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Abstract

In this paper we get some generalizations of Rakotch’s results [10] using the notion
of ω-distance on a metric space.
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Resumen

En este trabajo usando la nocion de ω − distancia sobre un espacio mtrico obten-
emos alugunas generalizaciones del teorema de Rakotch [10].
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1 Introduction

In 1996, O. Kada, T. Suzuki & W. Takahashi [6] introduced the concept of ω-distance on
a metric space, gave some examples, properties of ω-distance and they improved Caristi’s
fixed point [1], Ekeland’s ε-variational principle [5] and the non-convex minimization the-
orem according to W. Takahashi [17]. Finally, by the use of the concept of ω-distance
they proved a fixed point theorem in a complete metric space. This theorem generalized
the fixed theorems of Subrahmanyan [14], Kannan [7] and Ciric [3]. In the same year T.
Suzuki & W. Takahashi [15] gave another property of the ω-distance and using this no-
tion they proved a fixed point theorem for set-valued mappings on complete metric spaces
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which are related with Nadler’s fixed point theorem [9] and Edelstein theorem [4]. More-
over, they gave a characterization of completeness metric spaces. In 1997, T. Suzuki [16],
proved several fixed point theorems which are generalizations of the Banach contraction
principle and Kannan’s fixed point theorems, and moreover, they discuss a characteriza-
tion of metric completeness. In this paper we prove some fixed point theorems which are
generalizations of Rakotch’s theorem.

2 Preliminaries

Throughout this paper we denote by N the set of positive integers, by R the set of real
numbers and R+ = [0,+∞].

Definition 2.1. Let (M,d) be a metric space. A function p : M ×M → [0,+∞] is called
a ω-distance on M if the following conditions are satisfied:

w1.- p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ M .

w2.- For any x ∈ M , p(x, ·) : M → [0,+∞] is lower semi continuous.

w3.- For any ε > 0 exists δ = δ(ε) > 0 such that,
p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

The metric d is a ω-distance on M . Some other examples of ω-distances are given
in [6] and [15]. The following results are crucial in the proof of our theorems. The next
lemma was proved in [6].

Lemma 2.2. Let (M,d) be a metric space and let p be a ω-distance on M . Let {αn} and
{βn} be sequences in [0,+∞) converging to 0, and let x, y, z ∈ M . Then the following
hold:

a.- If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N then y = z. In particular, if
p(x, y) = 0 and p(x, z) = 0 then y = z.

b.- If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N then {yn} converges to z.

c.- If p(xn, xm) ≤ αn for any n,m ∈ N with m > n then {xn} is a Cauchy sequence.

d.- If p(y, xn) ≤ αn for any n ∈ N then {xn} is a Cauchy sequence.

Definition 2.3. Let (M,d) be a metric space. A finite sequence {x0, x1, . . . , xn} of points
of M is called an ε-chain joining x0 and xn if d(xi−1, xi) < ε for each ε > 0, i = 1, 2, . . . , n.

Definition 2.4. A metric space (M,d) is said to be ε-chainable if for each pair (x, y) of
its points there exists an ε-chain joining x and y.

Every connected metric space is ε-chainable but the converse in not always true. How-
ever, for compact spaces both are equivalent. The following result was proved in [15].
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Lemma 2.5. Let ε ∈ (0,+∞) and let (M,d) be an ε-chainable metric space. Then the
function p : M × M → [0,+∞) defined by

p(x, y) = inf{
n∑

i=1

d(xi−1, xi)/{x0, x1, . . . , xn}is an ε-chain joining x and y}

is a ω-distance on M .

We extend the class of functions introduced by Rakotch [10] in the following definition.

Definition 2.6. Let (M,d) be a metric space and let p be a ω-distance on M . We denote
by F the family of functions λ(x, y) satisfying the following conditions:

a.- λ(x, y) = λ(p(x, y)), i.e., λ is dependent on the ω-distance p on M .

b.- 0 ≤ λ(p) < 1 for every p > 0.

c.- λ(p) is monotonically decreasing function of p.

Now we introduce the following definition.

Definition 2.7. Let (M,d) be a metric space and let p be a ω-distance on M . A mapping
T : M → M is called a ω-Rakotch contraction if there exists a function λ(x, y) ∈ F such
that

p(Tx, Ty) ≤ λ(x, y)p(x, y)

for all x, y ∈ M .

Remarks:

a.- If p = d then T is called a Rakotch contraction.

b.- If λ(x, y) = k, 0 ≤ k < 1 then we get for all x, y ∈ M

p(Tx, Ty) ≤ kp(x, y).

T is called an ω-contraction [6] and [15], and if p = d then T is a Banach contraction.

c.- If λ(x, y) = k 0 ≤ k < 1 then for all x 6= y implies

p(Tx, Ty) < p(x, y)

and we call T a ω-contractive mapping. It is clear that if p = d then x 6= y implies
d(Tx, Ty) < d(x, y) and T is called a contractive mapping.



