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Abstract
In a ARMA-APARCH time series model with innovations Z, the delta-stationarity condition of the APARCH
process involves the delta-th moment of the difference between the absolute value of the innovations with the
product of the asymmetry parameter and the innovations. This moment allows calculating more efficiently
the estimates of the parameters of the model by maximum likelihood. In this article, we obtain explicit
expressions of this delta - th moment where Z has stable and GEV distribution. These moments have been
implemented in our GEVStableGarch package available in CRAN R-PROJECT developed to estimate the
parameters of ARMA-GARCH / APARCH models with stable innovations and GEV.
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Resumen

En un modelo de sries temporales ARMA-APARCH con innovaciones Z, la condicin de delta - estacio-
nariedad del proceso APARCH envuelve el delta - simo momento de la diferencia entre el valor absoluto
de las innovaciones con el producto del parmetro de asimetra y las innovaciones. Este momento permi-
te calcular de forma mas eficiente las estimativas de mxima verosimilitud de los parmetros del modelo.
En este artculo, son obtenidas expresiones explcitas de ese delta - simo momento onde Z tem distribucin
estable y GEV. Essos momentos se han implementado en nuestro paquete GEVStableGarch disponible en
CRAN R-PROJECT desarrollado para estimar los parmetros de los modelos ARMA-GARCH / APARCH
con innovaciones estables y GEV.

Palabras clave. ARMA, GARCH, APARCH, Estacionalidad, Distribucin estable, Distribucin GEV.

1. Introduction. Modeling financial time series is an attempt to find satisfactory statistical models to
explain what is observed empirically. According to Jondeau et al. (2007) some of the stylized facts about
financial data are: the unconditional distribution of returns is heavy tailed and asymmetric, and they exhibit
volatility clustering, i.e., a larger return is usually followed by another large return. This serial correlation
presented in financial data was successfully modeled by Engle (1982) within his ARCH (autoregressive
conditional heteroskedasticity) model later generalized by Bollerslev (1986) in their GARCH (Generalized
Autoregressive Conditional Heteroskedastic) model. The ARCH class of models has seen widespread ap-
plication of its various extensions found in the literature. A last extension is the APARCH (asymmetric
power ARCH), introduced by Ding et al. (1993).

Modeling financial data with a simple ARMA process does not give good results, because in general the
sample auto-correlation of the squared residuals is significantly different from zero. The approach that has
proven to be successful to account for both time dependence and serial correlation consists in combining
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the ARMA and GARCH/APARCH equations in the same model (see, for instance, Nakatsuma (2000);
Brummelhuis and Kaufmann (2007); Wuertz et al. (2009) and Zhao et al. (2011)).

A process {Xt}t∈Z is an ARMA(m,n)-APARCH(p, q) model if Xt, for all t ∈ Z, satisfies:

Xt =

m∑
i=1

aiXt−i +

n∑
j=1

bjεt−j + εt,

εt = Ztσt Zt
i.i.d.∼ Dϑ(0, 1) ,(1.1)

σδ
t = ω +

p∑
i=1

αi(|εt−i| − γiεt−i)
δ +

q∑
j=1

βjσ
δ
t−j ,

where a1, ..., am are the autoregressive coefficients, b1, ..., bn are the moving average coefficients and the
APARCH (The asymmetric power ARCH) parameters are ω > 0, α1, . . . , αp ≥ 0, β1, . . . , βq ≥ 0, −1 <
γ1, . . . , γp < 1 and δ > 0. Dϑ(0, 1) is distribution of the innovations with zero location and unit scale and
ϑ are the parameters that describe the skew and the shape of the distribution.

ARMA and GARCH models are particular cases of (1.1). If all the coefficients α and β are zero we
get a pure ARMA(m,n) model and if all the coefficients a and b are zero, γ zero and δ = 2 we get a pure
GARCH(p,q) model.

