
   
 

 

© The author; licensee Universidad Nacional de Colombia.  
Revista DYNA, 86(210), pp. 187-193, July - September, 2019, ISSN 0012-7353 

DOI:  http://doi.org/10.15446/dyna.v86n210.74054 

Radiation forces study of a Laguerre Gaussian beam type 𝑇𝑇𝑇𝑇𝑇𝑇01
∗  on 

a dielectric sphere in the Rayleigh scattering regime• 
 

Darby Paez-Amaya, Martha Lucía Molina-Prado & Néstor Alonso Arias-Hernández 
 

Grupo de Óptica Moderna, Departamento de Física y Geología, Universidad de Pamplona, Pamplona, Colombia. darby.paez@unipamplona,edu.co, 
marlumopra@unipamplona.edu.co, nesariher@unipamplona.edu.co 

 
Received: August 6th, de 2018. Received in revised form: May 7th, 2019. Accepted: May 24th, 2019. 

 
Abstract 
From the invention of the Optical Tweezer (OT) in 1986, these devices have been considered as high-level tools for research in the areas 
such as biology and microbiology. A theoretical study obtaining equations for gradient and scattering forces that exert an OT when the 
illumination beam is a doughnut-shaped mode 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  linearly polarized is realized. This work focuses on the behavior of radiation forces 
on a dielectric sphere in the Rayleigh regime. In order to facilitate the phenomenological analysis of the behavior of the radiation forces a 
graphical user interface is created. 
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Estudio de las fuerzas de radiación de un haz Laguerre Gaussiano 
modo 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  sobre una esfera dieléctrica en el régimen de 
dispersión de Rayleigh 

 
Resumen 
A partir de la invención de la pinza óptica en 1986, estos dispositivos se han considerado como herramientas de alto nivel para la 
investigación, destacándose en áreas como la biología y la microbiología. En este trabajo se realiza un estudio teórico, obteniendo 
expresiones para las fuerzas de Gradiente y Scattering que ejerce una pinza óptica, cuando el haz de iluminación es un modo doughnut-
shaped tipo 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  polarizado linealmente. Este trabajo se enfoca en calcular el comportamiento de las fuerzas de la radiación sobre una 
esfera dieléctrica en el régimen de Rayleigh. Con el fin de facilitar el análisis fenomenológico del comportamiento de las fuerzas de captura, 
se construye una Interfaz Gráfica de Usuario. 
 
Palabras clave: pinza óptica; haz doughnut-shaped; régimen de Rayleigh. 

 
 
 

1.  Introduction 
 
The operation of the OT, part of the idea that light exerts 

pressure on material objects, phenomenon called radiation 
pressure. The first speculations on the existence of the 
phenomenon go back to the XVII century with the 
astronomical observations of Johannes Kepler, 
approximately in the year 1619, and later with theoretical 
contributions of James Clerk Maxwell in 1873; the first 
observations and preliminary documentation of the radiation 
pressure observed in 1901 by E.F. Nichols y G.F. Hull. 
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∗  on a dielectric sphere in the 
Rayleigh scattering regime. DYNA, 86(210), pp. 187-193, July - September, 2019. 

However, with since of quantum mechanics, with Max Planck 
and Albert Einstein and with the invention of the laser, that is in 
1970 it was possible to obtain the experimental proof where the 
laser light has the capacity of moving and physically holding 
microscopic objects by Arthur Ashkin [1].  With the invention of 
OT, a window been opened for the application it several areas 
like Atomic Physics, Nanotechnology, Genetics, Biology and 
Microbiology, because with OT it is possible to individually 
analyze the microorganisms, allowing to measure mechanical 
forces and elastic properties [2-3]. In addition to its ability to hold 
and move microscopic objects without direct contact and 
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exerting small forces around 𝑝𝑝𝑝𝑝. However, conventional OT 
with Gaussian capture beam and many other limitations: The 
particles are trapped in the zone of high intensity of the beam and 
therefore, susceptible to optical damage of the sample 
(opticution) [4], due to absorption heating, plus of attracting 
multiple particles in the same trap, requiring the use of diluted 
samples and lasers with specific wavelengths.  

