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Ill Posedness of a neural field equation with
Heaviside firing rate function

Mala colocación de una ecuación de campo neuronal con tasa de
disparo tipo Heaviside

Juan Carlos Cordero Ceballos1,a, Ricardo Pinilla Estupiñan2,b

Abstract. We consider the initial value problem associated to the neural field
equation

ut(x, t) = −u(x, t) +

∫
Rm

w(x, y)[1 + γg(u(x, t)− u(y, t))]f(u(y, t)) dy,

(x, t) ∈ Rm × (0,∞),

where f is a Heaviside function, then we show that the problem is ill posed
in Cb(Rm). The proof follows from a discontinuity argument apply to the
equation’s flow.

Keywords: Neural field equation, firing rate function, synaptic and sensitive
kernel, well and ill posedness, flow of the equation.

Resumen. En este trabajo probamos que el problema de valor inicial asociado
a la ecuación de campo neuronal

ut(x, t) = −u(x, t) +

∫
Rm

w(x, y)[1 + γg(u(x, t)− u(y, t))]f(u(y, t)) dy,

(x, t) ∈ Rm × (0,∞),

está mal colocado en Cb(Rm) si f es una función de tipo Heaviside. La
prueba es obtenida por un argumento de discontinuidad aplicado al flujo de la
ecuación.
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1. Introduction

Recently Abbassian, Fotouhi and Heidari [1] proposed a neural field model
based on the difference in activation at different locations of a neuron popula-
tion, a kind of behavior called Hebbian learning. That model is

ut(x, t) = −u(x, t) +

∫
R
w(x− y)[1 + γg(u(x, t)− u(y, t))]f(u(y, t)) dy,

(x, t) ∈ R× (0,∞),

where u(x, t) is the average membrane potential of a neuron population at
position x and time t, w is a kernel of synaptic coupling (usually even), γ > 0
is a fixed parameter called the Kernel Coefficient Strength, g is proposed to be
gaussian g(u) = e−u

2

and f is a firing rate function, tipically with the shape
of the logistic function, that is

f(s) =
1

1 + e−(s−η)
.

The work of Abbasian et al. [1] is concerned with the existence and stability of
solutions as rest state, time-independent solutions (bump type), and traveling
waves, for several types of kernels.

The case γ = 0 is the classical Amari’s model or Wilson-Cowan type (see
[2, 8])

ut(x, t) = −u(x, t) +

∫
R
w(x− y)f(u(y, t)) dy, (x, t) ∈ R× (0,∞), (1)

which describes the dynamics of the spatio-temporal electrical activity in neural
tissue in one spatial dimension.

If f(u(x, t)) > 0 then the neurons at point x are said to be active.
We refer the reader to [3] or [4] and references therein for more details about

this models.
Because of the convolution w ∗ (f ◦ u) the equation (1) is a nonlocal model.

Some recent work on non-local operators arising in neural field models can be
found in [5, 6].

Potthast and Beim Graben [7] provided a rigorous approach to study global
existence of solutions to the Wilson-Cowan type of the model with the smooth
firing rate function as well as with the unit step function. They demonstrated
that the latter case requires more restrictions on the choice of a functional space
as well as some extra assumptions on the kernel w.

In the case with smooth firing rate f and a more general synaptic kernel
function w, they demostrated well posedness in the continuous bounded func-
tions space by a standard fixed point argument. Since the model can be write
as u′ = Fu (u′ = ut), where

(Fu)(x, t) = −u(x, t) + (Ju)(x, t), (2)
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and

(Ju)(x, t) =

∫
Rn

w(x, y)f(u(y, t)) dy, (3)

the operator Φ defined as

Φ(u) := u0 +A(u), with (Au)(x, t) =

∫ t

0

(Fu)(x, s)ds (Volterra operator)

(4)
is a contraction on Cb(Rm × [0, T )), for a T suficently small. Actually, the
live time of the solution is infinity because the solution is bounded, so the well
posedness is global.

In the case with Heaviside firing rate function they demostrated that the
operator Φ is not continuous, so the same argument does not apply. They used
compactness arguments to obtain global results in a weaker space.

