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Abstract. In this paper, an analogue of a result of Delange [1] for

multiplicative functions defined in the Cartesian product N×N is given.

Our definition of multiplicative functions differs from that used by De-

lange.
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Resumen. Se demuestra un análogo de un resultado de Delange [1] para
funciones aritméticas multiplicaticas definidas en el monoide N × N is
given. Nuestra definición de función aritmética multiplicativa difiere
de la usada por Delange.

1. Introduction

In 1968, Halász [2] proved the following proposition:

Proposition. [Halász] Let f(n) be an arithmetical multiplicative function
satisfying the following condition

|f(n)| ≤ 1, for all n ∈ N
∗.

Then there exists a complex constant C, a real constant a, and a real function
L(u), such that

|L(u)| = 1;
L(u1)
L(u)

→ 0, as u → ∞ and u ≤ u1 ≤ 2u ,

and
M(x) =

∑
n≤x

f(n) = C · L(log x)x1+ia + o(x)
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Delange, in 1970, generalizes this proposition to the case of arithmetical
functions in several variables using a special definition of multiplicative func-
tions (see Section 3). In this paper we define the cartesian product of two
arithmetical monoids, and show that again it is an arithmetical monoid (see
Section 2). So the usual definition of multiplicative funtions on an arithmetical
monoid (as in [3]) is now available for the product of arithmetical monoids.
This will allow us to prove in this new setting a result analogue to the one
proved by Delange in [1] (see Section 3) .

2. Product of arithmetical monoids

For the sake of completeness, we recall the definition of arithmetical monoid
given by Knopfmacher in [3], and show that it is possible to define in a
canonical way the cartesian product of two arithmetical monoids as a new
arithmetical monoid, so that we can use all the arithmetical properties known
for arithmetical monoids.

Definition 2.1. A monoid M is a non empty set equipped with an associative
and commutative operation, denoted multiplicatively. The monoid M is said
to be a unitary monoid if there exists e ∈ M such that ea = a = ae for all
a ∈ M . Moreover, M is said to be arithmetical if it is unitary and in addition
the following conditions are satisfied:

(1) There is a subset P of M such that every a �= e has a unique factor-
ization of the form

a = pα1
1 · · · pαk

k , pi ∈ P, αi ∈ N
∗, i = 1, . . . , k, ∀a �= e ,

where the pi are distinct elements of P , the αi are positive integers, and
the uniqueness is understood up to the order of the appearing factors.

(2) There exists a function

| | : M → R>0

such that:
(a) |e| = 1, |p| > 1, ∀ p ∈ P
(b) |ab| = |a| |b| , ∀ a, b ∈ M
(c) For each x ∈ R the total number NM (x) of elements of the set

{a ∈ M : |a| ≤ x} is finite.

The set P is called set of primes of M , and the function | | is called a
norm.

The classical example of arithmetical monoid is N = {1, 2, . . .}, where the
norm is the usual absolute value and the primes of the monoid are the positive
prime numbers.
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Definition 2.2. Let M and M ′ two arithmetical monoids and denoted by G

their cartesian product. The product of two elements of G is defined by the
expression

(a, a′)(b, b′) = (ab, a′b′), for all (a, a′), (b, b′) ∈ G

Proposition 2.3. With the operation defined above, G is a unitary monoid.

Proof. It is not difficult to verify that the operation is well defined, associative,
commutative and furthermore, if e, e′ are the units of M,M ′ respectively, the
element (e, e′) is the unit for G. Therefore G is a unitary monoid. ��

We say that (a, a′) divides (b, b′) ((a, a′) | (b, b′)), if there exists (c, c′) ∈ G

such that, (b, b′) = (a, a′)(c, c′). Also, an element (p, p′) �= (e, e′) is prime if
(a, a′) | (p, p′) then (a, a′) = (p, p′) or (a, a′) = (e, e′). The proof of the next
proposition is an inmediate consequence of the definition of prime.

Proposition 2.4. If P and P ′ are the sets of primes of M and M ′, respectively,
then the elements of the form (p, e′), (e, p′), where p ∈ P and p′ ∈ P ′, are primes
in G.

Since all a ∈ M and a′ ∈ M ′, with e �= a and e′ �= a′, can be expressed in an
only way as product of elements of P and P ′ respectively, the following result
is evident.

Corollary 2.1. Let a = pα1
1 · · · pαk

k , pi ∈ P , and a′ = p′β1
1 · · · p′βn

n , p′j ∈ P ′ be
the factorizations of a �= e and a′ �= e′. Then

(a, a′) = (pα1
1 , e′) · · · (pαk

k , e′)(e, p′β1
1 ) · · · (e, p′βn

n ),

uniquely up to the order of the appearing factors.

