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Abstract
In this paper we study hypersurfaces in R4 parametrized by lines of curvature with three distinct principal
curvatures and with Laplace invariants mji = mki = 0, mjik 6= 0 for i, j, k distinct fixed indices. We
characterize locally a generic family of such hypersurfaces in terms of the principal curvatures and three
vector valued functions of one variable, this family includes a classe of Dupin hypersurfaces. Moreover, we
show that these vector valued functions are invariant under inversions and homotheties.

Keywords Dupin hypersurfaces, Laplace invariants, lines of curvature

Resumen
En este artı́culo estudiamos hipersuperficies en R4 parametrizadas por lı́neas de curvatura con tres cur-
vaturas principales distintas y con invariantes de Laplace mji = mki = 0, mjik 6= 0 para ı́ndices fijos
i, j, k distintos. Caracterizamos localmente una familia genérica de tales hipersuperficies en términos de
las curvaturas principales y tres funciones vectoriales de una variable, esta familia incluye una clase de
hipersuperficies de Dupin. Ademas, mostramos que estas funciones vectoriales son invariantes por inver-
siones y dilataciones.

Palabras clave. Hipersuperficies de Dupin, Invariantes de Laplace, Lı́neas de curvatura

1. Introduction. Dupin surfaces were first studied by Dupin in 1822 and more recently by many
authors [1]-[6], [9]-[14] and [16],[17], which studied several aspects of Dupin hypersurfaces. The class
of Dupin hypersurfaces is invariant under Lie transformations [11]. Therefore, the classification of Dupin
hypersurfaces is considered up to these transformations. The local classification of Dupin surfaces in R3

is well known. Pinkall [12] gave a complete classification up to Lie equivalence for Dupin hypersurfaces
M3 ⊂ IR4, with three distinct principal curvatures. Niebergall [10] and more recently Cecil and Jensen [6]
studied proper Dupin hypersurfaces with four distinct principal curvatures and constant Lie curvature (the
cross-ratio of four principal curvatures).

Riveros [15] obtained a local characterization of the Dupin hypersurfaces in R4 parametrized by lines
of curvature, with three distinct principal curvatures and mjik 6= 0, in terms of the principal curvatures and
three vector valued functions in R4 which are invariant under inversions and homotheties, in this case the
Laplace invariants mij = 0, for 1 ≤ i 6= j ≤ 3.

In this paper we study generic hypersurfaces in R4, parametrized by lines of curvature, with three
distinct principal curvatures and with Laplace invariants mji = mki = 0, mjik 6= 0. We obtain a local
characterization of a generic family of such hypersurfaces (Theorem 3.1), in terms of the principal curvature
functions and three vector valued functions of one variable. This family of hypersurfaces includes the Dupin
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hypersurfaces studied by Riveros [15]. The characterization is based on the theory of higher-dimensional
Laplace invariants introduced by Kamran-Tenenblat [7]-[8].

In section 2, we give some properties of hypersurfaces with distinct principal curvatures. In section
3, Theorem 3.1 gives a local characterization of generic hypersurfaces in R4 with three distinct principal
curvatures. Moreover, we show that the vector valued functions, which appear in the characterization of
Theorem 3.1 are invariant under inversions and homotheties, but the functions are not invariant under isome-
tries. Therefore, the vector valued functions are not invariant under the full group of Lie transformations of
R4.

2. Preliminaries. Let Ω be an open subset of IRn and x = (x1, x2, · · · , xn) ∈ Ω. LetX : Ω ⊂ Rn →
Rn+1, n ≥ 3, be a hypersurface parametrized by lines of curvature, with distinct principal curvatures
λi, 1 ≤ i ≤ n and N : Ω ⊂ Rn → Rn+1 be a unit normal vector field of X . Then

〈X,i, X,j〉 = δijgii , 1 ≤ i, j ≤ n ,
N,i = −λiX,i ,(2.1)

where the subscript ,i denotes the derivative with respect to xi. Moreover,

X,ij − Γi
ijX,i − Γj

ijX,j = 0 , 1 ≤ i 6= j ≤ n ,(2.2)

Γi
ij =

λi,j
λj − λi

, 1 ≤ i 6= j ≤ n,(2.3)

where Γk
ij are the Christoffel symbols.