In practice, the application of ARMA-GARCH models is proved to generate best results when the con-
ditional distribution has some connection with the nature of the data. For example, Zhao et al. (2011) used
an AR(1)-GARCH(1,1) model with conditional GEV distribution for modeling maximum daily returns.
The results showed that this combination can capture and explain extreme quantiles better than the standard
model with normal distribution. Stable distributions are also useful for modeling heavy tailed data, which
is usually the case of stock market and foreign exchange rate data (see Nolan (2001)). Thus, combining
ARMA- GARCH/APARCH models with stable distributions gives us a powerful tool for modeling financial
data (see Mittnik and Paolella (2000), Curto et al. (2008) and Frain (2009)).

The estimation of general ARMA-GARCH/APARCH models with conditional GEV or stable distribu-
tions are available in our GEVStableGarch-2015 package. It contains functions for estimating and simulat-
ing ARMA-GARCH or APARCH models with conditional stable and GEV distributions. The stationarity
conditions of the models are usually ignored in practice, but in many real life problems the researcher is
interested in finding a stationary solution. In our algorithms we implemented the δ- stationarity conditions
for a more efficient and fast estimation.

The δ- order stationarity conditions of a APARCH model was showed by Ling (2002). This result states
that there exists a unique δ-order stationary solution of the APARCH model, if and only if

∑p
i=1 λiαi +∑q

j=1 βj < 1, where λi = E(|Zt| − γiZt)
δ ( δ-moment).

In this paper we review the stationarity conditions for ARMA-GARCH/APARCH models with condi-
tional GEV or stable distributions and explicit expressions of λi, where Z has stable distribution and GEV,
are obtained. Also, we present two case study.

The remainder of the paper is structured as follows. In Section 2, we review stable and GEV distribu-
tions. In Section 3, δ- moments in which Zt has stable and GEV distributions are derived. In Section 4, two
case study were added.

2. Stationarity conditions of the ARMA-APARCH model.
In this section, first we review the stable and GEV distribution.

2.1. Stable and GEV distributions. Stable distributions are used to analyze asset returns such as
exchange rates and stock prices. Theory and applications of stable distributions can be found in the book of
Samorodnitsky and Taqqu (1994).

Non-degenerate Z is stable if and only if for all n > 1, there exist constant dn ∈ R such that

Z1 + · · ·+ Zn = n1/αZ + dn,

where Z1, . . . , Zn are independent, identical copies of Z and α ∈ (0, 2]. Z is strictly stable if and only if
dn = 0 for all n.

A stable random variable is usually known by their characteristic functions, because there is no simple
closed form for the probability density function (pdf). In the next section we present an expression for this
density in terms of the function H.

The characteristic function of a random variable stable Z with µ ∈ R location parameter, σ > 0 scale
parameter, −1 ≤ β ≤ 1 skewnes parameter and 0 < α ≤ 2 shape parameter know as index of stability, is
given by
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φX(t) =


exp

{
iµt− σα|t|α

[
1− iβ

t

|t|
tan

(πα
2

)]}
, α 6= 1

exp

{
iµt− σα|t|

[
1 + iβ

t

|t|
2

π
ln|t|

]}
, α = 1.

(2.1)

When β = 0, the stable random variable is symmetric. Z is Gaussian for α = 2, Cauchy for α = 1 and Lvy
for α = 1/2. We will denote stable Lvy distribution by S(α, β, σ, µ) when 0 < α < 2. In this case, the
moment E(Zr) is infinite for r < α; that is Z has infinite second moment and has finite mean for α > 1.

In Fig. 2.1 we show densities of a variable stable. In each sub figure we vary a parameter.

FIGURE 2.1. Density correspond to S(α, 0, 1, 0), S(3/2, β, 1, 0), S(3/2, 0, σ, 0) and S(3/2, 0, 1, µ) in each sub
figure, respectively.

