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ABSTRACT. A rivulet is a uni-directional liquid stream due to gravity. A steady
stream of a viscous fluid flowing down a vertical plane has been considered in this
paper. A conformal transformation and the Raylegh-Ritz method have been used
to solve the Poisson’s equations with Dirichlet-Neumann boundary conditions and
in computing the cord-length 2L. The computation determines completely the cross-
section size and shape of the rivulet in the form A = A(a) where « is the contact
angle.
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1. INTRODUCTION

A rivulet is a liquid stream due to gravity, along a solid surface, the liquid sharing
a surface with a surrounding gaseous medium. A simple example of a rivulet is
the stream of water seen on the windshield of a car after a rainfall. Rivulets occur
in a wide variety of engineering applications. Drops rolling on a surface used for
condensation may coalesce forming a rivulet. Rivulets arise in the melting and
casting of metals. In processes of heat exchange and gas absorption rivulets play
a major role, since they have a large surface area to cross-sectional area ratio.
The theory of rivulets was introduced in [6] and most subsequent work (see, for
instance, [2], [3], [7]) has been related to their mechanical stability. Here we are
only concerned with parameters which describe the basic steady state.

TowELL and ROTHFELD [6] developed a theoretical analysis of the hydrody-
namics of liquid rivulets with straight parallel contact lines. They obtained for
thin liquid films (i.e. for a small contact angle of the surface of flow with a solid
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plane) a relation between the rivulet width and the flow rate, and this relation
contains the plane inclination and the contact angle of the liquid on the plane.
They also showed that surface tension ensures that the horizontal cross-section of
the stream is a lenticular region D bounded partly by a free surface S in the form
of a circular arc, and partly by the plane boundary B. Such a region is sketched
in Figure 1, which also shows the appropriate system of dimensional coordinates,
the non-dimensional (z,y) cartesian coordinates, based on the half width L of the
rivulet.
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Figure 1. Horizontal section of a vertical rivulet.
Cartesian coordinates are denoted by upper and lower case symbols, respec-
tively. The contact angle o determines the shape of the section in a non-
dimensional plane.

The objective of this paper is the accurate computation of the cross-sectional shape
and length-scale which determine the surface area. The external gas phase is as-
sumed to have no effect. The point of view and the results differ from those of
TowekLL and ROTHELD in that we study thick films of flow (flows of contact an-
gle a > 20.0), and in that the method we use to find the volume flux @ and the
velocity distribution of the flow is quite different.

2. FLOW DESCRIPTION

(a) The flow is assumed to be a steady incompressible viscous flow in the direc-
tion of the negative Z—axis with a free surface. Thus, if U,V and W are the
velocity components of the the liquid, then U =V =0 and W = W(X,Y).

(b) The flow is fully developed, that is, the stream is of uniform width and
the derivatives with respect to Z are zero. This amounts to assume that
the stream has traveled far enough as for the shape of the cross section no
longer to change along the stream path.

(c¢) The flow has constant density p and viscosity pu.

(d) No shear stress is present at the gas-liquid interface.

Under these assumptions the equations of motion (Navier-Stokes equations) sim-
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plify to a balance of viscous and gravitational forces and reduce to the following

orP 0P
and PW(X,Y) 9*W(X,Y oprP
( Y ) + ( Y ) _ _ 7@ (2.2)

0X?2 Y2 oz o’
where P is pressure and g is gravity. Equation (2.2) describes how the upward
viscous force is equal to the downward gravitational force.

Assuming the ambient gas has no significant effect, the appropiate boundary
conditions for the liquid gas interface S are

(a) the shear stress condition:
(OW/on)s = 0, (2.3)

where n is a coordinate normal to the free surface;
(b) the normal stress from the Laplace condition

Ps =§/R, (2.4)
where R is the local radius of curvature of S and § is the surface tension of
the liquid;

(¢) the no-slip condition on B

W(X,Y)=0. (2.5)

From equation (2.4) it follows that Ps is independent of Z, that is
OPs
YA
On the other hand, from equation (2.1) we get that P is a function of Z only. Thus,
using (2.6) we get

= 0. (2.6)

oP
0z
everywhere across the rivulet, and equation (2.2) becomes:
W 9*W g
=_Z 2.
oxz Tayr T Ty 28)

where v = p/p is the kinematic viscosity.

0 (2.7)

Under these conditions, equations (2.1) and (2.7) show that the pressure P is
uniform throughout the entire rivulet, and (2.4) then shows that the curvature of
the free surface S is also uniform. The domain of flow D is therefore a longitudinal
slice of a circular cylinder, as shown in Figure 1.

In the complete dynamical problem, the most natural specification of the entire
rivulet and configuration is the volume flux

Q:/D/ W(X,Y) dX dY, (2.9)

where D is the domain of the liquid.
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3. DIMENSIONAL ANALYSIS

It is convenient at this stage to scale the problem. The basic set of prescribed
dimensional constants are v/g and Q. If the dimensions of a quantity x are denoted
by [z], we therefore have

v . . _L*S
PR

where L* and T* denote the primary dimension of length and time, so that

cola]. Eela”

Now, since the shape of the domain D is known to be a circular segment, we may
expret the half-width L of the rivulet to be of the form
1/4
v
L= [Q] , (3.1)
g
where A is a non-dimensional parameter to be determided and from which « follows.