We now consider the higher-dimensional Laplace invariants of the system of equations (2.2) (see [7]-[8]
for the definition of these invariants),

(2.4)
mij = −Γi

ij,i + Γi
ijΓ

j
ij ,

mijk = Γi
ij − Γk

kj , k 6= i, j , 1 ≤ k ≤ n.

As a consequence of (2.3) and the un-numbered lemma appearing in [8], we obtain the following identities,
valid for distinct i, j, k, l, 1 ≤ i, j, k, l ≤ n :

(2.5)

mijk +mkji = 0,
mijk,k −mijkmjki −mkj = 0,

mij,k +mijkmik +mikjmij = 0,
mijk −mijl −mljk = 0,

mlik,j +mijlmkil +mljkmkij = 0.

From Remark 2.2 in [16], follows that for n ≥ 3, the higher-dimensional Laplace invariants do not change
under inversions in spheres centered at the origin and homotheties.

For hypersurfaces with distinct principal curvatures, the Möbius curvature is defined, for distinct i, j, k,
by

(2.6) Cijk =
λi − λj
λk − λj

.

Since all λi are distinct we conclude that Cijk 6= 0 and Cijk 6= 1. Möbius curvatures are invariant under
Möbius transformations.

The following result was obtained in [14], which provides some properties which are satisfied by the
principal curvatures of a hypersurface in IRn+1 parametrized by lines of curvature.

LEMMA 1. Let λr : Ω ⊂ Rn → R, n ≥ 3, be smooth functions distinct at each point. Consider
functions mijk defined by (2.3) and (2.4). Then for i, j fixed, 1 ≤ i 6= j ≤ n, the following properties hold[

Ckjimjki

]
,i

= mjki,i +

[
λi,i

λj − λi

]
,k

,(2.7)

[
Ckjimjki

]
,j

= −
[

λj,j
λj − λi

]
,k

,(2.8)

[
Ckjimjki

]
,l

=
[
Cljimjli

]
,k

,(2.9)
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where Ckji is the Möbius curvature and 1 ≤ k 6= l ≤ n are distinct from i and j. The following Lemma
is a application of Theorem 1 in [8].

LEMMA 2. Let X : Ω ⊂ Rn → Rn+1, n ≥ 3, be a hypersurface parametrized by lines of curvature,
with n distinct principal curvatures λr, 1 ≤ r ≤ n. For i, j, k fixed, 1 ≤ i 6= j 6= k ≤ n, the
transformation

(2.10) X = V X̄ , where V =
e
−

∫
Ckjimjkidxk

λj − λi
,

transforms system (2.2) into

(2.11)

X̄,ij +AX̄,j −mijX̄ = 0,
X̄,ir + (A+mjir)X̄,r −mirX̄ = 0,

X̄,jr +mirjX̄,j +mijrX̄,r = 0,
X̄,rl +milrX̄,r +mirlX̄,l = 0,

where l and r are such that 1 ≤ r 6= l 6= i 6= j ≤ n and

(2.12) A = −
∫
mjki,idxk.

Moreover,

(2.13) A,j = mji −mij , A,r = −mjri,i .

REMARK 1. For subsequent use, we will compute the derivatives of the function V given by (2.10).
It follows from Lemma 1 that,

V,i =
(
A+ Γj

ji

)
V,

V,j = Γi
ijV,(2.14)

V,k = Γi
ikV,

V,l = Γi
ilV,

where A is given by (2.12) and l is distinct from i, j, k.

3. Main results. In this section, we prove our main result which provides a local characterization of
generic hypersurfaces parametrized by lines of curvature in R4, with three distinct principal curvatures. We
remark that in the case of Dupin hypersurfaces parametrized by lines of curvature the Laplace invariants
mij = 0, for 1 ≤ i 6= j ≤ 3 and therefore, this family of hypersurfaces includes the class of Dupin hyper-
surfaces studied by Riveros in [15].

THEOREM 1. LetX : Ω ⊂ R3 → R4, be a hypersurface parametrized by lines of curvature, with three
distinct principal curvatures λr. For i, j, k distinct fixed indices, suppose mji = mki = 0 and mjik 6= 0
then

(3.1) X = V [Bj −Bk] ,

where

(3.2) V =
e
−

∫
Ckjimjkidxk

λj − λi
, Bs =

1

Qs

[∫
QsGi(xi)

mjik
dxi +Gs(xs)

]
, s 6= i,

Gr(xr), r = i, j, k, are vector valued functions of R4, A,j = −mij , A = −
∫
mjki,idxk and

Qs =

{
e
∫
Adxi if s = j ,

e
∫
(A+mjis)dxi if s = k.