On the other hand, three distributions arise naturally when working with the distribution of maximum
or minimum data, they are called extreme value distributions . An extreme value distribution (EVD), de-
fined by Fisher and Tippett (1928) and Gnedenko (1943), is the non degenerate limit distribution of the
standardized maximum of independent and identically distributed (i.i.d.) random variables.

To define the EVD, let Z1, . . . , Zn be an i.i.d. sequence of random variables. If there are normalizing
constants an > 0, bn ∈ R such that

lim
n→∞

P

(
max{Z1, . . . , Zn} − bn

an
≤ x

)
= F (x),

with F (x) nondegenerate distribution, then F is an EVD. In this case, F belongs to one of the following
three types of cumulative distribution functions:

Frchet: Φ(x;α, σ, µ) =

 exp

[
−
(
x− µ

σ

)−α
]
, x ≥ µ

0, x < µ
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Weibull: Ψ(x;α, σ, µ) =


exp

[
−
(
−x− µ

σ

)α]
, x < µ

0 , x > µ;

Gumbel: Λ(x;σ, µ) = exp

[
−exp

(
−x− µ

σ

)]
,∀x ∈ R,

where α > 0 shape parameter, σ > 0 scale parameter, and µ ∈ R location parameter.
By Jenkinson (1955), a generalized extreme value (GEV) distribution, denoted by GEV(ξ, σ, µ), in-

cludes these three distributions and its density function is given by:

(2.2) fZ(z; ξ, σ, µ) =

{[
1 + ξ( z−µ

σ )
]−1−1/ξ

exp
[
−
(
1 + ξ( z−µ

σ )
)−1/ξ

]
, if ξ 6= 0,

exp
(
−( z−µ

σ )
)
exp

[
− exp

(
−( z−µ

σ )
)]
, if ξ = 0,

where µ ∈ R is the location parameter, σ > 0 is the scale parameter and ξ ∈ R is the shape parameter
(known as tail index) . The support of fZ is the interval in R such that 1 + ξ(z − µ)/σ > 0.

The mean of the GEV distribution exists whenever the shape parameter ξ < 1 and its second moment
is infinite when ξ ≥ 1/2.

FIGURE 2.2. EVD densities.

2.2. Stationarity. Since we want to estimate the parameters that better adjust real data to ARMA-
APARCH models, the notion of stationarity is crucial. Usually, even when the data set is non-stationary
in appearance, we still are able to apply transformation techniques so that the resulting time series can be
reasonably modeled as a stationary process (see Brockwell (1991) ).

The stationarity property of the combined ARMA-APARCH model is achieved when both ARMA and
APARCH models are individually stationary. Usually, if the conditional distribution we are dealing with has
infinite variance, it is only used in the domain where its variance remains finite. For example, the standard
Student’s t distribution with ν degrees of freedom is defined for any ν > 0, but the ARMA-APARCH model
with conditional Student’s t distribution described in Wurtz (2006) is defined only for ν > 2 in which case
the variance of the Student’s t distribution is finite.

The stationarity of the ARMA model is intimately connected with the roots of the polynomials a(z) =
1 − a1z − · · · − amz

m and b(z) = 1 − b1z − · · · − bnz
n representing the ARMA part of Definition 1.1.

In many cases the conditional distribution of the model has a finite variance and therefore, the condition
for the existence of a stationary solution is just that a(z) = 1 − a1z − · · · − amz

m has no roots for all
z ∈ C such that |z| = 1 . On the other hand, if the distribution has an infinite variance the conditions for
the existence of stationary solutions becomes (see Brockwell (1985)),

(2.3) a(z)b(z) 6= 0, for all z ∈ C, such that |z| ≤ 1.
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The stationarity of APARCH models has a historical background that is worth exploring. In the context
of a model where the innovations have a finite variance, Bollerslev (1986) proved the second order station-
arity of the GARCH(p,q) model. Then, Nelson (1990) demonstrated the strict stationarity of the empirically
important case GARCH(1,1). His results were then generalized by Bougerol (1992) for the GARCH(p,q)
model. Finally, Ling (2002) showed which conditions the APARCH(p,q) model would be δ-order station-
ary. This last result states that there exists a unique δ-order stationary solution of the APARCH model if
and only if

(2.4)
p∑

i=1

λiαi +

q∑
j=1

βj < 1,

where

(2.5) λi = E(|Zt| − γiZt)
δ, Zt ∼ Dϑ(0, 1).