In this paper we deal with the Cauchy problem asociated to the Abbassian-
Fotouhi-Heidari equation

ut(x, t) = −u(x, t) +

∫
Ω
w(x, y)[1 + γg(u(x, t)− u(y, t))]f(u(y, t)) dy, (x, t) ∈ Ω× (0,∞),

(5)

u(x, 0) = u0(x), x ∈ Ω ⊂ Rm

(6)

for a Heaviside-type activation function f .

It was proved in [3, 4] that this initial value problem is global well posed on
the space Cb(Rm) and L1(Ω) if Ω is compact and f is a smooth function. Their
result was based on the contraction mapping principle. Also it was showed that
the solutions tends (uniformely) to the Amari’ s model solutions when γ → 0.

In our case, with Heaviside f (the most common simplification of the neural
field models), we can use the same ideas in [7] to show that the approach by
a contraction argument on the flow fails, so one say that the Initial Value
Problem (IVP) is ill posed. As far as we know this is the only analytical work
considering f as Heaviside function.

Our result can be summarizedas as follow: if the firing rate is a Heaviside
function then the flow genered by the equation 5 is not continuous, so it is
imposible to obtain solutions to IVP by a contraction argument.

The rest of the paper is organized as follows. In Section 2 we transform the
Abbasian-Fotouhi-Heidari model in a Volterra integral equation, so we define
the flow associated to the equation and next we present the functional spaces
involved in the well posedness results as well as a useful way of splitting the
nonlinear part of the equation. In Section 3 we prove that the flow is not
continuous. Finally, in Section 4 we give some idea of the future work on
existence of solutions of the Abassian-Fotouhi-Heidari model with Heaviside
firing rate function.
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2. Preliminary

The equation in (5) suggest (see [7] and [4]) the use of the following operators

(Ju)(x, t) :=

∫
Rm

w(x, y)[1 + γg(u(x, t)− u(y, t))]f(u(y, t)) dy, (7)

(Fu)(x, t) := −u(x, t) + (Ju)(x, t), (8)

and

(Au)(x, t) :=

∫ t

0

(Fu)(x, s)ds, (9)

J is the nonlinear part of the Neural Field Equation (NFE) in (5).
Then we can write the initial value problem (5)-(6) as{

u′ = Fu,
u(x, 0) = u0(x),

(10)

and, by integration
u = u0 +Au, (11)

which is a Volterra integro-differential equation.
Then it is clear that a solution of the IVP (11) is a fixed point of the operator

defined by ϕ→ u0 +Aϕ.

Definition 2.1. A solution of the IVP (11) is a function u ∈ C(Rm×[0, ρ)), for
some ρ, such that u satisfies (10) or (11), and the flow of the equation u′ = Fu
is the map

(t, u0)→ ϕ(t, u0)

defined as

ϕ(t, u0) = u0 +

∫ t

0

(Fϕ(·, u0))(·x, s)ds, (12)

where
ϕ(·, u0)(x, s) := ϕ(s, u0)(x). (13)

Now we present the appropriate spaces for the well posedness result, and we
define the kernel considered by Potthas and Bein Graben [7], that significantly
extend the others one.

Definition 2.2. If M is a metric space and Ω ⊂ Rn then

i) Cb(M) := {h : M −→ R | h is continuous and bounded}, endowed with
the norm

‖h‖ := sup
x∈M
|h(x)|.
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ii) C1
b (Ω) := {h : Ω −→ R | h ∈ C1(Ω) andh′ ∈ Cb(Ω)}, with the norm

‖h‖ := sup
x∈Ω

(|h(x)|+ |h′(x)|).

iii) C0,1
b (Rm × [0,∞)) := {h : Rm × [0,∞) −→ R | ∀t > 0 h(·, t) ∈

Cb(Rm), ∀x ∈ Rm h(x, ·) ∈ C1
b [0,∞)}, and norm

‖h‖ := sup
x∈Rm,t≥0

(
|h(x, t)|+

∣∣∣dh
dt

(x, t)
∣∣∣).

