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The asymptotics of the kernel functions
associated to orthogonal polynomials in several

variables on the unit ball

Comportamiento asintótico de polinomios ortogonales en varias
variables sobre la bola unidad

Herbert Dueñas1,a, Wilmer M. Gómez2,b

Abstract. We consider a family of orthogonal polynomials in several vari-
ables with respect to a Sobolev-type inner product, obtained from adding a
gradient operator of order j, evaluated in a fixed point to a standard inner
product. We study explicit relations between the Sobolev-type polynomials
and the standard polynomials, among the kernel functions associated to the
Sobolev-type polynomials and the kernel functions associated to the standard
polynomials. In addition, an example for a particular choice of a classical
measure σ ∈ Rd is analyzed. Finally, we obtain the asymptotics of the some
derivatives of the kernel functions evaluated in some points of the unit ball in
d variables.

Keywords: Orthogonal polynomials in several variables, Asymptotics behav-
ior, Sobolev inner products.

Resumen. Consideramos una familia de polinomios ortogonales en varias
variables con respecto a un producto interno de tipo Sobolev, el cual se obtiene
al adicionar a un producto interno estándar un operador gradiente de orden
j, evaluado en un punto fijo. Estudiamos relaciones entre los polinomios de
tipo Sobolev y los polinomios estándar, como relaciones entre el núcleo asoci-
ado a los polinomios de tipo Sobolev y el núcleo de los polinomios estándar.
Adicionalmente, estudiamos un caso particular de una medida σ ∈ Rd. Final-
mente, se obtienen los comportamientos asintóticos de las derivadas del núcleo
evaluadas en puntos de la bola unidad en d variables.
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1. Introduction

The study of Sobolev orthogonal polynomials on the real line has been evolving
in the last fifty years, over all in the last twenty years, when an extensive
interest by the researchers has increased because of the uses in some subjects, in
particular, in the approximation theory. The study of orthogonal polynomials
of several variables has been increasing as a consequence of the results on the
real line, as the properties of the zeros, differential equations, and asymptotic
behavior. However, one of the motivations of study of asymptotic behavior of
orthogonal polynomials on several variables is that this theory has become a
tool for numerical solutions of partial differential equations. In [6], we can find
an interesting survey of Sobolev orthogonal polynomials.

A special attention has been paid to the families of non-standard orthogonal
polynomials, within the Sobolev-type orthogonal polynomials, see [6, 7, 8] and
the references therein, which are associated with an inner product defined on
the linear space of polynomials with real coefficients. These inner products

〈p, q〉 = 〈p, q〉σ +

j∑
i=0

λip
(i)(ξ)q(i)(ξ) =

∫
E

p(x)q(x)dσ(x) +

j∑
i=0

λip
(i)(ξ)q(i)(ξ),

(1)
where E ⊆ R, j ∈ N, ξ ∈ R, λi ∈ R+ and σ is a classical measure.

The non-standard features of this kind of inner products is the presence of
derivatives and that the operator associated with the multiplication by x is not
symmetric; that is, for any pair of polynomials p and q,

〈xp, q〉 6= 〈p, xq〉.

The family of orthogonal polynomials with respect to (1) are called Sobolev-
type orthogonal polynomials and the family of orthogonal polynomials with
respect to 〈p, q〉σ are called standard polynomials.

We will study a particular case of the inner product (1), for orthogonal
polynomials in several variables. As in [4], the derivative is replaced by a
gradient operator of order j. We analyze the relation among the Sobolev-type
polynomials and the standard polynomials, such the relation between the kernel
functions associated to the Sobolev-type polynomials and the kernel functions
associated to the standard polynomials.

In [4], the authors analyze the asymptotic behavior of the kernel functions
associated with the Sobolev-type orthogonal polynomials on the unit ball in d
variables on the point (0,0), where 0 = (0, 0, . . . , 0). They obtain expressions
for the kernel functions and the fourth order derivatives (after [3]). We continue
with this particular choice of measure, but we analyze the asymptotic behavior
not only in (0,0), but also we extend the analysis in any point on the unit
sphere.
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2. Preliminaries: Orthogonal polynomials in
several variables

Let κ = (κ1, κ2, . . . , κd) ∈ Nd be a multi-index and x = (x1, x2, . . . , xd) ∈ Rd.
A monomial in d variables is given by:

xκ = xκ1
1 xκ2

2 . . . xκdd .