The case of infinite variance has a somewhat different historical background. It is worth noting that
the theoretical results were all based on the important work of Bougerol (1992). The first assumption made
on stable distributions is that the index of stability α must be greater than one, because in this case the
innovations have finite first moment. According to Mittnik (1995), this assumption seems plausible since
most financial time series have finite mean. The second assumption is that they must have a δ-moment
finite, which means that we must restrict our model to 1 < δ < α.

Regarding the stationarity of these models, Mittnik (1995) proved the strict stationarity of the stable
GARCH(p,q) model, Zt ∼ S(α, β, 1, 0) = S(α, β; 1) . Then, Mittnik (2002) derived conditions for the
strict stationarity of the APARCH(p,q) model with all coefficients γi = 0 (namely the power-GARCH
model). Finally, Diongue (2008) showed that the general APARCH(p,q) model has a strictly stationary
solution if and only if (2.4) and (2.5) are satisfied, however, he did not get an explicit expression for λi.

The same stationarity conditions, (2.4) and (2.5), are valid for an APARCH(p,q) model with Zt ∼
GEV (ξ, 1, 0).

The stationarity conditions of the ARMA part of the model are easy to implement computationally,
but if we want to impose stationarity of the APARCH equation the problem of efficiency arises. The main
problem is that equations (2.4) and (2.5) depend on λi. However, their computation is faster when they have
an explicit expression.

Figure 1.1. shows the result of the simulation of 1000 observations of the AR(1)-GARCH(1,1) model
with parameters vector φ = (b1, a1, α1, β1, ψ) = (0.2, 0.3, 0.2, 0.3, 0.2, 0.2) and GEV and normal innova-
tions distributions.

Figure 1.2. shows the result of the simulation of 1000 observations of the AR(1)-GARCH(1,1) model
with stable and normal innovations when φ = (b1, a1, α1, β1, α, β, ) = (0.2, 0.3, 0.2, 0.3, 0.2, 1.8, 0) and
stable and normal innovations distributions.
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FIGURE 2.3. Left side: AR (1) -GARCH (1.1) with Zt ∼ GEV . Right side: AR (1) -GARCH (1,1) with Zt ∼ Normal

3. δ- moments. In this section, the δ-moment defined in (2.5) of the APARCH(p,q) model with Z ∼
S(α, β, 1) and Z ∼ GEV (ξ, 1, 0) are derived.

Firstly, in the Proposition 1, we obtain the δ-moment for Z ∼ S(α, β, 1). For this, we have that when
α 6= 1, the characteristic function (2.1) can be too written as

(3.1) φX(t) = exp{−σ̃α|t|αe−iβ̃(signt)π
2 K(α) + iµt},
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FIGURE 2.4. Left side: AR (1) -GARCH (1.1) with Zt ∼ Sα. Right side: AR (1) -GARCH (1,1) with Zt ∼ Normal

where

(3.2) σ̃ = σ
(
1 + β2tan2α

π

2

)1/2α
,

(3.3) K(α) =

{
α, if α < 1
α− 2, if α > 1

and

(3.4) β̃ =

{
2
παArctan(β tanα

π
2 ), if 0 < α < 1

2
π(α−2)Arctan(β tan

π(α−2)
2 ), if 1 < α < 2.