(3.3)
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Moreover, considering

(3.4) αi =

(
A+

λj,i
λi − λj

)
M +M,i , αs =

λi,s
λs − λi

M +M,s , s 6= i,

where M = Bj −Bk , the functions Gr(xr) satisfy the following properties in Ω, for 1 ≤ r 6= t ≤ 3 :
a) αr 6= 0,
b) 〈αr, αt〉 = 0, r 6= t,

c) λr =
〈αr

,r , α
i × αj × αk〉

V |αr|2 |αi| |αj | |αk|
.

Conversely, let λr : Ω ⊂ R3 → R , r = 1, 2, 3 be real functions, distinct at each point. Assume that the
functions mrts and mrt defined by

mrts =
λr,t

λt − λr
− λs,t
λt − λs

, 1 ≤ r 6= t 6= s ≤ 3,

mrt = −
[

λr,t
λt − λr

]
,r

− λr,tλt,r
(λt − λr)2

, 1 ≤ r 6= t ≤ 3,(3.5)

satisfy (2.5), and for i, j, k distinct fixed indices, mji = mki = 0, and mjik 6= 0. Then for any vector
valued functions Gr(xr) satisfying properties a) b) c), where αr is defined by (3.4), the function X : Ω ⊂
R3 → R4 given by (3.1) describes a hypersurface parametrized by lines of curvature whose principal
curvatures are the functions λr.

Proof: We observe that from (2.5), the conditions mji = mki = 0, implies that mjk = mkj = 0.
From equation (2.2) we have,

(3.6) X,sr − Γs
srX,s − Γr

srX,r = 0 , 1 ≤ s 6= r ≤ 3.

For fixed distinct indices i, j, k, we consider the transformation

(3.7) X = V X̄,

as in Lemma 2, where V is given by (2.10). Then system (3.6) reduces to

(3.8)
X̄,ij +AX̄,j −mijX̄ = 0,

X̄,ik + (A+mjik)X̄,k −mikX̄ = 0,
X̄,jk +mikjX̄,j +mijkX̄,k = 0,

where

(3.9) A,j = −mij , A,k = −mjki,i.

It follows from the third and second equations of (2.5) and (3.9) that

(3.10) (A+mjik),k = −mik.

Using (3.9) and (3.10) in the first two equations of (3.8), we have that

X̄,i +AX̄ = W j(xi, xk),(3.11)
X̄,i + (A+mjik)X̄ = W k(xi, xj),(3.12)

where W j and W k are functions that do not depend on xj and xk, respectively. Since mjik 6= 0, from
(3.11) and (3.12) we have

(3.13) X̄ =
1

mjik
[W k −W j ].
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Differentiating (3.13) and using (2.5) we have

X̄,i = − mjik,i

(mjik)2
[W k −W j ] +

1

mjik
[W k −W j ],i(3.14)

X̄,j =
mkji

mjik
[W k −W j ] +

1

mjik
W k

,j(3.15)

X̄,k =
mjki

mjik
[W k −W j ]− 1

mjik
W j

,k(3.16)

X̄,ij =
1

mjik
W k

,ij −
mjik,i

(mjik)2
W k

,j +

[
mkji +

mij

mjik
+
mijkmjik,i

(mjik)2

]
[W k −W j ] +

− mijk

mjik
[W k −W j ],i(3.17)

X̄,ik = − 1

mjik
W j

,ik +
mjik,i

(mjik)2
W j

,k +

[
mikj +

mik

mjik
+
mikjmjik,i

(mjik)2

]
[W k −W j ] +

− mikj

mjik
[W k −W j ],i(3.18)

X̄,jk =
2mijkmikj

mjik
[W k −W j ] +

mijk

mjik
W j

,k −
mikj

mjik
W k

,j .(3.19)

The substitution of X̄ and X̄,i into (3.11) and (3.12), gives(
A− mjik,i

mjik

)
[W k −W j ] + [W k −W j ],i = mjikW

j ,(3.20) (
A+mjik −

mjik,i

mjik

)
[W k −W j ] + [W k −W j ],i = mjikW

k.(3.21)