The integer number |κ| = κ1 + κ2 + · · ·+ κd is called the total degree of xκ.
A polynomial P (x) in d variables is a linear combination of monomials,

P (x) =
∑
κ

cκx
κ,

where the coefficients cκ are in a field C, usually the real numbers R or the
complex numbers C. The degree of a polynomial is defined as the highest total
degree of its monomials.

For a polynomial P (x) in several variables the partial derivative with respect
to the i− th component is denoted by

∂iP (x) =
∂P (x)

∂xi
.

We will denote,

• Πd, the set of the polynomials in d variables with real coefficients,

Πd =

{∑
κ

cκx
κ : cκ ∈ R, x ∈ Rd

}
.

• Πd
n, the subspace of Πd consisting on the polynomials of total degree at

most n,

Πd
n =

∑
|κ|≤n

cκx
κ : cκ ∈ R, x ∈ Rd

 .

A polynomial is called homogeneous if its monomials have the same total degree.
Hdn denote the space of homogeneous polynomials of degree n in d variables,
i.e.,

Hdn =

∑
|κ|=n

cκx
κ : cκ ∈ R, x ∈ Rd

 .

Every polynomial in Πd
n can be written as a linear combination of homogeneous

polynomials. Therefore, for every P (x) ∈ Πd
n, we have,

P (x) =

n∑
i=0

∑
|κ|=i

cκx
κ.
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A basis of Hdn is {xκ : |κ| = n} and the dimension of Hdn denoted by rdn is given
by

dimHdn = rdn =

(
n+ d− 1

n

)
,

see [5]. An essential difference between polynomials in one variable and in sev-
eral variables is the fact that in the last ones we do not have an obvious natural
order. The natural order among monomials of one variable is the increasing
degree, which is: 1, x, x2, x3, . . .. For polynomials in several variables, there
are many choices of well-defined total orders. We present two possibilities.

1. The lexicographic order. Let κ = (κ1, κ2, . . . , κd), η = (η1, η2, . . . , ηd),
be two multi-indexes. κ �L η if the first non-zero entry in the difference
κ − η = (κ1 − η1, κ2 − η2, . . . , κd − ηd) is positive. Is clear that the
lexicographic order does not respect the total degree of the polynomials.

2. The graded lexicographic order. Let κ = (κ1, κ2, . . . , κd),
η = (η1, η2, . . . , ηd), be two multi-indexes. κ �GL η if |κ| > |η|, or in
the case that |κ| = |η| then we have the first non-zero entry in the dif-
ference κ − η = (κ1 − η1, κ2 − η2, . . . , κd − ηd) is positive. The graded
lexicographic order respect the total degree of the polynomials.

We consider the orthogonality only in terms of polynomials of different degrees;
that is, equal degree polynomials are orthogonal polynomials of lower degree;
but equal degree polynomials are not orthogonal between each other.

Let dσ(x) be a positive measure defined on E ⊂ Rd a domain with a
nonempty interior. Let 〈·, ·〉 denote the inner product defined on Πd

n by

〈p(x), q(x)〉σ =

∫
E

p(x)q(x)dσ(x), (2)

see [7]. We will say that the polynomial p(x) ∈ Πd
n is orthogonal with respect

to (2) if 〈p(x), q(x)〉 = 0, ∀q(x) ∈ Πd
n−1.

Let V dn be linear space of orthogonal polynomials of total degree n with
respect to (2). Then

dimV dn = dimHdn.

If
{
Pnκi(x) : |κi| = n, 1 ≤ i ≤ rdn

}
n≥0 is a basis of V dn , we will write the (column)

polynomial vector as:

Pn(x) =


Pnκ1

(x)
Pnκ2

(x)
Pnκ3

(x)
...

Pnκ
rdn

(x)


rdn×1

,

where κ1, κ2, . . . , κrdn are arranged according to the reverse lexicographic order.
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We denote the partial derivative with respect to the i− th component of a
polynomial vector

∂iPn(x) =


∂iP

n
κ1

(x)
∂iP

n
κ2

(x)
∂iP

n
κ3

(x)
...

∂iP
n
κ
rdn

(x)


rdn×1

.