Schneider (1986) gave a representation of stable Lvy density, in terms of the H - function. Expressions
equivalent to the ones obtained by Schneider (1986) for the pdf of S(α, β, σ, µ), with 0 < α < 2, α 6= 1,
are:

(3.5) f(x;α, β̃, µ, σ̃) =
1

ασ̃
H1 1

2 2

x− µ

σ̃

∣∣∣∣
(
1− 1

α ,
1
α

)
,
(

1
2 − β̃K(α)

2α , 12 + β̃K(α)
2α

)
(0, 1),

(
1
2 − β̃K(α)

2α , 12 + β̃K(α)
2α

) 
for x ≥ µ, and

(3.6) f(x;α, β̃, µ, σ̃) =
1

ασ̃
H1 1

2 2

µ− x

σ̃

∣∣∣∣
(
1− 1

α ,
1
α

)
,
(

1
2 + β̃K(α)

2α , 12 − β̃K(α)
2α

)
(0, 1),

(
1
2 + β̃K(α)

2α , 12 − β̃K(α)
2α

) 
for x < µ. The function H1,1

2,2 (z) is the H-function defined in Mathai et al. (2010), as

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣ (a1, A), . . . , (an, An), (an+1, An+1), . . . , (ap, Ap)
(b1, B1), . . . , (bm, Bm), (bm+1, Bm+1), . . . , (bq, Bq)

]
=

1

2πi

∫
L

Ξm,n
p,q (s)z−sds,(3.7)

where

(3.8) Ξm,n
p,q (s) =

m∏
j=1

Γ(bj +Bjs)

n∏
j=1

Γ(1− aj −Ajs)

q∏
j=m+1

Γ(1− bj −Bjs)

p∏
j=n+1

Γ(aj +Ajs)

and Aj and Bj are assumed to be positive quantities and all the aj and bj are complex. The contour L runs
from c− i∞ to c+ i∞ such that the poles of Γ(bj +Bjs), j = 1, . . . ,m lie to the left of L and the poles
of Γ(1− aj −Ajs), j = 1, . . . , n lie to the right of L.
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To compute the δ-moment of the APARCH(p,q) model with Z ∼ S(α, β, 1) we used the Mellin trans-
form of the stable density.

In general, the Mellin transform of a f(x) real function is uniquely defined almost everywhere for
x > 0 and that is absolutely integrable over the interval (0,+∞), thus its Mellin transform exists and is
defined as (see Mathai et al. (2010) ):

(3.9) Msf(x) =

∫ +∞

0

xs−1f(x)dx.

PROPOSITION 1. If Z ∼ S(α, β; 1) then the δ-moment E(|Z| − γZ)δ is given by

E(|Z| − γZ)δ =
(1− γ)δσ̃δΓ(δ + 1)Γ(− δ

α )

αΓ

[(
1
2 + β̃ k(α)

2α

)
(−δ)

]
Γ

[
1
2 − β̃ k(α)

2α +

(
1
2 + β̃ k(α)

2α

)
(δ + 1)

]
+

(1 + γ)δΓ(δ + 1)Γ(− δ
α )

ασ̃Γ

[(
1
2 − β̃ k(α)

2α

)
(−δ)

]
Γ

[
1
2 + β̃ k(α)

2α +

(
1
2 − β̃ k(α)

2α

)
(δ + 1)

] ,(3.10)

where σ̃, k(α) and β̃ are given in (3.2), (3.3) and (3.4), respectively. Proof: By definition

(3.11) E(|Z| − γZ)δ =

∫ ∞

−∞
(|z| − γz)δfZ(z;α, β̃, σ̃, 0)dz.