Currently, the use of optical vortex trapping beams has been 
increasing and many applications have been found [5-9]. 
Compared to regular Gaussian beams, doughnut-shaped modes, 
such as TEM01

* , are suitable to avoid laser-induced heating and 
optical damage since the intensity profile drops to zero at the 
optical axis [6,9]. 

The prediction of the optical forces that are present in optical 
trapping is a current problem in continuous evolution. Now, with 
the use of complex beam like  TEM01

∗  makes the problem even 
more complex. In this paper, we obtained math expressions for 
the radiation forces in the Rayleigh’s regime, in order to predict 
the behavior of a dielectric sphere, under illumination of TEM01

∗  
mode linearly polarized. 

 
2.  Theoretical analysis 

 
To explain the behavior of the radiation forces, present in 

an OT when capturing a micrometer object, there are some 
methods; in particular, the so-called Approximate Methods, 
these methods have proven to be useful in the field of OT due 
to the theoretical and phenomenological analysis they 
provide. One of these approximate methods is Rayleigh's 
Dipolar Theory [10], which may be lower in the sense of 
some approximations, which is smaller than the wavelength 
of the capture beam. This method consists in consider light 
as electromagnetic waves and analyzer the behavior of the 
radiation sphere when it interacts with the capture radiation. 
As the size of the sphere is considered small, the 
electromagnetic field incident on the sphere is considered 
homogeneos, allowing that the dielectric sphere it is behavior 
as a puntual dielectric dipole. 

By electric field action an electric dipole moment is 
induced in the sphere that has the form [10-12]: 

 

𝒑𝒑(r, 𝑡𝑡) = 4𝜋𝜋𝑛𝑛𝑚𝑚2 𝜀𝜀0𝑎𝑎3 �
𝑚𝑚2 − 1
𝑚𝑚2 + 2�𝑬𝑬

(r, 𝑡𝑡), (1) 

 
Where 𝑛𝑛𝑚𝑚  is the refractive index of the medium, 𝜖𝜖0 is the 

electric permittivity of vacuum, 𝑎𝑎 is the radius of sphere, 
𝑚𝑚 = 𝑛𝑛𝑝𝑝 𝑛𝑛𝑚𝑚⁄    is the refractive index of the sphere (𝑛𝑛𝑝𝑝) 
relative to environment (𝑛𝑛𝑚𝑚) and 𝐄𝐄(𝑟𝑟, 𝑡𝑡) is the electric field 
of the incident radiation. The first force considering is a 
consequence of the interaction of the electric and magnetic 
fields of the light beam on the sphere and is exactly the 
Lorentz's force.  

In order to find the mathematical form of the force, it is 
necessary to calculate the electric and magnetic force on the 
sphere, taking as an observation point the beam waist and 
thus obtaining an expression for the force because of the 
interaction of both fields on the regions positively and 
negatively charged in the dielectric sphere, adding up both 

contributions and expressing in terms of electric dipole 
momento 𝒑𝒑, it is possible to say that: 

 
𝑭𝑭𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑡𝑡) = (𝒑𝒑.𝛁𝛁)𝑬𝑬(𝑟𝑟, 𝑡𝑡) +

𝑑𝑑𝒑𝒑
𝑑𝑑𝑡𝑡 × 𝑩𝑩(𝑟𝑟, 𝑡𝑡).  (2) 

 
Substituting the equation (1) in (2), applying vector 

identities and because of the electric and magnetic field 
changes rapidly in time, the temporary average of them is 
calculated (see Appendix), obtaining: 

 

〈𝑭𝑭𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑡𝑡)〉𝑇𝑇 = 𝑭𝑭𝐺𝐺(𝑟𝑟) =
2𝜋𝜋𝑛𝑛𝑚𝑚𝑎𝑎3

𝑐𝑐 �
𝑚𝑚2 − 1
𝑚𝑚2 + 2� 𝛁𝛁𝐼𝐼

(𝑟𝑟).   (3) 

 
Where 𝑐𝑐 is the light velocity of vacuum and 𝛁𝛁𝐼𝐼(𝑟𝑟) is the 

Gradient of the intensity light beam; thus, the equation (3) is 
called Gradient Force. 

If is have in account the description of the Laguerre 
beams [14-15],  and considering the parameters beam, is 
possible writing the linearly polarized electric field in 
direction 𝑥𝑥� as; 

 

𝑬𝑬𝐿𝐿𝐺𝐺(𝑟𝑟,𝜙𝜙, 𝑧𝑧) = �
2𝑝𝑝!