Mechanically speaking, an alternate and pernhaps more significant measure of « is
the aspect ratio h (see Figure 1),

H
h=27 (3.2)

where H is the maximum thickness of the rivulet. The h, A play the role of dimen-
sionless H, L. The ratio h is given in terms of a by
_l—cosa

h=

sin o
To determine A = A(h) = A(«) we introduce non dimensional variables

X Y
I*fv y*f (3-3)

as noted in Figure 1, and a non-dimensional velocity in the form

w(z,y) = (3.4)

WX, Y)[ v ]
oty

The factor A\? appears in (3.4) in order to yield a universal form to the governing
equation. With this transformation the equation of vertical motion (2.8) becomes

_ Pw(z,y) N O*w(z,y)

2
Viw Ox? Oy>?

-1, (3.5)

Since the usual non-slip and non-stress boundary conditions are homogeneous:

w(z,y) =0, (3.6)
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and

(Ow(z,y)/On)s =0, (3.7)

the unique solution of Poisson’s problem (3.5) with Dirichlet-Neumann boundary
conditions (3.6), (3.7) yields a velocity distribution w(z, y) which only depends on «
or h via their effect on the shape of the domain and not via any further prescribed
dimensional scales. The definition of @ in (2.9) now provides the fundamental
equation for A(h):

)\4/D/w(m,y) dr dy=1. (3.8)

When h is given, the shape of D is immediately known and the velocity distribution
w(x,y) then follows from the solution of the boundary-value problem. Thus, A(h) is
deduced from (3.8) and the dimensional lengths and velocities are finally determined
in terms of v/g and @ by (3.1) and (3.4).

4. NUMERICAL SOLUTION

4.1 Conformal Transformation. Most methods in two dimensional partial dif-
ferential equations theory are designed for rectangular domains (which are natural
or artificial coordinates). The domain of the present problem is complicated but
the boundary which is in part a straight line and in part a circular arc, and these
domains are ideally suited for conformal transformation onto rectangular domains.
A conformal transformation ¢ = f(z) can be employed to map a circular segment
in the z-plane onto a square in the (—plane.

Using the Schwarz-Christoffel transformation (see Figure 2),

2¢/27 i / (14 2/1—z)"/

C=1H T e D)

do, (4.1)

where T" is the gama function.

Using (4.1), the Poisson equation (3.5), with Dirichlet-Neumann boundary condi-
tions (3.6), (3.7), will take the form

V2z(&,n) = —G(&,n), (4.2)
with
ow
8?(0, n) =0 (4.3b)
and 5
w
and where )
gl
Glen) = |5
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Figure 2. The conformal transformation of the circular segment onto
the rectangular domain.

is the transformation modulus, the ratio of lenght in the (—plane to lenght in the
z—plane, which is a position function.

4.2 Optimization method. Of all the numerical methods available we choose
the Rayleigh-Ritz optimization method as the most suitable, mainly because our
primary objective is to calculate A from the flux integral

/D/ w(z,y) dzdy, (4.4)

and this integral is directly obtained from this method. Thus, we minimize the
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integral (see for instance [4])

7= [ [ {(vuten) +2ucncien} acn (45)

over the class of functions w which satisfy the boundary conditions (4.3). As a
minimizing sequence for J we try a sequence {w,(£,7n)} of functions of the form

wa(&m) = D Anjf5(&m) (4.6)
where _
fiem) =" B T Ti(n) (4.7)
=1
and
Ti(zx)=1—-2%  i>1. (4.8)

The ;s in (4.7) are chosen in such a way that

Lol 0, ifj#k
[ [ vnten vatensan={ 77 (19)
0 0 ]., if ] = k
and the A,;, in (4.6), so that w,(§,n) satisfies the boundary conditions (4.3).

For our minimization we choose

4
wa(&m) = Af;(Em). (4.10)
j=1
The minimization condition is
oJ
—_— = i =1,2,3,4.
aAJ 07 J b ’3?
We get
1 1
A= [ [ slencendan (4.11)
o Jo

Using (4.10) in (4.5), we can see that the approximate value of A is 1.29099 for the
case o = 90.0. In comparing this value of A with the exact value obtained in [1],
we find that they are in total agreement to four significant figures.

5. CONCLUSIONS

The results for A coresponding to successive values of h are shown in Table 1 and
Figure 3. From Figure 3 we conclude that for values of h in the interval 0 < h <1
the Rayleigh-Ritz technique yields a very accurate evaluation of the function A(h).

In this range, therefore, the objective of this paper has been achieved. For larger
values of h, however, the position is less clear. It was originally hoped that a further
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contribution to this aspect of the problem could be made by finding an analytic
expansion for the asymptotic behaviour of A(h) as h — oo (physically speaking
this limit would be approached by a rivulet of mercury on a glass). But although
this boundary value problem for Poisson’s equation can be very simply stated, its
solutions is much more awkward than expected, and further progress has not yet
been made.

A

Figure 3. The results for X coresponding to successive values of h.

h « flux A

0.2 22.62 0.00243 4.50546
0.4 43.60 0.01912 2.68923
0.6 61.93 0.06278 1.99775
0.8 77.32 0.14317 1.62570
1.0 90.0 0.35995 1.29099
1.2 100.39 0.44509 1.22430
1.4 108.92 0.68965 1.09734
1.6 115.99 1.02124 0.99476
1.8 121.89 1.46432 0.90906
2.0 126.87 2.04684 0.83604
2.2 131.11 2.79990 0.77306
2.4 134.76 3.75759 0.71824

Table 1. Scale Parameters of Vertical Flow
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