We will say that {Pn(x)}n≥0 is an orthogonal polynomial system, if,

〈
Pn(x),PTm(x)

〉
=

∫
S

Pn(x)PTm(x)dσ(x) =

{
0 if m 6= n

Hn if m = n,
(3)

where Hn is a symmetric and positive rdn × rdn matrix. If Hn is the identity
matrix ∀n ≥ 0 then {Pn(x)}n≥0 is called an orthonormal polynomial system
(OPS). A step-by-step method of constructing a corresponding orthonormal
polynomial sequence is known as the Gram-Schmidt process. It produces real
orthonormal polynomials, see [2], generalizing this method it is always possible
from an orthogonal polynomials system to obtain a system of orthonormal
polynomials.

We define the kernel function of V dj by

Pj(x,y) = PTj (x)H−1j Pj(y) = Pj(y,x), j ≥ 0, (4)

and the kernel function of Πd
n by

Kn(x,y) =

n∑
j=0

Pj(x,y) =

n∑
j=0

PTj (x)H−1j Pj(y) = Kn(y,x), n ≥ 0. (5)

The definition of Kn(x,y) does not depend on a particular basis, but it is often
more convenient to work with an orthonormal basis, see [5]. Thus, the kernel
function adopts a simpler expression

Kn(x,y) =

n∑
j=0

PTj (x)Pj(y).

Let f be a real valued function on d variables. We will use the gradient operator
∇ defined as usual

∇f(x) = (∂1f(x), ∂2f(x), . . . , ∂df(x)) ∈M1×d(Π
d).

The gradient operator can be extended for vector polynomials. If {Pn(x)}n≥0
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is an OPS, for n ≥ 0, we introduce, see [7]

∇Pn(x) = (∂1Pn(x)|∂2Pn(x)| . . . |∂dPn(x))

=


∂1Pκ1(x) ∂2Pκ1(x) ∂3Pκ1(x) · · · ∂dPκ1(x)

∂1Pκ2(x) ∂2Pκ2(x) ∂3Pκ2(x) · · · ∂dPκ2(x)

∂1Pκ3(x) ∂2Pκ3(x) ∂3Pκ3(x) · · · ∂dPκ3(x)

...
...

...
. . .

...
∂1Pκ

rdn
(x) ∂2Pκ

rdn
(x) ∂3Pκ

rdn
(x) · · · ∂dPκ

rdn
(x)

 ∈Mrdn×d(Π
d),

and, for a higher order gradient, we define, see [4]

∇(j)Pn = ∇(j)Pn(x) =
(
∂jβ1Pn(x)|∂jβ2Pn(x)| . . . |∂jβ

dj
Pn(x)

)
∈Mrdn×dj (Π

d), (6)

where, ∂jβi = ∂j

∂x
γ1
1 ∂x

γ2
2 ···∂j∂x

γd
d

and βi runs through all dj combinations of j total

derivatives with respect to d different variables (i.e., all different combinations of
γ1, γ2, . . . , γd ∈ N such that γ1 + γ2 + · · ·+ γd = j, arranged according to the lexico-
graphic order).

Moreover, we define the vectors

K(j,0)
n (x,y) =

n∑
i=0

(
∇(j)Pi(x)

)T
H−1
i Pi(y) ∈Mdj×1(Πd), (7)

K(0,j)
n (x,y) =

n∑
i=0

PTi (x)H−1
i ∇

(j)Pi(y) ∈M1×dj (Π
d), (8)

which satisfy K
(j,0)
n (x,y) = (K

(0,j)
n (y,x))T , and the matrix

K(j,j)
n (x,y) =

(
∂jβi∂

j
ηkKn(x,y)

)dj
i,k=1

, (9)

where, as above, βi (resp. ηk) runs through all dj combinations of j total derivatives
with respect to d different variables in x (resp. y).

In [4], the authors show the following lemma.

Lemma 2.1. Let λ ∈ R+ and ξ ∈ Rd a fixed point. For n ≥ 0, Idj + λK
(j,j)
n (ξ, ξ) is

a symmetric and non singular matrix.

3. A higher order Sobolev-type inner product

We consider the following Sobolev-type inner product, see [4]

〈p(x), q(x)〉µ = 〈p(x), q(x)〉σ + λ∇(j)p(ξ)(∇(j)q(ξ))T (10)

where ξ ∈ Rd, λ ∈ R+ and j ∈ N.
We will denote the OPS with respect to (10) by {Qn(x)}n≥0 and the OPS with

respect to (2) by {Pn(x)}n≥0.
We define the kernel function of V dj associated with {Qn(x)}n≥0 by

Qi(x,y) = QTi (x)G−1
i Qj(y) = Qi(y,x), j ≥ 0, (11)
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see [4], and the kernel function of Πd
n associated with {Qn(x)}n≥0 by

K̃n(x,y) =

n∑
i=0

Qi(x,y) =

n∑
i=0

QTi (x)G−1
i Qi(y), n ≥ 0. (12)

The following two theorems whose proof appears in [4] establish an explicit relation
between {Qn(x)}n≥0 and {Pn(x)}n≥0 and their respective kernel functions.

