 

Tikhonov problem takes the following form (eq. (15)) for the 
tuning of the parameters of a conic. 
 

min𝑊𝑊 (‖𝑃𝑃𝑊𝑊‖2 +  λ‖𝐶𝐶𝑊𝑊‖2) =  
 

min𝑊𝑊 (𝑊𝑊𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑊𝑊 +  λ𝑊𝑊𝑇𝑇𝛽𝛽𝑊𝑊) 
(15) 

The problem posed in the eq. (15) can be partially solved 
(global minimum is not guaranteed) in the event that an 
elliptical or hyperbolic conical body is present [24]. For this 
it is differentiated in relation to 𝑊𝑊 the target function like 
this: 
 

𝐷𝐷(𝑊𝑊𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑊𝑊 + 𝜆𝜆𝑊𝑊𝑇𝑇𝛽𝛽𝑊𝑊) = 0 
 

𝑃𝑃𝑇𝑇𝑃𝑃𝑊𝑊 + 𝜆𝜆𝛽𝛽𝑊𝑊 = 0 
 

(𝑃𝑃𝑇𝑇𝑃𝑃 + 𝜆𝜆𝛽𝛽)𝑊𝑊 = 0 

(16) 

 
Commonly, from the eq. (16) the eigenvalue of the matrix 

is inferred 𝑃𝑃𝑇𝑇𝑃𝑃 (covariance matrix) that allows it to be 
defined as positive, this value corresponds to the value of 𝜆𝜆, 
thus 𝑊𝑊 will be the eigenvector associated with it, however 
the above is only valid in the case where 𝑔𝑔(𝑊𝑊) = 1 [7], 
therefore this solution will be omitted because it belongs to a 
particular case. Now the term 𝛼𝛼 = 𝑃𝑃𝑇𝑇𝑃𝑃 + 𝜆𝜆𝛽𝛽 is defined, 
therefore the problem of inferring the parameters 𝑊𝑊 is 
summarized in solving the following linear problem (eq. 
(17)). 
 

𝛼𝛼𝑊𝑊 = 0 (17) 
 

Where the trivial solution 𝑊𝑊 = 0 it is not of interest, this 
suggests that it is necessary to re-edit the value of the 
parameters, for this purpose we make use of the homogeneity 
of the second order equation of the conic which allows to 
normalize the parameters, this is with ‖𝑊𝑊‖ = 1. Therefore, 
the problem takes the following form (eq. (18)). 
 

𝛼𝛼𝑊𝑊 = 0,   𝑆𝑆𝑆𝑆𝑏𝑏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆‖𝑊𝑊‖ = 1 (18) 
 

The above problem can be solved by performing 
decomposition in singular values to the matrix 𝛼𝛼, meaning, 
𝛼𝛼 = 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇. It can be shown that the solution to the problem 
described above is given by the last column of the matrix 𝑉𝑉𝑇𝑇, 
for more detail of this procedure the reader can consult [20].  

It is noteworthy that the final solution is based on the set 
of rectangular coordinates of the conical body, the constraint 
and the regularization parameter being this unknown. 

 
2.3.  Automatic estimation of the regularization parameter 
        using the L - Curve method 

 
The formulation described in the previous section 

presents the difficulty of not automatically computing the 
value of 𝜆𝜆. To do this, we suggest to apply the concept of L-
Curve, which is a tool that allows to graphically represent the 
Tikhonov model (eq. (19)) given the regularization 
parameter. The purpose is to perform a simulation of the L-
Curve for different values of 𝜆𝜆, these represent possible 
solutions to the estimation problem, the method ends up 
solving an optimization problem that allows to infer the 
optimal value of 𝜆𝜆. 
 

𝑙𝑙𝑙𝑙𝑔𝑔(‖𝑃𝑃𝑊𝑊‖2, ‖𝐶𝐶𝑊𝑊‖2) (19) 
 

The representation in the two-dimensional plane of the  
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final correspondence vector is known in the literature as the 
L-Curve, in which the value of the regularization parameter 
is implicit. The selection of this should guarantee a corner as 
defined as possible in the L-Curve, i.e. the idea is to compute 
the value of 𝜆𝜆 which is located at the corner of the L-Curve. 
The reasoning behind this choice is that the corner separates 
the flat and vertical parts of the curve where the solution is 
dominated by regularization errors and disturbance errors, 
respectively. Hansen and O'Leary introduced calculating this 
value as the coordinate in the two-dimensional plane that 
maximizes the curvature of the L-Curve [21]. 