Definition 2.3. (Synaptic kernel) The synaptic integral kernel is a function
w : Rm × Rm → R such that

w ∈ L∞(Rm × Rm), ‖w‖L∞ = sup
x,y∈Rm

|w(x, y)| ≤ C∞, (14)

and
‖w‖L∞

x L1
y

:= sup
x∈Rm

‖w(x, ·)‖L1
y
≤ Cw, (15)

that is
w ∈ L∞x L1

y(Rm × Rm), (16)

as a function x 7→ w(x, ·) of L∞x (Rm) with w(x, ·) ∈ L1
y(Rm) for all x, and for

some constants C∞, Cw > 0.
Moreover, w satisfy the Lipschitz condition

‖w(x, ·)− w(x̃, ·)‖
L1 ≤ Kw|x− x̃| x, x̃ ∈ Rm (17)

for some constant Kw > 0, and w is sensitive in the sense that

sup
x∈Rm

∣∣∣∣∫
G

w(x, y)dy

∣∣∣∣ > 0 for all open set G ⊂ Rm. (18)

An inmediate consequence of properties of w is that

|(Ju)(x, t)| ≤ (1 + γ)Cw (19)

for all 0 ≤ f, g ≤ 1.
For the sake of completeness we present some results in the cases f, g ∈

C1
b (R) and 0 ≤ f, g ≤ 1, which can be seen in [4].

Lemma 2.4. The operator F is well defined as a map from C0,1
b (Rm× [0,∞))

on itself. Therefore, If u(x, ·) is continous in t, then (Ju)(x, ·) is continous in
t too.

Corollary 2.5. u(x, t) is a solution of (10) if and only if it is solution to (11)
on (x, t) ∈ Rm × (0, ρ) for some ρ > 0.
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Lemma 2.6. Let u0 ∈ Cb(Rm) and u be a solution to (10), then, there is
C > 0 such that

|u(x, t)| ≤ C for all (x, t) ∈ Rm × [0,∞), (20)

with C = max(‖u0‖∞, |(1 + γ)Cw|).

As usual in fixed-point arguments, the greater difficulty arises in handling
the nonlinear term, in this case A, which can be divided in three differents
operators, A = A1 +A2 +A3, where

(A1v)(x, t) := −
∫ t

0

v(x, s) ds, (21)

and A2 and A3, are the nonlinear integral operators

(A2v)(x, t) :=

∫ t

0

∫
Rm

w(x, y)f(v(y, s)) dy ds, (22)

(A3v)(x, t) := γ

∫ t

0

∫
Rm

w(x, y)g(v(x, s)− v(y, s))f(v(y, s)) dy ds, (23)

for all 0 ≤ t ≤ ρ.
But the definition of synaptic kernel and the properties of f and g (Lipschitz

functions) made possible the following results:

Lemma 2.7. The operator A is well defined as an map on Cb(Rm × [0, ρ)),
and it is a contraction for γ = γ0 fixed and ρ > 0 sufficiently small.

Theorem 2.8 (Global well posedness). The initial value problem (5)-(6) with
u0 ∈ Cb(Rm) has a unique solution in Cb(Rm × [0,+∞)) and solutions depend
continuously on the initial data.

3. Flow’s discontinuity

In this section we prove that the flow of the differential equation (5) is not
continuous in the Heaviside case, so we are considering the integral formulation
u = u0 +Au of the IVP (5)-(6) with activation function

f(s) =

{
0, s < η
1, s ≥ η, (24)

where η ∈ R is an activation threshold.
We have

Lemma 3.1. The operator Fu does not depend continuously on u ∈ X =
Cb(Rm × [0,+∞)).
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Proof. Consider the sequence (un)
n∈N of functions un ∈ X with

un(x, t) :=



0, x ≤ −2(
η − 1

n

)
(2 + x), x ∈ (−2,−1)

η − 1
n , x ∈ [−1, 1](

η − 1
n

)
(2− x), x ∈ (1, 2)

0, x ≥ 2

(25)

for x ∈ R and t ≥ 0.