Theorem 3.1. Let {Pn(x)}n≥0 be the OPS associated with the inner product (2).
Define a Sobolev-type inner product as in (10). Then if we denote by {Qn(x)}n≥0

its corresponding OPS, normalized such that Qn(x) and Pn(x) have the same leading
coefficient, we have Q0(x) = P0(x), and for n > 0,

Qn(x) = Pn(x)− λ∇(j)Pn(ξ)
(
Idj + λK

(j,j)
n−1 (ξ, ξ)

)−1

K
(j,0)
n−1 (ξ, x). (13)

Conversely, if we define {Qn(x)}n≥0 as in (13), then they are an OPS with respect
to (10).

Theorem 3.2. For i ≥ 1, we have:

Qi(x,y) = Pi(x,y)− λ(K
(j,0)
i (ξ,x))T

(
Idj + λK

(j,j)
i (ξ, ξ)

)−1

K
(j,0)
i (ξ,y)

+ λ(K
(j,0)
i−1 (ξ,x))T

(
Idj + λK

(j,j)
i−1 (ξ, ξ)

)−1

K
(j,0)
i−1 (ξ,y),

(14)

where we assume K
(j,0)
0 (x,y) = 0. Furthermore,

K̃n(x,y) = Kn(x,y)− λ(K(j,0)
n (ξ,x))T

(
Idj + λK(j,j)

n (ξ, ξ)
)−1

K(j,0)
n (ξ,y). (15)

4. An example on the unit ball in Rd

Let Bd = {x ∈ Rd : ‖x‖ ≤ 1} the unit ball in Rd, where ‖x‖ =√
x21 + x22 + · · ·+ x2d is the Euclidean norm. We denote 〈x,y〉 = x1y1 + x2y2 + · · ·+

xdyd the standard inner product on Rd.
As in [4], we analyze a particular case of the Sobolev-type inner product defined

in (10). We consider the weight function

Wµ(x) =
(
1− ‖x‖2

)µ− 1
2 , µ ≥ −1

2
, x ∈ Bd. (16)

Associated with Wµ(x), we define the inner product on the unit ball

〈f, g〉σ = Nµ

∫
Bd

f(x)g(x)Wµ(x)dx1 . . . dxd, (17)

where Nµ is the normalizing constant in order to have 〈1, 1〉σ = 1 and it is given by

Nµ =

(∫
Bd

Wµ(x)dx

)−1

=
Γ
(
µ+ d+1

2

)
π
d
2 Γ
(
µ+ 1

2

) .
The family of orthogonal polynomials with respect to (17) is called the classical or-
thogonal polynomials on the unit ball, see [9].
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We will denote by {P (α,β)
n (x)}n≥0 the family of Jacobi polynomials in one variable,

which are orthogonal with respect to the weight function (1 − x)α (1 + x)β on the
interval [−1, 1], where α, β > −1. The family of Jacobi polynomials satisfies

P (α,β)
n (1) =

(
n+ α
n

)
=

Γ(n+ α+ 1)

Γ(n+ 1)Γ(α+ 1)
, (18)

P (α,β)
n (−1) = (−1)nP (β,α)

n (1) = (−1)n
(
n+ β
n

)
= (−1)n

Γ(n+ β + 1)

Γ(n+ 1)Γ(β + 1)
, (19)

dP
(α,β)
n (x)

dx
= Cn,α,βP

(α+1,β+1)
n−1 (x), Cn,α,β =

1

2
(n+ α+ β + 1). (20)

From the Stirling formula for the asymptotics of the Gamma function, see [1]

Γ(n+ k)

Γ(n+ 1)
= nk−1 (1 +O(n−1)

)
, n→∞.