Now the criterion for selecting the optimal value of the 
regularization parameter corresponds in computing the value 
𝜆𝜆 that maximizes the curvature k of the L-curve. First, the 
following terms are defined: 

 
𝜂𝜂 = ‖𝐶𝐶𝑊𝑊‖2 
𝜌𝜌 = ‖𝑃𝑃𝑊𝑊‖2 

𝜂𝜂 = 𝑙𝑙𝑙𝑙𝑔𝑔 (𝜂𝜂) 
𝜌𝜌 = 𝑙𝑙𝑙𝑙𝑔𝑔 (𝜌𝜌) 

 
It can be shown that the curvature k is given by the 

following equation [21] 
 

𝑘𝑘 = 2
𝜂𝜂𝜌𝜌
𝜂𝜂′
𝜆𝜆𝜂𝜂′𝜌𝜌 + 2√𝜆𝜆𝜂𝜂𝜌𝜌 + 𝜆𝜆2𝜂𝜂𝜂𝜂′

(𝜆𝜆𝜂𝜂2 + 𝜌𝜌2)3 2⁄  
(20) 

 
Where 𝜂𝜂′ is the first derivative of 𝜂𝜂 in regards to 𝜆𝜆. It can 

be demonstrated that 𝜂𝜂′ is given by the following: 
 

𝜂𝜂′ =
4
√𝜆𝜆

𝑊𝑊𝜆𝜆
𝑇𝑇𝑧𝑧𝜆𝜆 (21) 

With 
 

𝑧𝑧𝜆𝜆 = (𝑃𝑃𝑇𝑇𝑃𝑃 + 𝜆𝜆𝜆𝜆)−1𝑃𝑃𝑇𝑇(𝑃𝑃𝑊𝑊𝜆𝜆) (22) 
 
2.4.  Validation of the methodology 
 

In this stage, the performance of the proposed estimation 
method is validated. Therefore, the method is evaluated from 
two approaches, one of classification and the other of 
estimation. In the first approach the Monte Carlo method is 
used for the random generation of conics and thus calculate 
the average success rate, when evaluating ∆. In the second 
approach, Gaussian white noise is added to the conics 
generated in the experiment and the average RMS error is 
calculated. In the classification experiment, different conics 
are simulated based on the algorithm 2, performing 100 
iterations of Monte Carlo for 7 different noise levels, which 
allows obtaining 600 iterations in the experiment. The range 
of noise variation is [0 25]% of SNR - (Signal to Noise 
Ratio). 

In order to quantify the performance of the proposed 
methodology, two state-of-the-art methods were selected to 
estimate the parameters of the conic and perform a 
performance comparison of the estimation approaches, 
performing the tests proposed in this stage. The first method 
suggested is the Least Squares (LSF) [22], which aims to 
estimate parameters looking for the minimum error between 
the data and the proposed model without any restriction. The 
second approach is a regularization method with 
homogeneous restriction (LSFC) where the restriction 

function is convex, in addition the validation tests are 
implemented in the conic 2𝑋𝑋2 + 𝑋𝑋2 + 2.8284𝑋𝑋𝑋𝑋 − 2 = 0, 
which is the input of tests in some similar works [7,9,10]. 

 
2.5.  Algorithm summary 

 
Below (see algorithm 2) the summary of the pseudocode 

for the estimation of the parameters of a conic given a set of 
points (x,y) is shown. 
 
 
3.  Analysis and results 
 

In this section we present the results obtained by tuning 
the parameters of a conic from the distribution of rectangular 
coordinates of interest contaminated with noise in a synthetic 
scenario and a case study with a possible application of the 
method. In this stage it is possible to show that the TLCCF 
method allows to infer the intrinsic parameters of a conic, as 
shown in Algorithm 2 (𝑊𝑊𝜆𝜆 = [𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷𝐸𝐸𝐹𝐹]).The presentation 
of the results is divided into two sections, firstly, the problem 
of correctly classifying the nature of the conic using the 
random conic generation algorithm is evaluated, i.e., the 
purpose is to determine if the method is in the capacity to 
discriminate the nature of the conical body (hyperbole, 
ellipse). Secondly, the estimation problem is considered by 
calculating the RMS error between the estimated value and 
the real value, then a comparison is performed between the 
different methods under study and observations are 
performed based on the results. It is important to highlight 
that the parabolas are not considered in this work, because an 
entity with these characteristics can’t present variations with 
noise because it will immediately become an ellipse, 
 

Algorithm 2: Pseudocode for inference of the parameters. 