𝜋𝜋(𝑝𝑝 + 𝑙𝑙)!
𝑇𝑇0
𝑤𝑤(𝑧𝑧)�

𝑟𝑟√2
𝑤𝑤(𝑧𝑧)�

𝑙𝑙

𝐿𝐿𝑝𝑝𝑙𝑙 �
2𝑟𝑟2

𝑤𝑤2(𝑧𝑧)� 

                       × 𝑒𝑒𝑥𝑥𝑝𝑝 �−
𝑟𝑟2

𝑤𝑤2(𝑧𝑧)� 𝑒𝑒𝑥𝑥𝑝𝑝 �−
𝑖𝑖𝑖𝑖𝑟𝑟2

2𝑅𝑅(𝑧𝑧)� 𝑒𝑒𝑥𝑥𝑝𝑝
[−𝑖𝑖𝑙𝑙𝜙𝜙] 

                       × 𝑒𝑒𝑥𝑥𝑝𝑝[𝑖𝑖(2𝑝𝑝 + 𝑙𝑙 + 1)𝜉𝜉(𝑧𝑧)]𝑥𝑥� .  

(4) 

 
where 𝑟𝑟,𝜙𝜙, 𝑧𝑧 are cylindrical coordinates, 𝑇𝑇0 is the 

amplitude of electric field and the parameters of the beam: 
𝑤𝑤(𝑧𝑧) is radius of the beam, 𝑅𝑅(𝑧𝑧) is the radius of curvature 
and therefore, it is the description of how the wavefront 
envolves the propagation along the axis, k is the wave 
number in the medium and 𝜉𝜉(𝑧𝑧)  is the Gouy's phase change 
which is the delay of the phase of  beam relative to a wave 
plane [16]. 

The capture beam that considered is the doughnut-shaped 
mode type 𝑇𝑇𝑇𝑇𝑇𝑇01

∗ .  Substituting in the equation (4) the radial 
index as 𝑝𝑝 = 0, this is obtained the electric field for this beam, 
which is related with its radial distribution and azimuth index 𝑙𝑙 =
1 is his helical phase. Later we calculate the intensity of the light 
beam [17], and replacing in equation (3) we find the shape of the 
Gradient force in the three normal coordinates, defined in this 
way (𝑥𝑥�,𝑦𝑦�, �̃�𝑧) = � 𝑥𝑥

𝑤𝑤0
, 𝑦𝑦
𝑤𝑤0

, 𝑧𝑧
𝑘𝑘𝑤𝑤02

�: 
 

𝑭𝑭𝐺𝐺,𝑥𝑥(𝑟𝑟) =
8𝜋𝜋𝑛𝑛𝑚𝑚𝑎𝑎3𝑥𝑥�
𝑐𝑐𝑤𝑤0

�
𝑚𝑚2 − 1
𝑚𝑚2 + 2

��
2𝑃𝑃
𝜋𝜋𝑤𝑤02

� �
1

[1 + (2�̃�𝑧)2]2� 

               × 𝑒𝑒𝑥𝑥𝑝𝑝 �−
2(𝑥𝑥�2 + 𝑦𝑦�2)
[1 + (2�̃�𝑧)2]�   �1 −

2(𝑥𝑥�2 + 𝑦𝑦�2)
[1 + (2�̃�𝑧)2]� 𝑥𝑥,�  

(5) 

 

𝑭𝑭𝐺𝐺,𝑦𝑦(𝑟𝑟) =
8𝜋𝜋𝑛𝑛𝑚𝑚𝑎𝑎3𝑦𝑦�
𝑐𝑐𝑤𝑤0

�
𝑚𝑚2 − 1
𝑚𝑚2 + 2

��
2𝑃𝑃
𝜋𝜋𝑤𝑤02

� �
1

[1 + (2�̃�𝑧)2]2� 

               × 𝑒𝑒𝑥𝑥𝑝𝑝 �−
2(𝑥𝑥�2 + 𝑦𝑦�2)
[1 + (2�̃�𝑧)2]�    �1 −

2(𝑥𝑥�2 + 𝑦𝑦�2)
[1 + (2�̃�𝑧)2]