To applied the Mellin transform (3.9) we rewrite (3.11) as

E(|Z| − γZ)δ = (1 + γ)δ
∫ ∞

0

zδfZ(−z;α, β̃, σ̃, 0)dz + (1− γ)δ
∫ ∞

0

zδfZ(z;α, β̃, σ̃, 0)dz

= (1 + γ)δMs(fZ(−z;α, β̃, σ̃, 0)) + (1− γ)δMs(fZ(z;α, β̃, σ̃, 0)),(3.12)

where δ = s− 1. The Mellin transform of H-function is well defined ( see, Mathai (2010)) by:

∫ ∞

0

xs−1Hm,n
p,q

[
cz

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
dx = Ξm,n

p,q (s)(cz)−s.(3.13)

Thus, Inserting (3.5) and (3.6) in (3.13) we obtained

(3.14) Ms(fZ(z;α, β̃, σ̃, 0)) =
σ̃s−1Γ(s)Γ( 1−s

α )

αΓ

[(
1
2 + β̃ k(α)

2α

)
(1− s)

]
Γ

[
1
2 − β̃ k(α)

2α +

(
1
2 + β̃ k(α)

2α

)
(s)

] ,
for z ≥ 0, and

(3.15) Ms(fZ(−z;α, β̃, σ̃, 0)) =
σ̃s−1Γ(s)Γ( 1−s

α )

αΓ

[(
1
2 − β̃ k(α)

2α

)
(1− s)

]
Γ

[
1
2 + β̃ k(α)

2α +

(
1
2 − β̃ k(α)

2α

)
(s)

] ,
for z < 0. Substituting (3.14) and (3.15) in (3.12), we obtain (3.10).

Note that the expression in Corollary 3.1 of Diongue (2008) is a particular case of (3.10), he considered
β = 0.

In the following proposition, we obtain the δ-moment for Z ∼ GEV (ξ, 1, 0).

PROPOSITION 2. If Z ∼ GEV (ξ, 1, 0), then the delta moment E(|Z| − γZ)δ is given by:

(3.16)
(1− γ)δ

ξδ+1

∞∑
k=0

(−1)k

k!

Γ(δ + 1)Γ( k+1
ξ

− δ)

Γ( k+1
ξ

+ 1)
+

(1 + γ)δ

ξδ+1

∞∑
k=0

∞∑
n=0

(−1)k

n!k!

Γ( k+1
ξ

+ n+ 1)

(δ + n+ 1)Γ( k+1
ξ

+ 1)
,

when ξ > 0, and δ < 1
ξ and by

(3.17)
(1 + γ)δ

ξδ

∞∑
k=0

(−1)k
(
δ

k

)
[Γ(1− δk)− γ(1− ξn, 1)] +

(1− γ)δ

ξδ

∞∑
k=0

(−1)k
(
δ

k

)
γ(ξn− ξδ + 1, 1),
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when ξ < 0 and δ > 0. The function γ(· , ·) is the incomplete Gamma and
(
δ
k

)
= δ(δ−1)···(δ−k+1)

k! is the
binomial term.

Proof: When ξ > 0, by (2.2),

E(|Z| − γZ)δ = (−1− γ)δ
∫ 0

−1/ξ

zδ (1 + ξz)
−1−1/ξ

exp
(
− (1 + ξz)

−1/ξ
)

dz

+ (1− γ)δ
∫ ∞

0

zδ (1 + ξz)
−1−1/ξ

exp
(
− (1 + ξz)

−1/ξ
)

dz.(3.18)

In (3.18), inserting the representation exp
(
− (1 + ξz)

−1/ξ
)
=
∑∞

k=0
(−1)k(1+ξz)−k/ξ

k! in the last integrals
and changing the integration order,

E(|Z| − γZ)δ = (−1− γ)δ
∞∑
k=0

(−1)k

k!

(∫ 0

−1/ξ

zδ(1 + ξz)−
k+1
ξ +1dz

)

+ (1− γ)δ
∞∑
k=0

(−1)k

k!

(∫ ∞

0

zδ(1 + ξz)−
k+1
ξ +1dz

)
.(3.19)

Now, substituting ξz for u in (3.19),

E(|Z| − γZ)δ =
1

ξ

[
1

ξ
(−1− γ)

]δ ∞∑
k=0

(−1)k

k!