Definition 2.5. An element (d, d′) ∈ G is called the greatest common di-
visor of two elements (a, a′), (b, b′) ∈ G (in which case we write (d, d′) =
g.c.d.((a, a′), (b, b′))) if it satisfies the following conditions:

(1) (d, d′) | (a, a′) and (d, d′)|(b, b′).
(2) Si (c, c′)|(a, a′) and (c, c′)|(b, b′), then (c, c′)|(d, d′)

If the greatest common divisor of two elements (a, a′), (b, b′) ∈ G is (e, e′)
then (a, a′), (b, b′) ∈ G are said to be relatively prime.

Proposition 2.6. (d, d′) = g.c.d.((a, a′), (b, b′)) if, and only if, d = g.c.d.(a, b)
and d′ = g.c.d.(a′, b′)

Proof. (d, d′) = g.c.d.((a, a′), (b, b′)) if, and only if, there are (c, c′) and (f, f ′)
in G such that (a, a′) = (d, d′)(c, c′), and (b, b′) = (d, d′)(f, f ′). Now if (h, h′)
is a common divisor of (a, a′), (b, b′) then (h, h′) | (d, d′), which amounts to say
that a = dc, a′ = d′c′, b = df , b′ = d′f ′ and if a = hk, a′ = h′k′, b = hl,
b′ = h′l′ then d = hn, d′ = h′n′, which is equivalent to say that d | a, d | b,



8 Oscar F. Casas

d′ | a′, d′ | b′ and if h | a, h | b, h′ | a′, h′ | b′ then h | d, h′ | d′. Clearly this
amounts to say that d = g.c.d.(a, b) and d′ = g.c.d.(a′, b′). ��

Proposition 2.7. The monoid G is an arithmetical monoid.

Proof. To verify that actually G is an arithmetical monoid let us find a norm
for G, satisfying the required condictions. To achieve this let us consider

|(a, a′)| = |a|M |a′|M ′ ,

where | |M is the norm of M and | |M ′ is the norm of M ′. It is not difficult
to verify that this map satisfies the conditions a) and b) of the definition of an
arithmetical monoid. Let us see that it also satisfies condition c). Indeed, for
x ∈ R we have that NM

( x

|a′|M ′

)
is finite for each a′ ∈ M ′. Therefore,

NG(x) =
∑

a′∈M ′
NM

( x

|a′|M ′

)
,

where every term of this sum is finite. Moreover, NM

( x

|a′|M ′

)
= 0 if |a′|M ′ > x.

Thus,

NG(x) =
∑

a′∈NM′ (x)

NM

( x

|a′|M ′

)
,

is a finite sum of finite valued terms, so NG(x) is finite for each x ∈ R. ��

Definition 2.8. A function F : G −→ C is called an arithmetical function.

In what follows the algebra of the arithmetical functions defined on G will
denoted by Dir(G) .

An arithmetical function F is called multiplicative if F is not identically
zero and if it satisfies the following condition:

F ((a, a′)(b, b′)) = F (a, a′)F (b, b′) whenever g.c.d.((a, a′), (b, b′)) = (e, e′).

Proposition 2.9. If F ∈ Dir(G) is multiplicative, then the functions
G ∈ Dir(M) and H ∈ Dir(M ′) defined by G(a) = F (a, e′) and H(a′) = F (e, a′)
are multiplicative.

Proof. Let F ∈ Dir(G) multiplicative and (a, a′), (b, b′) two elements of G

relatively prime. We have that

F (ab, e′) = F ((a, e′)(b, e′)) = F (a, e′)F (b, e′)

F (e, a′b′) = F ((e, a′)(e, b′)) = F (e, a′)F (e, b′). ��
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3. Analogue of a theorem of Delange

In [1] Delange generalizes the fore mentioned result of Halász to arith-
metical functions in two variables, in the following way:

First, he says that a complex valued function f of q positive integers is said
to be multiplicative if f(1, 1, . . . , 1) = 1 and

f(m1n1,m2n2, . . . ,mqnq) = f(m1,m2, . . . ,mq)f(n1, n2, . . . , nq)

whenever (m1m2 · · ·mq, n1n2 · · ·nq) = 1. Clearly, this definition differs from
ours as given in Section 2. Finally, he proves thus the following result:

Proposition 3.1. If f is a multiplicative function, and

|F (m1,m2, . . . ,mq)| ≤ 1

for all positive integers m1,m2, . . . ,mq, then, as x1, x2, . . . , xq → ∞ indepen-
dently, either:

1. f has zero mean value, i.e.,

Q ≡ 1
x1x2 · · ·xq

∑
m1≤x1,...,mq≤xq

f(m1, . . . ,mq) → 0

or
2.