� 𝑦𝑦,�  
(6) 
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𝑭𝑭𝐺𝐺,𝑧𝑧(𝑟𝑟) = −2𝜋𝜋𝑛𝑛𝑚𝑚𝑁𝑁3

𝑐𝑐
�𝑚𝑚

2−1
𝑚𝑚2+2

� � 2𝑃𝑃
𝜋𝜋𝑤𝑤0

2�  

               ×
32�̃�𝑧 𝑖𝑖𝑤𝑤0

2⁄ (𝑥𝑥�2 + 𝑦𝑦�2)
[1 + (2�̃�𝑧)2]3 𝑒𝑒𝑥𝑥𝑝𝑝 �−

2(𝑥𝑥�2 + 𝑦𝑦�2)
[1 + (2�̃�𝑧)2]� 

               × �1 −
(𝑥𝑥�2 + 𝑦𝑦�2)

[1 + (2�̃�𝑧)2]� �̂�𝑧,  

(7) 

 
Where, 𝑃𝑃 is the power of the laser beam and 𝑤𝑤0 is the 

radius of the beam waist.  
The second force that is takes in account arises from the 

scattering of the light when the electromagnetic wave incise 
on the sphere. The dipole oscillates and acts as a source of 
secondary emission, that emit electromagnetic waves in all 
directions, due to the oscillating nature of the electric and 
magnetic fields, and due at size significantly small of the 
sphere with respect at the wavelenght of the light the dipole 
oscillates synchronically with the field. As the medium that 
around of the sphere is considered homogeneous, the 
resulting propagations is in the direction of the incident wave. 

If takes in account the interchanged of the lineal 
momentum of the beam at the dipole, the transverse section 
of scattering and the intensity of capture beam, the shaped of 
the Scattering Force is obtained [10-12]: 

 

𝑭𝑭𝑆𝑆𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) =
𝑛𝑛𝑚𝑚𝐼𝐼(𝑟𝑟)

𝑐𝑐
𝜎𝜎𝑠𝑠�̂�𝑧, (8) 

 
where 𝜎𝜎𝑠𝑠 is denomined cross section of scattering, being 

this a perpendicular  plane  to the propagation vector of the 
scattered wave and for a dielectric sphere that scatters light 
of isotropic form, has the form [18]: 

 

𝜎𝜎𝑠𝑠 =
8
3𝜋𝜋𝑖𝑖

4𝑎𝑎6 �
𝑚𝑚2 − 1
𝑚𝑚2 + 2�

2

. (9) 

 
Taking the form of intensity of the capture beam 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  
and cross section of the scattering, equation (9); is possible 
writing of the Scattering force in function of normalized 
coordinates as: 

 

𝑭𝑭𝑆𝑆𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) =
8𝑛𝑛𝑚𝑚𝜋𝜋𝑖𝑖4𝑎𝑎6

3𝑐𝑐
�
𝑚𝑚2 − 1
𝑚𝑚2 + 2

�
2

�
2𝑃𝑃
𝜋𝜋𝑤𝑤02

� 

                   × �
2(𝑥𝑥�2 + 𝑦𝑦�2)

[1 + (2�̃�𝑧)2]2
� 𝑒𝑒𝑥𝑥𝑝𝑝 �−

2(𝑥𝑥�2 + 𝑦𝑦�2)
[1 + (2�̃�𝑧)2]

� �̂�𝑧. 
(10) 

 
3.  Results 

 
Through the equations (5), (6), (7) and (10) it is possible 

to analyze the behavior of the Gradient force and the 
Scattering force in the capture of a sphere of  radius 𝑎𝑎 =
5𝑛𝑛𝑚𝑚,  with refractive index 𝑛𝑛𝑝𝑝 = 1,592, which is immersed 
in a medium of refractive index 𝑛𝑛𝑚𝑚 = 1,332, using a 
Gaussian Laguerre capture beam polarized linearly 
doughnut-shaped mode type 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  on the axe 𝑥𝑥  with a 
power 𝑃𝑃 = 100𝑚𝑚𝑚𝑚 and a wavelength 𝜆𝜆 = 514,5𝑛𝑛𝑚𝑚 and a 
beam waist 𝑤𝑤0 = 5𝜇𝜇𝑚𝑚.  