Using (3.13), (3.15), (3.17) and (3.21 in first equation of system (3.8), we obtain

(3.22) W k
,ij +

(
A− mjik,i

mjik

)
W k

,j +mkjimjik = 0 ,

Using (3.13), (3.16), (3.18) and (3.20 in second equation of system (3.8), we obtain

(3.23) W i
,ik +

(
A+mjik −

mjik,i

mjik

)
W j

,k +mikjmjik = 0 ,

Using (3.15), (3.16) and (3.19) in the third equation of system (3.8) we obtain an identity.
From (2.5) and (3.9) we obtain

(3.24)
(
A− mjik,i

mjik

)
,j

= mkjimjik ,

(
A+mjik −

mjik,i

mjik

)
,k

= mikjmjik.

It follows from (3.2), (3.3) and (3.24) that the solutions of equations (3.22) and (3.23) are given by

(3.25) W k(xi, xj) =
mjik

Qj

[∫
QjGi(xi)

mjik
dxi +Gj(xj)

]

(3.26) W j(xi, xk) =
mjik

Qk

[∫
QkG̃i(xi)

mjik
dxi +Gk(xk)

]

From (3.20), (3.25) and (3.26) it follows that

(3.27) Gi(xi) = G̃i(xi).

The substitution of (3.25), (3.26) and (3.27) in (3.13) gives

X̄ = Bj −Bk,

where we have used (3.2), which substituted into (3.7), implies (3.1).
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Considering αi and αs, s = j, k defined by (3.4), it follows from (2.7), (2.8), (2.13) and (2.4) that

(3.28) X,r = V αr , r = i, j, k.

Differentiating (3.28), we have

(3.29) X,rr = V,rα
r + V αr

,r , r = i, j, k.

It follows from (3.28) that the metric of X,r is given by

(3.30) grr = (V )2|αr|2 , grt = 0 , r 6= t.

A unit vector field normal to X is given by

(3.31) N =
αi × αj × αk × αl

|αi| |αj | |αk| |αl|
.

Since X is a hypersurface parametrized by orthogonal curvature lines, with λs, as principal curvature we
have, for 1 ≤ r 6= s ≤ 3

〈N,X,rs〉 = 0, λs =
〈X,rr, N〉

grr
.

Hence from (3.29) and (3.31) we obtain for r = i, j, k,

λr =
〈αr

,r , α
i × αj × αk × αl〉

V |αr|2|αi| |αj | |αk| |αl|
.

Therefore, we conclude that conditions a), b) and c) are satisfied.
Conversely, let λr be real functions distinct at each point. Assume that the functions mrts and mrt,

defined by (3.5), satisfy (2.5) and suppose Gr(xr), 1 ≤ r ≤ 3, are vector valued functions satisfying
properties a), b) and c). Defining X by (3.1), it follows from Lemma 1 and properties a) and b), that X is
an immersion, whose coordinates curves are orthogonal. Moreover, the induced metric is given by (3.30)
and a unit normal vector field by (3.31).

Differentiating (3.28) with respect to xt, using Lemma 1, the expressions (2.5), (2.14) and (3.4) we
obtain

X,rt = V

(
λr,t

λt − λr
αr +

λt,r
λr − λt

αt

)
, r 6= t.

From (3.31), it follows that 〈X,rt , N〉 = 0 . Hence the second fundamental form is diagonal and therefore
the coordinates curves are lines of curvature. Moreover, it follows from (3.29) - (3.31) and from property
c) that for r = i, j, k,

〈X,rr, N〉
grr

=
〈αr

,r , α
i × αj × αk × αl〉

V |αr|2|αi| |αj | |αk| |αl|
= λr

which concludes the proof.
Now we show that the vector valued functions which appear in Theorem 1 are invariant under inver-

sions and homotheties.

THEOREM 2. Let X : Ω ⊂ R3 → R4 be a hypersurface with three distinct principal curvatures λr,
parametrized by lines of curvature as in the Theorem 1. Then the vector valued functions Gr(xr), 1 ≤ r ≤
3 are invariants under inversions and homotheties.

Proof: a) Assuming without loss of generality that 0 /∈ X(Ω), we consider X̃ = I4(X) a hypersurface
parametrized by lines of curvature, obtained by composing X with the inversion defined by I4(X) =
X

〈X,X〉
and whose distinct principal curvatures are given by

(3.32) λ̃r = 〈X,X〉λr + 2〈X,N〉 , r = i, j, k.