// Conic parameter estimation Proposed method 
Input: Set of points (X,Y) 
Output: Parameters [A, B, C, D, E, F] 
Start         
       Calculate the eigenvalues (𝜆𝜆1) de  𝑃𝑃𝑇𝑇𝑃𝑃 
       Calculate min(𝜆𝜆1) y max(𝜆𝜆1). 
 
       for 𝜆𝜆𝑖𝑖=min(𝜆𝜆1): 100 steps : max(𝜆𝜆1). 
        
            Propose system  𝛼𝛼𝑊𝑊𝜆𝜆𝑖𝑖 = 0 
  If it is an ellipse, then   𝛼𝛼 → 𝑃𝑃𝑇𝑇𝑃𝑃 + 𝜆𝜆𝑖𝑖𝛽𝛽  
           If it is a hyperbole, then 𝛼𝛼 → 𝑃𝑃𝑇𝑇𝑃𝑃 − 𝜆𝜆𝑖𝑖𝛽𝛽    
         
        𝛼𝛼 → 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇         𝑊𝑊𝜆𝜆𝑖𝑖𝑉𝑉

𝑇𝑇(: , 𝑆𝑆𝑚𝑚𝑒𝑒) 
          𝜌𝜌 → 𝑊𝑊𝜆𝜆𝑖𝑖

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑊𝑊𝜆𝜆𝑖𝑖  
          𝜂𝜂 → 𝑊𝑊𝜆𝜆𝑖𝑖

𝑇𝑇𝛽𝛽𝑊𝑊𝜆𝜆𝑖𝑖  

          𝜂𝜂′ → 4
�𝜆𝜆𝑖𝑖

𝑊𝑊𝜆𝜆𝑖𝑖
𝑇𝑇(𝑃𝑃𝑇𝑇𝑃𝑃 + 𝜆𝜆𝑖𝑖𝜆𝜆)−1𝑃𝑃𝑇𝑇(𝑃𝑃𝜆𝜆𝑖𝑖) 

             𝑘𝑘𝜆𝜆𝑖𝑖 → 2 𝜂𝜂𝜂𝜂
𝜂𝜂′

𝜆𝜆𝑖𝑖𝜂𝜂′𝜂𝜂+2�𝜆𝜆𝑖𝑖𝜂𝜂𝜂𝜂+𝜆𝜆𝑖𝑖
2𝜂𝜂𝜂𝜂′

(𝜆𝜆𝑖𝑖𝜂𝜂2+𝜂𝜂2)3 2⁄  

      end  for 
    𝜆𝜆 argm(𝑚𝑚𝑚𝑚𝑚𝑚 �𝑘𝑘𝜆𝜆𝑖𝑖� 
    𝛼𝛼 → 𝑃𝑃𝑇𝑇𝑃𝑃 + 𝜆𝜆𝛽𝛽 
    𝛼𝛼 → 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇         𝑊𝑊𝜆𝜆𝑉𝑉𝑇𝑇(: , 𝑆𝑆𝑚𝑚𝑒𝑒) 
    𝑊𝑊𝜆𝜆 → [𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐹𝐹, ] 
End      
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therefore, the experiments do not apply to this conic, 
additionally in this case the problem is simplified because the 
constraint for this entity presents a convex behaviour which 
is the optimal analytical solution. 
 
3.1.  Evaluation of the conic parameters estimation using 

 Tikhonov regularization 
 

For the different figures that will be presented in this 
section, the aquamarine blue data refers to those with no 
noise and the king blue data represents the performance of 
the proposed method. In Fig. 2 the estimation result applying 
the TLCCF method to an ellipse and hyperbola contaminated 
with Gaussian noise SNR of 15% is shown. It can be verified 
that the results of the method under study are similar to the 
ideal model considering the noise present in the data. This 
allows to deduce that the regularization captures the non-
linear nature of the data and the noise does not produce a 
considerable deviation in the estimation. 