The results obtained for the component in x of the 
Gradient force as is observed in the Fig. 1. In addition to the 

transverse profile in x of the intensity of the beam 𝑇𝑇𝑇𝑇𝑇𝑇01
∗  

(dotted line). Intensity profile has been given an adequate 
maximum value, in order to give clarity to the behavior of 
said force in the beam intensity zones. 

In the Fig. 1, is possible to observe that for values −1 <
𝑥𝑥� < −0,7, the Gradient force take positive values, which  
indicating that it is exerts a force that sends the sphere 
towards the zone of greater intensity 𝑥𝑥� ≈ −0,7 and for values 
−0,7 < 𝑥𝑥� < 0 when the sphere it outside of the greater 
intensity zone but close  dark central area of the beam, the 
Gradient force take negative values, indicating that it exerts 
a force that sends the sphere towards the zone of greater 
intensity 𝑥𝑥� ≈ −0,7. The same behavior is evidenced for 
zones where 𝑥𝑥� > 0. Finally, it is possible to conclude that 
there is a restorative behavior of the transverse nature x of the 
Gradient force, that is present in the location of the dielectric 
sphere in the zones of greater intensity of the beam 𝑇𝑇𝑇𝑇𝑇𝑇01

∗ . 
Furthermore, it should be noted that as shown in Fig. 1, the 
Gradient Force is not present in the dark zone of the beam, 
because the force depends on the intensity of the beam. 
 

 
Figure 1. Transverse Component 𝑥𝑥  of the Gradient Force for a dielectric 
sphere of  radius 5𝑛𝑛𝑚𝑚. 
Source: The Authors. 
 
 

 
Figure 2.  Transverse Plane 𝑥𝑥𝑦𝑦 of the Gradient Force for a dielectric sphere 
of radius 5𝑛𝑛𝑚𝑚. 
Source: The Authors. 
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The behavior of the transverse component and of the 
Gradient Force will be the same that in the component x, as 
is possible to observe in the equations (5) and (6), because of 
symmetry. In Fig. 2 it is possible to obtain a view in the 
transverse plane xy, where the origin of each arrow indicates 
the position of the sphere, the length of the arrow represents 
the magnitude of the Gradient force and the direction of the 
arrow represents the direction of the force respectively. In 
order to facilitate the analysis, the intensity of the beam has 
been recorded in the same figure and where it is possible to 
corroborate the previous restorative behavior in Fig. 1 of the 
transverse components of the Gradient force. In other words, 
a potential well is generated in the region of greater intensity 
of the beam. 

In the Fig. 3, is possible to observe the behavior of the 
transverse component of the Gradient Force on the front 
plane xz and a cut of the intensity beam in its same plane. In 
the Fig. 3 is evident its restorative behavior at the zones in x 
where is to get the greater intensity beam.  Nevertheless, is 
possible to observe that is force is more intensity in the 
Rayleigh’s length (�̃�𝑧 = 0,5), which is the distance of 
propagation of beam in where the beam not diverge 
significantly and is taken since of beam waist.  

 In Fig. 4, is possible to observe the behavior of the 
longitudinal component z of the Gradient Force, in a front 
plane xz. This force positioned at sphere in the greater 
intensity beam that it is location in the region of beam waist 
(�̃�𝑧 = 0). This force is more intensity in the Rayleigh’s length 
(�̃�𝑧 = 0,5) and is minor in a distance more far of this region.  
Thus, is possible to observe that on the axes of beam there 
not is contribution of the longitudinal component of the 
Gradient Force, because there is absence of radiation in the 
dark zone of the beam. 

In Fig. 5, is observe the behavior of Scattering Force on 
a sphere that is positioned in  �̃�𝑧 = 1 (Fig. 7) and in some 
positions on the transverse axes 𝑥𝑥�.  We observe that the 
values in the Scattering Force are always positive, permitting 
that sphere is accelerated in the direction of propagation 
beam. Is possible too to observe in Fig. 5 that the longitudinal 
component of the Gradient Force for −2,2 < 𝑥𝑥� < 0, take 
negative values; which permited to transport sphere in 
opossite direction of propagation, for the zone of greater 
intensity, which localization is (�̃�𝑧 = 0).  