Applying the Theorem 1 to X̃ , we have for i, j, k fixed distinct indices

X̃ = Ṽ
[
B̃j − B̃k

]
,
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where

B̃s =
1

Q̃s

[∫
Q̃sG̃i(xi)

m̃jik
dxi + G̃s(xs)

]
, s 6= i ,

Ṽ =
e
−

∫
C̃kjim̃jkidxk

λ̃j − λ̃i
, C̃kji =

λ̃k − λ̃j
λ̃i − λ̃j

(3.33)

Ã = −
∫
m̃jki,idxk ,

Q̃s, s 6= i are defined by (3.3) and G̃r(xr), r = i, j, k are vector valued functions in IR4.
Since X̃ and X have the same higher-dimensional Laplace invariants, we obtain

(3.34) Ã = A , Q̃s = Qs, s 6= i.

Substituting (3.32) in (3.33), we have

(3.35) Ṽ =
V

〈X,X〉
.

On the other hand,

(3.36) X̃ =
X

〈X,X〉
.

We will show that G̃r(xr) = Gr(xr), r = i, j, k. It follows from (3.35) and (3.36) that

(3.37) B̃j −Bj − (B̃k −Bk) = 0.

We observe that

Bj,i = −ABj +
Gi(xi)

mjik
, Bk,i = − (A+mjik)Bk +

Gi(xi)

mjik
.

This fact follows from the equalities

Qj,i = AQj , Qk,i = (A+mjik)Qk.

Therefore differentiating (3.37) with respect to xi, we get

−A
(
B̃j −Bj

)
+ (A+mjik)

(
B̃k −Bk

)
= 0.

From (3.37) and the fact that mjik 6= 0, we have

(3.38) B̃k = Bk.

Differentiating with respect to xi, we get G̃k(xk) = Gk(xk), hence it follows that
G̃i(xi) = Gi(xi). Substituting (3.38) in (3.37), we obtain

B̃j = Bj .

and hence G̃j(xj) = Gj(xj), which concludes the proof of a).

b) Let X̄ = aX be a homothety of X . Then X̄ is a hypersurface parametrized by lines of curvature,
with distinct principal curvatures given by

(3.39) λ̄r =
λr
a
, r = i, j, k.

Applying Theorem 1 to X̄ , we have for i, j, k distinct fixed indices

X̄ = V̄
[
B̄j − B̄k

]
.
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where

B̄s =
1

Q̄s

[∫
Q̄sḠi(xi)

m̄jik
dxi + Ḡs(xs)

]
, s 6= i ,

V̄ =
e
−

∫
C̄kjim̄jkidxk

λ̄j − λ̄i
,where C̄kji =

λ̄k − λ̄j
λ̄i − λ̄j

(3.40)

Ā = −
∫
m̄jki,idxk,

Q̄s, s 6= i are defined by (3.3) and Ḡr(xr), r = i, j, k are vector valued functions in IR4.
Since X̄ and X have the same Laplace invariants. Therefore, it follows that

(3.41) Ā = A , Q̄s = Qs, s 6= i.

We will show that Ḡr(xr) = Gr(xr). Substituting (3.39) in (3.40), we have

(3.42) V̄ = aV.

Since

(3.43) X = V [Bj −Bk] , X̄ = V̄
[
B̄j − B̄k

]
.

Substituting (3.41), (3.42) and (3.43) in X̄ = aX we have,

B̄j −Bj − (B̄k −Bk) = 0.

The same argument of item a) proves that Ḡr(xr) = Gr(xr), ∀ r.

Example 1: Let X : R3 → R4 be an immersion

X(x1, x2, x3) = ((a+ r cosx1) cosx2, (a+ r cosx1) sinx2, r sinx1, x3) ,

that describes a hypersurface of Dupin.
The principal curvatures are given by

k1 = −1

r
, k2 = − cosx1

a+ r cosx1
, k3 = 0,

From (2.4) we have that the laplace invariants are given by

mij = 0, 1 ≤ i 6= j ≤ 3, m213 = − r sinx1
a+ r cosx1

6= 0.

From Theorem 1, we get

X = V [B2 −B3] ,

where

A = 0, V = − (a+ r cosx1)2

a sinx1
, Q2 = 1, Q3 = a+ r cosx1.