As a consequence, when n→∞,

P (α,β)
n (1) =

1

Γ(α+ 1)
nα
(
1 +O(n−1)

)
, (21)

P (α,β)
n (−1) =

1

Γ(β + 1)
(−1)nnβ

(
1 +O(n−1)

)
, (22)

Cn,α,β = n
(
1 +O(n−1)

)
. (23)

In [4] the authors studied a family of orthogonal polynomials associated to the
Sobolev-type inner product defined in (10), for a particular case where the measure is

(1 − ‖x‖2)µ−
1
2 . They analyzed the asymptotic behavior of the corresponding kernel

function Kn(x,y) and the matrix (9), for j = 2 and x = y = 0 ∈ Rd, i.e., K
(2,2)
n (0, 0).

As a continuation, we will first perform an analysis of the asymptotic behavior of the
kernel, not only evaluating in the points x = y = 0 ∈ Rd, but evaluating in the points
x = 0 ∈ Rd and y ∈ Rd with ‖y‖ = 1.

Then we evaluate in the points x,y ∈ Rd such that ‖x‖ = 1 = ‖y‖, i.e.,

we analyze the asymptotic behavior of the kernel function K
(2,2)
n (0,y‖y‖=1) and

K
(2,2)
n (x‖x‖=1, y‖y‖=1) respectively, where y‖y‖=1 means a point y ∈ Rd such that
‖y‖ = 1 (similar to x‖x‖=1).

4.1. The kernel function K
(2,2)
n (0,y‖y‖=1)

We consider the orthogonal polynomials with respect to the Sobolev-type inner prod-
uct (10), where 〈f, g〉σ is defined in (17). We are interested in analyzing the asymp-
totic behavior of the corresponding kernel functions for j = 2, ξ1 = 0 and ‖ξ2‖ = 1.

At the first time we find an expression for both, K
(0,2)
n (0,y) and K

(2,2)
n (0,y‖y‖=1).

Taking into account that

Kn(x,y) = bµAn

∫ 1

−1

P (α,α−1)
n (w)(1− t2)µ−1dt, (24)
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see [10], where

bµ =

[∫ 1

−1

(1− t2)µ−1dt

]−1

=
Γ
(
µ+ 1

2

)
√
πΓ(µ)

, (25)

α(µ, d) = α = µ+
d

2
,

An =
2Γ(α+ 1)Γ(n+ 2α)

Γ(2α+ 1)Γ(n+ α)
, (26)

w(x,y, t) = w = 〈x,y〉+

√
1− ‖x‖2

√
1− ‖y‖2t.

Taking partial derivatives with respect to the variables xr and xs, integrating by parts
and evaluating at x = 0,

∂2

∂xs∂xr
Kn(0,y) = yrysbµAnCn,α,α−1Cn−1,α+1,α ·∫ 1

−1

P
(α+2,α+1)
n−2

(√
1− ‖y‖2t

)
(1− t2)µ−1dt

− 1− ‖y‖2

2µ
δr,sbµAnCn,α,α−1Cn−1,α+1,α ·∫ 1

−1

P
(α+2,α+1)
n−2

(√
1− ‖y‖2t

)
(1− t2)µdt. (27)

Moreover, using,∫ 1

−1

P
(µ+ d

2
+1,µ+ d

2
)

n−1 (
√

1− ‖y‖2t)(1− t2)µ−1dt = hn,µ,dP
( d
2
+1,µ− 1

2
)

[n−1
2

]
(1− 2‖y‖2), (28)

see [7], with

hn,µ,d =
4Γ(µ+ 1

2
)Γ([n−1

2
] + µ+ d+1

2
+ 1)Γ(n+ 2µ+ d)

Γ(µ+ d+1
2

)Γ([n−1
2

] + µ+ 1
2
)Γ(n+ 2µ+ d+ 1)bµAn

, (29)

from (27), (28) and as α = µ+ d
2
, it follows:

∂2

∂xs∂xr
Kn(0,y) = yrysB1P

( d
2
+2,µ− 1

2
)

[n−2
2

]
(1− 2‖y‖2)− (1− ‖y‖2)δr,sB2

P
( d
2
+1,µ+ 1

2
)

[n−2
2

]
(1− 2t‖y‖2), (30)

with

B1 = bµAnCn,µ+ d
2
,µ+ d

2
−1Cn−1,µ+ d

2
+1,µ+ d

2
hn−1,µ,d+2,

B2 = (2µ)−1bµAnCn,µ+ d
2
,µ+ d

2
−1Cn−1,µ+ d

2
+1,µ+ d

2
hn−1,µ+1,d.
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Now, taking partial derivatives of ∂2