This same behavior occur for 0 < 𝑥𝑥� < 2,2 . Neverthless, 
is possible to observe that for  𝑥𝑥� < −2,2 and for 𝑥𝑥� > 2,2, the 
Gradient force push to the sphere in the direction of 
propagation beam.  This behavior is because of that the 
Gradient force has restorative nature at to the zones more 
near of greater intensity of the beam, and as the sphere is 
encountered very close of dark zone (without radiation), the 
intensity zone more close is encountered in the direction 
propagation of beam. This phenomenon can be observed with 
more clarity Fig. 4 in  �̃�𝑧 = 0,5 for 𝑥𝑥� < −1,5       and for 𝑥𝑥� >
1,5. 

In the same Fig. 5, it can be evidenced the longitudinal 
component 𝑧𝑧 of the Total force, that is the addition of 
longitudinal of the Gradient force and of the Scattering force. 
For �̃�𝑧 = 1, the longitudinal component of the Total force in 
−2 < 𝑥𝑥� < 0, have negative values that indicate for this 
regions that the dielectric sphere is trapped and directed at the 

 
Figure 3. Front plane 𝑥𝑥𝑧𝑧 of the transverse component 𝑥𝑥 of the Gradient Force 
for dielectric sphere of radius 5𝑛𝑛𝑚𝑚. 
Source: The Authors. 
 
 

 
Figure 4. Front plane 𝑥𝑥𝑧𝑧 of the longitudinal component z of Gradient force 
for a dielectric sphere of radius 5𝑛𝑛𝑚𝑚. 
Source: The Authors. 
 
 

 
Figure 5. Longitudinal Component 𝑧𝑧 of Gradient force, Scattering and Total 
in the transverse axe 𝑥𝑥 for �̃�𝑧 = 1 for dielectric sphere of radius 5𝑛𝑛𝑚𝑚. 
Source: The Authors. 
 
 
beam waist. This behavior is equal for 0 < 𝑥𝑥� < 2. 
Nevertheless, for 𝑥𝑥� < −2 and for 𝑥𝑥� > 2 the sphere is 
accelerated in the direction propagation of beam, 
phenomenon that is because of the Gradient force, explained 
a priori. 

A qualitative analysis of the behavior of the Gradient 
force in the 3D space, can obtained in Fig. 6. In this figure, 
the hollow hyperboloid represent the zones of greater 
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intensity of the mode 𝑇𝑇𝑇𝑇𝑇𝑇01
∗ . Is possible evident the 

restorative nature of the Gradient force, at to regions of 
greater intensity.  Nevertheless, is possible to observe that 
arrows that represent at the Gradient force only have 
components in the plane xy. This is because of that transverse 
components in x and y (Fig.1), are of order 10−7 while the 
longitudinal component z, is of order   10−10 (Fig. 5), and 
therefore, thousand times smaller than the transverse 
component.    

This means that the vectors have an inclination with 
respect to the plane xy of 𝜃𝜃 ≈ 0,0405 that can not be 
appreciated in Fig. 6. As it is possible to predict, the sphere 
will experience a force that will position it in the regions 
more intense in the transverse plane xy and that will be much 
greater than the longitudinal effect. 

In more detail, in Fig. 7 which corresponds to a frontal 
plane xz, it is possible to observe the accelerating behavior in 
the direction of propagation, which has the Scattering force 
on the sphere, and its direct proportionality with the intensity 
of beam. In addition, it should be specified that there is no 
Scattering force in the dark zone of the beam, which is due 
to the absence of radiation. 

The Fig. 8 correspond to the 3D Scattering force and 
permitted to observe that for each position of the space where 
is encountered the sphere this force is responsible of to 
accelerate to the sphere in the direction of propagation of 
beam. The maximum magnitude of this force is encountered 
in the greater intensity zones of beam. 

 

 
Figure 6. Vector field of the Gradient force for a dielectric sphere of radius 
5𝑛𝑛𝑚𝑚. 
Source: The Authors. 
 
 

Figure 7. Front Plane 𝑥𝑥𝑧𝑧 of the Scattering force for a dielectric sphere of 
radius 5𝑛𝑛𝑚𝑚. 
Source: The Authors. 