Q = Cẋia1
1 · · ·xiaq

q L1(log x1) · · ·Lq(log xq) + o(1)
where C is a non-zero complex constant, a1, . . . , aq are real constants,
and L1, . . . , Lq are complex functions defined on R

+ satisfying for j = 1,
. . ., q

|Lj(t)| = 1, for all t ∈ R
+

and

lim
t→∞

Lj(λt)
Lj(t)

= 1, for all λ > 0,

the limits being uniform on all closed subintervals of (0,∞)

Here we prove the following analogue for the product monoid G using our
definition of multiplicative arithmetical functions given in Section 2.

Proposition 3.2. If F is an arithmetical multiplicative function that satisfies
the following condition:

|F (n,m)| ≤ 1, for all (n,m) ∈ G,

then there exists a complex constant C, two real constants a1 and a2 and two
complex functions L1 and L2 defined on R

+ satisfying for j = 1, 2

|Lj(t)| = 1, for all t ∈ R
+

and

lim
t→∞

Lj(λt)
Lj(t)

= 1, for all λ > 0, uniform on all closed subintervals of (0,∞),
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such that when z → ∞ (z = (x, y))
1
xy

∑
n≤x
m≤y

F (n,m) = C · xia1yia2L1(log x)L2(log y) + o(1)

Proof. Since |F (n,m)| ≤ 1 for all n,m ∈ N, we have that

|F (n, 1)| ≤ 1, for all n ∈ N ,

and
|F (1,m)| ≤ 1, for all m ∈ N .

Moreover,
1
xy

∑
n≤x
m≤y

F (n,m) =
1
xy

∑
n≤x
m≤y

F (n, 1)F (1,m)

=

(
1
x

∑
n≤x

F (n, 1)

)(
1
y

∑
m≤y

F (1,m)

)

=

(
1
x

∑
n≤x

h1(n)

)(
1
y

∑
m≤y

h2(m)

)
,

where h1(n) = F (n, 1) y h2(m) = F (1,m). Now if we apply Haláz’s result to
the functions h1 and h2 we have that there are complex constants not zero C1,
C2, real constants a1, a2 and complex functions L1, L2 defined on R

+ satisfying

|Lj(t)| = 1, for all t ∈ R
+

and

lim
t→∞

Lj(λt)
Lj(t)

= 1, for all λ > 0 (j = 1, 2) ,

such that ∑
n≤x

h1(n) = C1x
1+ia1L1(log x) + o(x), when x → ∞, (3.1)

and ∑
m≤y

h2(m) = C2y
1+ia2L2(log y) + o(y), when y → ∞; (3.2)

therefore,

M(x, y) − C1C2x
ia1yia2L1(log x)L2(log y)

=
1
xy

∑
n≤x
m≤y

F (n,m) − C1C2x
ia1yia2L1(log x)L2(log y)

=
1
xy

∑
n≤x

h1(n)
∑
m≤y

h2(m) − C1C2x
ia1yia2L1(log x)L2(log y) .
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Now summing adequatedly, we obtain

M(x, y) − C1C2x
ia1yia2L1(log x)L2(log y)

=
1
y

∑
m≤y

h2(m)


 1

x

∑
n≤x

h1(n) − C1x
ia1L1(log x)


+

C1x
ia1L1(log x)


1

y

∑
m≤y

h2(m) − C2y
ia2L2(log y)


+

C2y
ia2L2(log y)


 1

x

∑
n≤x

h1(n) − C1x
ia1L1(log x)


−

C2y
ia2L2(log y)


 1

x

∑
n≤x

h1(n) − C1x
ia1L1(log x)




=


 1

x

∑
n≤x

h1(n) − C1x
ia1L1(log x)




1

y

∑
m≤y

h2(m) − C2y
ia2L2(log y)


+

C1x
ia1L1(log x)


1

y

∑
m≤y

h2(m) − C2y
ia2L2(log y)


+

C2y
ia2L2(log y)


 1

x

∑
n≤x

h1(n) − C1x
ia1L1(log x)


 .

The first term in the last equality is o(1), by hypothesis; for the last two terms
we observe that∣∣∣∣∣∣C1x

ia1L1(log x)


1

y

∑
m≤y

h2(m) − C2y
ia2L2(log y)



∣∣∣∣∣∣ = C1 o(1) .

Thus
M(x, y) = C1C2x

ia1yia2L1(log x)L2(log y) + o(1)

completing the proof. ��

Recurrently, a similar result is obtained for the k variables case, i.e. we will
have the existence of a complex constant C, real constans a1, a2, . . . , ak and
complex functions L1, L2, . . . , Lk defined on R

+ such that:
1

x1x2 · · ·xk

∑
mj≤xj

j=1,...,k

F (m1,m2, . . . ,mk)

= C · xia1
1 xia2

2 · · ·xiak

k L1(log x1)L2(log x2) · · ·Lk(log xk) + o(1) .
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