∂xs∂xr
Kn(0,y) with respect to the variables yi and

yj and evaluating at y‖y‖=1

∂4

∂yj∂yi∂xs∂xr
Kn(0,y‖y‖=1) = −4

[
yiyrδs,j + yiysδr,j + yrysδi,j + yjyrδs,i

+ yjysδr,i
]
·

B1C[n−2
2

], d
2
+2,µ− 1

2
P

( d
2
+3,µ+ 1

2
)

[n−2
2

]−1
(−1) + (δr,jδs,i + δs,jδr,i)B1P

( d
2
+2,µ− 1

2
)

[n−2
2

]
(−1)

+ 16yjyiyrysB1C[n−2
2

], d
2
+2,µ− 1

2
C

[n−2
2

]−1, d
2
+3,µ+ 1

2
P

( d
2
+4,µ+ 3

2
)

[n−2
2

]−2
(−1)

+ 2δi,jδr,sB2P
( d
2
+1,µ+ 1

2
)

[n−2
2

]
(−1)− 16yiyjδr,sB2C[n−2

2
], d

2
+1,µ+ 1

2
P

( d
2
+2,µ+ 3

2
)

[n−2
2

]−1
(−1).

(31)

We denote,

z1 = −4B1C[n−2
2

], d
2
+2,µ− 1

2
P

( d
2
+3,µ+ 1

2
)

[n−2
2

]−1
(−1), (32)

z2 = B1P
( d
2
+2,µ− 1

2
)

[n−2
2

]
(−1), (33)

z3 = 16B1C[n−2
2

], d
2
+2,µ− 1

2
C

[n−2
2

]−1, d
2
+3,µ+ 1

2
P

( d
2
+4,µ+ 3

2
)

[n−2
2

]−2
(−1), (34)

z4 = 2B2P
( d
2
+1,µ+ 1

2
)

[n−2
2

]
(−1), (35)

z5 = −16B2C[n−2
2

], d
2
+1,µ+ 1

2
P

( d
2
+2,µ+ 3

2
)

[n−2
2

]−1
(−1). (36)

As a consequence, the d2 × d2 matrix K
(2,2)
n (0,y‖y‖=1), whose entries are arranged

according to the orders of their partial derivatives, has elements

z1 (yiyrδs,j + yiysδr,j + yrysδi,j + yjyrδs,i + yjysδr,i)

+z2(δr,jδs,i + δs,jδr,i) + z3yjyiyrys + z4δi,jδr,s + z5yiyjδr,s,

where 1 ≤ r, s, i, j ≤ d.
From Kronecker,s deltas we can observe,

1. Let i, j, r, s, z1 survives if at least two are equal.

2. z2 survives if (i = s ∧ r = j) ∨ (j = s ∧ r = i).

3. z3 survives in all entries of the matrix.

4. If i, j, r, s are different two by two only z3 survive.

5. z4 survives if r = s ∧ i = j.

6. z5 survives if r = s.

Below we give a first conjecture, regarding the distribution of the d4 entries of the
matrix K

(2,2)
n (0,y‖y‖=1).

Conjecture. The d4 entries of the matrix K
(2,2)
n (0,y‖y‖=1) are distributed as follows

1. d2 entries appear only once.

2. d(d−1)(d+2)
2

entries appear 2 times each one.
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3. d(d−1)
2

entries appear 4 times each one.

4. d(d−1)(d−2)
2

entries appear 10 times each one.

5. d(d−1)(d−2)(d−3)
24

entries appear 24 times each one.

Lemma 4.1. Let bµ, An and hn,µ,d defined in (25), (26) and (29) respectively. When
n −→∞,

bµAn =
2Γ(µ+ 1

2
)Γ(µ+ d

2
+ 1)

√
πΓ(µ)Γ(2µ+ d+ 1)

nµ+
d
2
(
1 +O(n−1)

)
, (37)

hn,µ,d =
2
√
πΓ(µ)Γ(2µ+ d+ 1)

Γ(µ+ d+1
2

)Γ(µ+ d
2

+ 1)
n−µ

(
1 +O(n−1)

)
. (38)

Proof. It is obtained using the Stirling formula in the definitions of bµ, An and
hn,µ,d.