If we define

u(x, t) :=



0, x ≤ −2

η(2 + x), x ∈ (−2,−1)

η, x ∈ [−1, 1]

η(2− x), x ∈ (1, 2)

0, x ≥ 2

(26)

then

|u(x, t)− un(x, t)| =



0, x ≤ −2
1
n (2 + x), x ∈ (−2,−1)
1
n , x ∈ [−1, 1]
1
n (2− x), x ∈ (1, 2)

0, x ≥ 2,

so

‖u(x, t)− un(x, t)‖ = sup
x∈R, t>0

|u(x, t)− un(x, t)| = 1

n

and therefore un → u in X (uniformely).

For all n ∈ N we have

(Fun)(x, t) = −un(x, t) +

∫
R
w(x, y)[1 + γg(un(x, t)− un(y, t))]f(un(y, t))dy

and ∫
R
w(x, y)[1 + γg(un(x, t)− un(y, t))]f(un(y, t))dy = 0

because un does not reach the activation treshold, that is, 0 ≤ un(x, t) < η for
all n ∈ N, x ∈ R and t ≥ 0.

Then

(Fun)(x, t) = −un(x, t), ∀n ∈ N, x ∈ R t ≥ 0. (27)

and

(Fu)(x, t) = −u(x, t) + [1 + γg(u(x, t)− η)]

∫
[−1,1]

w(x, y)dy,
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since

(fu)(x, t) =

{
1, x ∈ [−1, 1]

0, |x| > 1
and u(y, t) = η if y ∈ [−1, 1].

So we have

(Fu)(x, t)− (Fun)(x, t) = −u(x, t) + un(x, t) + Jη(x), x ∈ R

with

Jη := [1 + γg(u(x, t)− η)]

∫
[−1,1]

w(x, y)dy, x ∈ R, (28)

and
lim
n→∞

((Fu)(x, t)− (Fun)(x, t)) = Jη(x), x ∈ R, t ≥ 0.

This convergence is uniform because un → u in X.
As g(u) = e−u

2

> 0 and w(x, t) is sensitive then Jη 6= 0, so F is not
continous.

Theorem 3.2. The operator A is not continuous from X to X, so the flow is
also not continuous.

Proof. This result is a consequence of the limit

|Aun(x, t)−Au(x, t)| =
∣∣∣∣∫ t

0

[(Fun)(x, s)− (Fu)(x, s)]ds

∣∣∣∣ (29)

→ |Jη(x)|t, if n→∞. (30)

4. Future work

The next step will be to implement the ideas of Potthast and Grabem [7] on
existence of solutions in the non continuous case. The idea is to use a sequence
of smooth functions fn that approximate the Heaviside function f , so we will
have a sequence of solutions satisfying

un −Aun = u0, n ∈ N,

and a operators sequence An for which one hopes can obtain a subsequence

uk = u0 +Akuk,

converging to a u ∈ Cb(Rn × [0, ρ)) (in some sense) and

u = u0 +Au or u−Au = u0.
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Note that the operator (I − A)−1 does not necessarily exist because A is not
a continuous linear operator (or equivalently bounded), but the linear part A1

is continuous.
The typical tools to deal with this are the compactness arguments and

the use of Neumann series for bounded linear operators. For that we need to
consider another spaces (Holder types) and other considerations on the kernel,
as well as the measure of the set on which a function equals the treshold. We
postpone the argument for a future work.
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References

[1] A. H. Abbassian, M. Fotouhi, and M. Heidari, Neural fields with fast learn-
ing dynamic kernel, Biological Cybernetics 106 (2012), 15–26.

[2] S. Amari, Dynamics of pattern formation in lateral-inhibition type neural
fields, Biological Cybernetics 27 (1977), 77–87.

[3] J. Cordero and A. Jimenez, Some analytic results for a neural field model
with synaptic plasticity, Preprint.

[4] A. Jimenez, Analytic results and dynamics of proposed models of neural
fields with plasticity and gain modulation, Tesis de Maestŕıa en Ciencias -
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