 
Figure 8. Vector field of the Scattering force for a dielectric sphere of radius 
5𝑛𝑛𝑚𝑚. 
Source: The Authors. 
 
 

 
Figure 9. Front plane 𝑥𝑥𝑧𝑧 of the longitudinal component z of the Total force 
for dielectric sphere of radius 5𝑛𝑛𝑚𝑚. 
Source: The Authors. 
 
 

 
Figure 10. Vector field of the Total force for a dielectric sphere for radius 
5𝑛𝑛𝑚𝑚. 
Source: The Authors. 
 
 

In Fig. 9 it is possible to observe the longitudinal 
component of the Total force, corresponding to addiction of 
the Scattering force and the longitudinal component of the 
Gradient force. For when �̃�𝑧 > 0 the Total force change of 
direction, and have a magnitude that must face at to the 
Gradient force and scattering  force, that is minor that in  �̃�𝑧 <
0 which both components have the same direction. 
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The Total force in space will be the Gradient force in 
transverse plane xy and addition of its longitudinal 
component with the Scattering force which is possible to see 
in Fig. 10. In this figure is evident that under the parameters: 
refraction index, radius of the sphere, wavelength, beam 
waist and power of beam, is possible to observe a capture of 
the sphere in the ring of beam that is encountered in beam 
waist, establishing a potential well in this zone where the 
greater intensity is found, it should be noted that no Total 
force is present in the dark zone of the beam, as previously 
demonstrated. Finally, we could also observe that the arrows 
that represent the Total force are only on the xy plane, a 
phenomenon that is due to the difference in the order of the 
longitudinal component with respect to the transverse 
component. 

 
4.  Interface 

 
To facilitate the analysis in the radiation forces, 

establishing different parameters, a graphical user interface 
was developed in MATLAB. This interface implements the 
equations developed previously with the approximations of 
Rayleigh Scattering Regime. This method uses equations of 
electrodynamics to have a theoretical, phenomenological 
idea and a notion closer what gives rise to the operation of 
the OT. 

The developed interface has two options: 2D Analysis 
(Fig. 11) and 3D Analysis (Fig. 12), which allow observing 
the behavior of Gradient, Scattering and Total forces on 
some transverse and frontal planes, and in the 3D space 
respectively. 

 The interface has a panel for inputting parameters by the 
user which are: refractive index of the medium surrounding 
the sphere, refractive index of the sphere, radius of the sphere 
(nm), wavelength of the beam capture (nm), capture beam 
power in (mW), beam waist(µm). 

 

 
Figure 11. Graphical user interface, option for 2D visualization. 
Source: The Authors. 
 
 

 
Figure 12. Graphical user interface, option for 3D visualization. 
Source: The Authors. 

5.  Conclusions 
 
In this work, we presented math expressions for Gradient 

and Scattering forces exerted on a dielectric sphere under 
illumination for 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  mode linearly polarized under 
Rayleigh approach. 

Our results under this approximation, can be firstly used 
by the understanding of behavior in trapping microbead of 
optical force profile generated by complex beams, e.g. the 
TEM01

*  mode beam. 
To show and study the behavior of radiation forces we 

realized graphical comparisons in the longitudinal, transverse 
components and vector field. In addition, we developed a 
GUIDE in MATLAB to study the radiation forces easier 
when a user changes the trapping parameters. 
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Appendix 
 

If we used the vector identity 
 

 𝛁𝛁(𝑨𝑨.𝑩𝑩) = (𝑩𝑩.𝛁𝛁)𝑨𝑨 + (𝑨𝑨.𝛁𝛁)𝑩𝑩 + 𝑩𝑩 × (𝛁𝛁 × 𝑨𝑨) + 𝑨𝑨 × (𝛁𝛁 × 𝑩𝑩), (11) 

 
In addition, using 𝑬𝑬(𝒓𝒓, 𝑡𝑡) is possible to show that 
 

[𝑬𝑬(𝒓𝒓, 𝑡𝑡).𝛁𝛁]𝑬𝑬(𝒓𝒓, 𝑡𝑡) =
1
2𝛁𝛁𝑇𝑇

2(𝑟𝑟, 𝑡𝑡)
+ 𝑬𝑬(𝒓𝒓, 𝑡𝑡) × [−𝛁𝛁 × 𝑬𝑬(𝒓𝒓, 𝑡𝑡)], 

(12) 