Theorem 4.2. Let z1, z2, z3, z4 and z5 defined from (32) to (36). When n −→∞,

z1 = k1 · n
d
2
+µ+ 7

2
(
1 +O(n−1)

)
, (39)

z2 = k2 · n
d
2
+µ+ 3

2
(
1 +O(n−1)

)
, (40)

z3 = k3 · n
d
2
+µ+ 11

2
(
1 +O(n−1)

)
, (41)

z4 = k4 · n
d
2
+µ+ 3

2
(
1 +O(n−1)

)
, (42)

z5 = k5 · n
d
2
+µ+ 7

2
(
1 +O(n−1)

)
, (43)

where k1, k2, k3, k4 and k5 are constants depending of µ and d.

Proof. It is obtained directly by applying (16), (17), (37) and (38) to the definitions
given.

On the other hand, we have the following result.

Theorem 4.3. Let Kn(x,y) be the kernel function associated to {Pn(x)}n≥0, the
OPS with respect to (17), then for n→∞

(i) K
(2,0)
n (0,y) = nd+2

(
1 +O(n−1)

)
if y = 0.

(ii) K
(2,0)
n (0,y) = n

d+3
2
(
1 +O(n−1)

)
uniformly in compacts inside Bd − {0}.

(iii) K
(2,0)
n (0,y) = nµ+

d+3
2
(
1 +O(n−1)

)
if ‖y‖ = 1.

Proof. (i) From (30), evaluating in ‖y‖ = 0 the first term vanishes and considering
(21), (23) together with the Lemma 4.1. we get the desired expression.

(ii) We get the result using the fact that
∣∣∣P (a,b)
n (t)

∣∣∣ ≤ Cn−1/2 uniformly compacts

subsets of (−1, 1), see [8] and (23) together with the Lemma 4.1.

(iii) From (30), evaluating in ‖y‖ = 1 the second term vanishes and considering
(22), (23) together with the Lemma 4.1. we get the desired expression.
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4.2. The kernel function K
(2,2)
n

(
x‖x‖=1,y‖y‖=1

)
We consider the orthogonal polynomials with respect to the Sobolev-type inner prod-
uct (10), where 〈f, g〉σ is defined in (17). We are interested in analyzing the asymp-
totic behavior of the corresponding kernel functions for j = 2, ‖ξ1‖ = 1 and ‖ξ2‖ = 1.

First, we find an expression for both K
(0,2)
n (x‖x‖=1,y) and K

(2,2)
n (x‖x‖=1,y‖y‖=1).

Taking partial derivatives with respect to the variables xr and xs in (24), integrat-
ing by parts, evaluating at ‖x‖ = 1, using (25) and the fact that 2µbµ+1 = (2µ+ 1)bµ
we get,

∂2

∂xs∂xr
Kn(x‖x‖=1,y) =

(
yrys −

1− ‖y‖2

2µ+ 1
δr,s

)
AnCn,α,α−1Cn−1,α+1,α

P
(α+2,α+1)
n−2

(〈
x‖x‖=1,y

〉)
− 1− ‖y‖2

2µ+ 1
(xsyr + xrys)AnCn,α,α−1Cn−1,α+1,αCn−2,α+2,α+1P

(α+3,α+2)
n−3(〈

x‖x‖=1,y
〉)

+

(
1− ‖y‖2

)2
(2µ+ 1)(2µ+ 3)

xrxsAnCn,α,α−1Cn−1,α+1,αCn−2,α+2,α+1Cn−3,α+3,α+2

P
(α+4,α+3)
n−4

(〈
x‖x‖=1,y

〉)
.

Now, taking partial derivatives of ∂2

∂xs∂xr
Kn(x‖x‖=1,y) with respect to the variables

yi and yj and evaluating at ‖y‖ = 1, we have

∂4

∂yj∂yi∂xs∂xr
Kn

(
x‖x‖=1,y‖y‖=1

)
= K(2,2)

n

(
x‖x‖=1,y‖y‖=1

)
=

(
δr,jδs,i + δs,jδr,i +

2

2µ+ 1
δi,jδr,s

)
g1

+

[
δs,i

(
xjyr +

2

2µ+ 1
xryj

)
+ δr,i

(
xjys +

2

2µ+ 1
xsyj

)
+ δs,j

(
xiyr +

2

2µ+ 1
xryi

)]
g2

+

[
δr,j

(
xiys +

2

2µ+ 1
xsyi

)
+ δr,s

(
xjyi +

2

2µ+ 1
xiyj

)
+ δi,j

(
xsyr +

2

2µ+ 1
xrys

)]
g2

+

[(
xjxiyrys +

4

2µ+ 3
xrxsyjyi

)
+

2

2µ+ 1
(xixsyjyr + xixryjys)