(∫ 0

−1

uδ(1 + u)−
k+1
ξ +1du

)

+
1

ξ

[
1

ξ
(−1− γ)

]δ ∞∑
k=0

(−1)k

k!

(∫ ∞

0

uδ(1 + u)−
k+1
ξ +1du

)
(3.20)

To calculate the first integral of (3.20) we use the representation (1 + z)−b =
∑∞

n=0
Γ(b+n)
Γ(b)

(−z)n

n! valid

for |z| < 1 and b ∈ R+. However, to calculate the second integral we use the fact that (1 + u)−
k+1
ξ +1 =

1
Γ( k+1

ξ +1)
H1,1

1,1

[
cz

∣∣∣∣ (1,−k+1
ξ )

(1, 0)

]
and then apply (3.13).

When ξ < 0,

E(|Z| − γZ)δ = (1 + γ)δ
∫ 0

−∞
zδ (1 + ξz)

−1−1/ξ
exp

(
− (1 + ξz)

−1/ξ
)

dz

+ (1− γ)δ
∫ −1/ξ

0

zδ (1 + ξz)
−1−1/ξ

exp
(
− (1 + ξz)

−1/ξ
)

dz.(3.21)

In (3.21), substituting
(
− (1 + ξz)

−1/ξ
)

for u, we obtained

E(|Z| − γZ)δ =
(1 + γ)δ1δ

ξδ

∫ ∞

1

(1− u−ξ)δ exp(−u)du

+
(1− γ)δ1δ

ξδ

∫ 1

0

(u−ξ − 1)δ exp(−u)du.(3.22)

To evaluate the integrals in (3.22) we insert the binomial series
∞∑

n=0

(
δ
n

)
(−1)nu−ξn = (1− u−ξ)δ and

∞∑
n=0

(
δ
n

)
(−1)n(u−ξ)δ−n = (u−ξ − 1)δ , then

E(|Z| − γZ)δ =
(1 + γ)δ1δ

ξδ

∞∑
n=0

(
δ
n

)
(−1)n

(∫ ∞

1

u−ξn exp(−u)du
)

(3.23)

+
(1− γ)δ1δ

ξδ

∞∑
n=0

(
δ
n

)
(−1)n

(∫ 1

0

u−ξδ+ξn exp(−u)du
)
.

As the last integrals are incomplete gamma functions , the result (3.17) is obtained from (3.23).
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4. Application. In this section we used the GEVStableGarch routine to estimate ARMA-GARCH and
ARMA-APARCH models to three dataset contains the returns from January 3, 2000 to January 3, 2015.

To use the GEV conditional distribution, we considered the monthly maximum returns of each data set.

TABLE 4.1
ARMA-GARCH and ARMA-APARCH with GEV conditional distribution.

Serie Modelo -LLH AIC AICc BIC

Microsoft ARMA(2,2)-GARCH(1,2) -6826.20 -13632.34 -13632.25 -13573.96
ARMA(2,2)-APARCH(1,2) -7002.14 -13982.28 -13982.18 -13918.06

Google ARMA(1,2)-GARCH(1,1) -5378.98 -10741.97 -10741.9 -10696.52
ARMA(1,0)-APARCH(1,2) -5458.77 -10899.55 -10899.47 -10848.43

S&P500 ARMA(1,1)-GARCH(2,1) -5862.58 -11711.16 -11711.07 -11675.39
ARMA(1,1)-APARCH(2,2) -5960.33 -11898.65 -11898.43 -11842.44

Although ARMA-APARCH model has more parameters, according to the AIC and AICc criterions this
model allowed us to better fit the data.

5. Conclusions. Explicit expressions of λi, where Zt has stable and GEV distributions, are obtained.
They allow the accuracy of the estimation algorithms in the GEVStableGarch package.
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