In Fig. 3 the estimation results for the three methods 
evaluated with a SNR of 15 are observed. From this it can be 
noted that the three methodologies guarantee the estimation 
of an ellipse; however, the LSFC method presents an error 
greater than that of the other methodologies. At low noise 
levels (SNR = 15) the LSF method demonstrates to have the 
smallest error when approaching the ideal model. In the case 
of hyperbole, the behaviour is maintained; however, it is 
emphasized that the LSFC option does not guarantee the 
estimation of a hyperbola failing the classification test. 

In order to not only describe the results qualitatively, the 
results of the Monte Carlo experiment are shown to evaluate 
the performance of the method. In the first part of the 
experiment, the number of correct answers produced by the 
estimation is calculated, and in the second part of the 
experiment, the RMS error is calculated between the 
estimated and ideal model. For the 200 conics, the SNR level 
of the noise is varied with values of SNR = [20 17 14 11 8 5 
2], where the quantities close to zero mean that the noise ratio 
is much higher than the signal, which implies considerable 
noise levels. This experiment is applied to all methodologies 

 

Figure 2. Estimation result for an ellipse and hyperbole. 
Source: The Authors. 

and their performances are compared. In Fig. 4 you can see 
the average RMS error and its deviation for the three 
proposed methodologies in the Monte Carlo experiment. To 
evaluate performance, the magnitude of error and a minimum 
deviation of the data will be sought. 

From this Fig. 4. It can be shown that the TLCCF 
proposal presents the best performance for the highest noise 
levels, which for the purposes of the graph are the SNR 
values close to zero. This guarantees a better performance 
with the presence of atypical data. On the other hand, LSF 
and LSFC present better performances with low noise levels 
this can be seen in Fig. 4 where these methods show a lower 
deviation and average error regarding TLCCF.  

When calculating the RMS error in the different noise 
levels it is observed that LSF shows a better performance in 
comparison to the other methodologies obtaining an error 
value equal to 164.38. These results are shown in Table 1.  
Although these results suggest that LSF tends to generate a 
smaller error, this approach does not necessarily guarantee 
the restriction of the adjustment, which can cause a conic 
with a different nature to the real one to be estimated. 
Therefore, the RMS value should not be the only measure of 
performance and the success percentage should be observed. 
In Fig. 5, the percentage of success for the Monte Carlo 
experiment is shown with values of SNR = [20 17 14 11 8 5 
2].  
 

Figure 3. Estimation result for the three methods under study. 
Source: The Authors. 
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Figure 4. Estimation result for different SRN values. 
Source: The Authors. 

 
 

 

 
Figure 5. Percentage result of success for different SRN, left ellipses and 
right hyperboles. 
Source: The Authors. 

Table 1:  
Summary of error results. 

Method Ellipse 
RMS Error 

Hyperbola RMS error 

TLCCF 1.25±0.41 602.69±794.29 

LSF 1.72±1.26 162.66± 329.13 

LSFC 27.17±38.14 717.53± 763.71 
Soruce: The Authors. 

 
 

 
Figure 6. Estimation result for the three methods under study with the conic 
[7]. 
Source: The Authors. 

 
 
In this scenario, the TLCCF proposal has a 100% 

accuracy efficiency for the adjustment of conics, this means 
that the method guarantees an estimation with restriction, 
unlike the other methodologies where performance decreases 
with increasing noise deviation. This factor is of vital 
importance to evaluate the methodology, because it is a 
priority to guarantee the type of conic to avoid an erroneous 
tuning in the parameters and thus its respective nature. 

In order to make a direct comparison with other works of 
the state of the art, the same set of tests for the conic 2𝑋𝑋2 +
𝑋𝑋2 + 2.8284𝑋𝑋𝑋𝑋 − 2 = 0, which corresponds to an ellipse, 
was carried out. In Fig. 6 we can observe the results of 
estimation for each of the three proposed methods for a 
Monte Carlo experiment, in this example it is observed that 
TLCCF does not guarantee the best error; however, it adjusts 
the conic to guarantee that it is an ellipse.  On the other hand, 
note how in Fig. 7 the TLCCF method guarantees the 
restriction of the model despite increasing the noise present 
in the data and Fig. 8 shows that the TLCCF method has the 
lowest RMS error for considerable noise variations. 

 

 
Figure 7. Success percentage result for different SRN with conic [7]. 
Source: The Authors. 
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Figure. 8. Estimation result for different values of SRN with conic. 
Source: The Authors. 
 