+
2

2µ+ 1
(xjxsyiyr + xjxryiys)

]
g3,

where 1 ≤ r, s, i, j ≤ d and

g1 = AnCn,α,α−1Cn−1,α+1,αP
(α+2,α+1)
n−2

(〈
x‖x‖=1,y‖y‖=1

〉)
, (44)
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g2 = AnCn,α,α−1Cn−1,α+1,αCn−2,α+2,α+1P
(α+3,α+2)
n−3

(〈
x‖x‖=1,y‖y‖=1

〉)
, (45)

g3 = AnCn,α,α−1Cn−1,α+1,αCn−2,α+2,α+1Cn−3,α+3,α+2 ·

P
(α+4,α+3)
n−4

(〈
x‖x‖=1,y‖y‖=1

〉)
. (46)

From Kronecker,s deltas we can observe,

1. j, i, r, s, g1 survive only in two cases: when all of them are equal and when two
of them are equal to each other and the other two are equal to each other.

2. If j, i, r, s are different two by two, g2 does not survive.

3. g3 survives in all entries of the matrix.

Below we give a second conjecture, regarding the distribution of the d4 entries of the
matrix K

(2,2)
n (x‖x‖=1,y‖y‖=1).

Conjecture. The d4 entries of the matrix K
(2,2)
n

(
x‖x‖=1,y‖y‖=1

)
are distributed as

follows

1. d2 entries appear only once.

2. d2(d− 1) entries appear 2 times each one.

3.
[
d(d−1)

2

]2
entries appear 4 times each one.

Lemma 4.4. Let An defined as in (26), then for n −→∞,

An =
2Γ(µ+ d

2
+ 1)

Γ(2µ+ d+ 1)
nµ+

d
2 (1 +O(n−1)), (47)

Proof. It is obtained using the Stirling formula in the definitions in (26).

The behavior of g1, g2 and g3 is analyzed in two situations: when x = y and when
x = −y,

Theorem 4.5. Let g1, g2 and g3 defined in (44), (45) and (46), when n −→∞.

(i) If x = y

g1 = k6 · n2µ+d+4 (1 +O(n−1)
)
, (48)

g2 = k7 · n2µ+d+6 (1 +O(n−1)
)
, (49)

g3 = k8 · n2µ+d+8 (1 +O(n−1)
)
, (50)

where k6, k7 and k8 are constants depending of µ and d.

(ii) x = −y
g1 = k9 · n2µ+d+3 (1 +O(n−1)

)
, (51)

g2 = k10 · n2µ+d+5 (1 +O(n−1)
)
, (52)

g3 = k11 · n2µ+d+7 (1 +O(n−1)
)
, (53)

where k9, k10 and k11 are constants depending on µ and d.
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Proof. (i) When x = y, g1, g2 and g3 are given by

g1 = AnCn,α,α−1Cn−1,α+1,αP
(α+2,α+1)
n−2 (1),

g2 = AnCn,α,α−1Cn−1,α+1,αCn−2,α+2,α+1P
(α+3,α+2)
n−3 (1),

g3 = AnCn,α,α−1Cn−1,α+1,αCn−2,α+2,α+1Cn−3,α+3,α+2P
(α+4,α+3)
n−4 (1).

using (21), (23) and the Lemma 4.4., when n −→∞,

g1 = k6 · n2µ+d+4 (1 +O(n−1)
)
,

g2 = k7 · n2µ+d+6 (1 +O(n−1)
)
,

g3 = k8 · n2µ+d+8 (1 +O(n−1)
)
.

(ii) When x = −y, g1, g2 and g3 are given by

g1 = AnCn,α,α−1Cn−1,α+1,αP
(α+2,α+1)
n−2 (−1),

g2 = AnCn,α,α−1Cn−1,α+1,αCn−2,α+2,α+1P
(α+3,α+2)
n−3 (−1),

g3 = AnCn,α,α−1Cn−1,α+1,αCn−2,α+2,α+1Cn−3,α+3,α+2P
(α+4,α+3)
n−4 (−1),

using (22), (23) and the lemma 4.4., when n −→∞,

g1 = k9 · n2µ+d+3 (1 +O(n−1)
)
,

g2 = k10 · n2µ+d+5 (1 +O(n−1)
)
,

g3 = k11 · n2µ+d+7 (1 +O(n−1)
)
.
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