The vectorial functions are given by

G1(x1) =

(
0, 0,− a

sinx1(a+ r cosx1)
, 0

)
,

G2(x2) =

(
a cosx2

r
,
a sinx2

r
, 0, 0

)
,

G3(x3) =
(

0, 0, 0,−ax3
r

)
.

Example 2: Let Y (x1, x2) be a surface parametrized by lines of curvature on the sphere S3 ⊂ R4

defined in Ω = I × R, with two distinct principal curvatures k̃1, k̃2 that only depend on x1 and satisfying
k̃1,1 6= 0, k̃2,1 6= 0,∀ x1 ∈ I , I is an open interval. We consider the hypersurface X : Ω × J → R4



56 Carlos M. C. Riveros.- Selecciones Matemáticas. 05(01): 48-57 (2018)

parametrized by lines of curvature given by X(x1, x2, x3) = Y (x1, x2) + x3Ñ(x1, x2), where Ñ is the
normal vector of the surface Y and J is an open interval such that (x3k̃i − 1) 6= 0, ∀ x3 ∈ J, i = 1, 2.
We can show that the normal vector to X is Y and the distinct principal curvatures of X are given by

(3.44) k1 =
1

x3k̃1 − 1
, k2 =

1

x3k̃2 − 1
, k3 = 0.

By (2.3), we have

(3.45) Γ1
12 = Γ3

31 = Γ3
32 = 0, Γ1

13 =
k̃1

x3k̃1 − 1
, Γ2

21 =
(x3k̃1 − 1)k̃2,1

(x3k̃2 − 1)(k̃1 − k̃2)
, Γ2

23 =
k̃2

x3k̃2 − 1
.

From (2.4) and (3.45) we have that the laplace invariants are given by

(3.46) m12 = m21 = m23 = m31 = m32 = 0, m13 =
k̃1,1

(x3k̃1 − 1)2
,

(3.47) m213 =
(x3k̃1 − 1)k̃2,1

(x3k̃2 − 1)(k̃1 − k̃2)
, m231 =

k̃1 − k̃2
(x3k̃1 − 1)(x3k̃2 − 1)

.

Also,

C321 =
x3k̃1 − 1

x3(k̃1 − k̃2)
.

From Theorem 1, we get

X = V [B2 −B3] ,

where

(3.48) A = − x3k̃2,1

x3k̃2 − 1
+

x3k̃1,1

x3k̃1 − 1
+

k̃1,1

k̃2 − k̃1
, V =

x3k̃1 − 1

k̃1 − k̃2
,

Q2 =
x3k̃1 − 1

x3k̃2 − 1
e

∫
k̃1,1

k̃2 − k̃1
dx1

, Q3 =
x3k̃1 − 1

k̃1 − k̃2
.

The vectorial functions are given by

G1(x1) =

(
−k̃1,1 + 2k̃2,1 +

(k̃1 − k̃2)k̃2,11

k̃2,1

)
(x1)Y (x1, x

0
2) + (k̃2 − k̃1)(x1)Y,11(x1, x

0
2)

G2(x2) =

(k̃2 − k̃1)e

∫
k̃1,1

k̃2 − k̃1
dx1

 (x01)Y (x01, x2)

G3(x3) = (a1x3 + b1, a2x3 + b2, a3x3 + b3),

where

(a1, a2, a3) =

(
k̃2

k̃1 − k̃2
e
−

∫ k̃1,1

k̃2−k̃1
dx1

)
(x01)


∫ G1(x1)(k̃1 − k̃2)e

−
∫ k̃1,1

k̃2−k̃1
dx1

k̃2,1
dx1

 (x01)

+ G2(x02)
]
− Ñ(x01, x

0
2)−

(∫
G1(x1)k̃2

k̃2,1
dx1

)
(x01).

We observed that this class of hypersurfaces has nonconstant Möbius curvature and they are not Dupin.
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4. Conclusions. From the results obtained in this work we can make the following conclusion:
The fact of considering hypersurfaces parametrized by lines of curvature in R4 with Laplace invariants
mji = mki = 0, mjik 6= 0 for i, j, k distinct fixed, allows us to find the same representation obtained in
[15], therefore, this work generalizes the results obtained in [15], i.e., the hypersurfaces of Dupin studied in
[15] are contained in this class of hypersurfaces.
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