 
Substituting the Eq.1 into Eq. 12 and with Faraday's law 
 

[𝒑𝒑.𝛁𝛁]𝑬𝑬(𝒓𝒓, 𝑡𝑡) = 4𝜋𝜋𝑛𝑛𝑚𝑚2 𝜀𝜀0𝑎𝑎3 �
𝑚𝑚2 − 1
𝑚𝑚2 + 2

� �
1
2
𝛁𝛁𝑇𝑇2(𝑟𝑟, 𝑡𝑡)

+ 𝑬𝑬(𝒓𝒓, 𝑡𝑡) ×
𝑑𝑑𝑩𝑩(𝒓𝒓, 𝑡𝑡)
𝑑𝑑𝑡𝑡

� 
(13) 

 
Now, with the Eq. 13, we can modify the math expression 

in Eq. 2 to write 
 

𝑭𝑭𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝒓𝒓, 𝑡𝑡) = 4𝜋𝜋𝑛𝑛𝑚𝑚2 𝜀𝜀0𝑎𝑎3 �
𝑚𝑚2 − 1
𝑚𝑚2 + 2

� �
1
2
𝛁𝛁𝑇𝑇2(𝑟𝑟, 𝑡𝑡)

+ 𝑬𝑬(𝒓𝒓, 𝑡𝑡) ×
𝑑𝑑𝑩𝑩(𝒓𝒓, 𝑡𝑡)
𝑑𝑑𝑡𝑡

� 

+
𝑑𝑑 �4𝜋𝜋𝑛𝑛𝑚𝑚2 𝜀𝜀0𝑎𝑎3 �

𝑚𝑚2 − 1
𝑚𝑚2 + 2�𝑬𝑬(𝒓𝒓, 𝑡𝑡)�

𝑑𝑑𝑡𝑡
× 𝑩𝑩(𝒓𝒓, 𝑡𝑡) 

(14) 

 
A math equation simpler than Eq. 14 you can achieve if 

used the derivative applied at cross product between two 
vectors in the last two terms of Eq. 14, so 
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〈𝑭𝑭𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑡𝑡)〉𝑇𝑇 = 4𝜋𝜋𝑛𝑛𝑚𝑚2 𝜀𝜀0𝑎𝑎3 �
𝑚𝑚2 − 1
𝑚𝑚2 + 2

� �
1
2
𝛁𝛁𝑇𝑇2(𝑟𝑟, 𝑡𝑡)

+
𝑑𝑑
𝑑𝑑𝑡𝑡

[𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑩𝑩(𝒓𝒓, 𝑡𝑡)]�, 

 

(15) 

 
If the laser power is constant in all the time, the temporal 

derivative of Poynting Vector its worth zero, then 
 

𝑭𝑭𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝒓𝒓, 𝑡𝑡) = 4𝜋𝜋𝑛𝑛𝑚𝑚2 𝜀𝜀0𝑎𝑎3 �
𝑚𝑚2 − 1
𝑚𝑚2 + 2

� �
1
2
𝛁𝛁𝑇𝑇2(𝑟𝑟, 𝑡𝑡)� (16) 

 

The electric field is varying very fast in the time, and then 
temporal average must be used, so, 〈𝑇𝑇2(𝑟𝑟, 𝑡𝑡)〉𝑻𝑻 = 𝟏𝟏

𝟐𝟐
|𝑇𝑇(𝑟𝑟)|𝟐𝟐 

and the intensity of electromagnetic wave 𝐼𝐼(𝑟𝑟) =
𝑐𝑐𝜀𝜀0𝑛𝑛𝑚𝑚

2
|𝑇𝑇(𝑟𝑟, 𝑡𝑡)|𝟐𝟐 are used to reduce the Eq. 16 finally (as Eq. 

3) 
 

〈𝑭𝑭𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑡𝑡)〉𝑇𝑇 = 𝑭𝑭𝐺𝐺(𝑟𝑟) =
2𝜋𝜋𝑛𝑛𝑚𝑚𝑎𝑎3

𝑐𝑐
�
𝑚𝑚2 − 1
𝑚𝑚2 + 2

� 𝛁𝛁I(𝑟𝑟) (17) 
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