 

Although the RMS error plays an important role in 
measuring the quality of an estimation a minimum error does 
not guarantee a correct estimation. This is largely due to the 
fact that the presence of atypical data can strongly deviate the 
estimation and, for purposes of this work, change the nature 
of the conic. 

 
3.2.  Application case for estimation of conics in digital 

 Images 
 

In this stage a possible practical application of the TLCCF 
method is presented, it should be noted that its evaluation is 
exploratory, since the purpose of this test is to demonstrate 
the versatility of the proposed method and not the exhaustive 
evaluation in a real case. The chosen application is the 
detection of the parameters of a conical object given its 
contour. To achieve this application, a classical segmentation 
method is used in digital image processing [15,17-19], as 
described in Fig. 9. 

In the state of the art there are different databases for the 
detection of patterns using images where they focus on the 
capture of different objects, people, textures, urban designs, 
among others [13], however, a database with the capture of 
conical objects in a scene is not reported; for this reason, a 
collection of 100 images that meet the conditions of the 
proposed application is made and thus evaluate the behaviour 
of the methodology in different contexts [14]. 

In Fig. 10 the result obtained by applying the detection 
method and the TLCCF setting for an image given the 
contour is shown. This shows the correct functioning for the 
proposed problem because the estimation manages to adjust 
to the conical profile of the object despite the atypical 
information present in the data. 

Note also how the method computes the regularization 
parameter that maximizes the curvature near the origin of the 
L-Curve.  

In Fig. 11 the result of the proposed methodology for 
different objects is summarized. It is clarified that, in the 
database, the images only contain objects with elliptical 
contour, because in the real world it is common to find this 
type of morphologies, however, hyperbolic figures are 
difficult to capture in a real case. Therefore, hyperboles are 
not considered. 

 
Figure 9. Detection of points of interest. 
Source: The Authors. 
 
 

 
Figure 10. Application results in digital images. 
Source: The Authors. 
 
 

Figure 11. Adjusting ellipses with TLCCF. 
Source: The Authors. 
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Figure 12. Estimation result for the three methods under study with images 
from the database [7]. 
Source: The Authors. 

 
 
Finally, Fig. 12 shows the results for six images in the 

database. In all three cases, TLCCF performs a better 
adjustment than the other methods. This performance is 
mainly due to the fact that the proposed methodology is 
robust to the presence of occlusion in the data, which is not 
present in the other methodologies where the presence of 
overlap generates erroneous estimations, reaching an 
incorrect conical determination. This is important because it 
corroborates the robustness of the method when there is 
atypical information, which was evidenced in the results 
obtained with synthetic data.  

Fig. 12 expose the results when testing 4 methods of 
contours estimation. From these, their accuracy can be 
compared and conclude that the Houge transformed for 
ellipses (THOUG) [26] is quite accurate to estimate the 
contour of images even though this is partially hidden, while 
for those containing noise in the scene, the adjustment is not 
precise and, in many cases, it can’t be carried out.  

 
4.  Conclusions 

 
A methodology was presented that allows to compute the 

parameters of a conic given a set of rectangular coordinates 
by means of a Tikhonov regularization model, which once it 
is resolved is automatically tuned by means of the L-Curve 
technique. Based on the results, high robustness of the 
TLCCF is shown given considerable levels of noise and 
partial occlusions present in the data: although LSF computes 
good results for moderate levels of noise, there is no 
guarantee to determinate the real nature of the conic under 
study, because it is a model without restriction, contrary to 
the TLCCF that allows in all cases to estimate with the real 

nature of the quadratic function. The above is very important 
because it is desirable that the model captures the real 
tendency of the data to later be replicated in a real situation.  

In the case of the problem explored, it is important to 
highlight that the method of parameters estimation depends 
on the data provided for its training, for this reason the 
selection of an adequate segmentation method of points of 
interest is of vital importance. Although the methodology 
presents a high robustness under the appearance of atypical 
data, data with high deviation from its real value can lead to 
erroneous adjustments or an adjustment with incomplete 
information, leading to estimate a conic with a high effective 
RMS error. For this reason, it is important to direct efforts in 
the design of a method that allows the conic's contour 
segmentation minimizing the probability of choosing edges 
belonging to other entities. 
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