28 j.r. morales

3 Fixed point theorems

The next result generalizes Rakotch’s theorem [10].

Theorem 3.1. Let (M,d) be a complete metric space and let p be an ω-distance on M .
Let T : M → M be an ω-Rakotch contraction. Then there exists a unique z ∈ M such
that Tz = z. Further, the z satisfies p(z, z) = 0

Proof: Since T is a ω-Rakotch contraction there exists a mapping λ(x, y) ∈ F such that

p(Tx, Ty) ≤ λ(x, y)p(x, y)

for all x, y ∈ M .
Let x0 ∈ M and define xn = T nx0, n ∈ N

p(xn, xn+1) = p(Txn−1, Txn) ≤ λ(xn−1, xn)p(xn−1, xn) ≤ . . . ≤

≤
n−1∏

k=0

λ(p(xk, xk+1))p(x0, Tx0)

and
p(xn+1, xn) = p(Txn, Txn−1) ≤ λ(xn, xn−1)p(xn, xn−1) ≤ . . . ≤

≤
n−1∏

k=0

λ(p(xk, xk+1))p(x0, Tx0).

It follows that
p(xn, xn+1) < p(x0, Tx0)

and
p(xn+1, xn) < p(Tx0, x0)

for all n = 1, 2, . . ..
Now we prove that

p(x0, xn) ≤ C

for some C > 0 and n = 1, 2, 3, . . .
In fact,

p(x1, xn+1) ≤ λ(p(x0, xn))p(x0, xn)

and by the triangle inequality

p(x0, xn)λp(x0, x1) + p(x1, xn+1) + p(xn+1, xn)

and
p(x0, xn) ≤ p(x0, Tx0) + λ(p(x0, xn))p(x0, xn) + p(xn+1, xn)

hence
p(x0, xn) <

p(x0, Tx0) + p(Tx0, x0)
1 − λ(p(x0, Txn))

.
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Now if p(x0, Txn) ≥ α0 for a given α0 > 0, then by the monotonicity of λ(p) it follows
that

λ(p(x0, Txn)) ≤ λ(α0)

and therefore
p(x0, xn) <

p(x0, Tx0) + p(Tx0, x0)
1 − λ(α0)

= C.

On the other hand if p(xk, xk+1) ≥ ε0, k = 0, 1, . . . , n − 1 for any ε0 > 0 then by mono-
tonicity of λ it follows that

λ(p(xk, xk+1)) ≤ λ(ε0)

and hence
p(xn, xn+1) ≤ [λ(ε0)]np(x0, Tx0).

But 0 ≤ λ(ε0) < 1 by lemma 2.1 we have lim
n→∞

p(xn, xn+1) = 0.

We shall show that {xn} is a Cauchy sequence in (M,d). For m > 0, p(xn, xn+m) ≤
n−1∏

k=0

λ[p(xk, xk+m)]p(x0, Tx0).

If p(xk, xk+m) ≥ ε0 for any given ε0 > 0 and k = 0, 1, . . . , n − 1 then

p(xn, xn+m) ≤ [λ(ε0]n)p(x0, Tx0) → 0

as n → ∞ and by lemma 2.1 we have that {xn} is a Cauchy sequence. Since (M,d) is
complete, {xn} converges to some z ∈ M . Since xm → z and p(xn, .) is lower semicontin-
uous,

p(xn, z) ≤ lim
m→∞

p(xn, xm) ≤ λn(ε0)p(x0, Tx0)

so lim
n→∞

p(xn, z) = 0.
On the other hand,

p(xn, T z) = p(Txn−1, T z) ≤ λ(p(xn−1,z))p(xn−1, z) < p(xn−1, z)

so lim
n→∞

p(xn, T z) = 0 and by lemma 2.2 we have Tz = z.
Now,

p(z, z) = p(Tz, T z) ≤ λ(z, z)p(z, z) < p(z, z)

so p(z, z) = 0.
If y = Ty then

p(z, y) = p(Tz, Ty) ≤ λ(z, y)p(z, y) < p(z, y)

and p(z, y) = 0 so by lemma 2.1 we have z = y.

Remarks:

a.- In case p = d, (M,d) is a complete metric space and T : M → M is a Rakotch
contraction then we get the Rakotch’s theorem [10].

b.- If (M,d) a complete metric space and λ(x, y) = k, 0 ≤ k < 1 we get a generalization
of the Banach Contraction Principle [8] and [15].
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Theorem 3.2. Let (M,d) be a complete metric space, let p be a ω-distance on M and
T : M → M is a mapping such that for some integer m ∈ N Tm is an ω-Rakotch
contraction. Then T has a unique fixed point, i.e., there exists z ∈ M such that Tz = z
and moreover holds p(z, z) = 0.

Proof: Since for some m ∈ N Tm is a ω-Rakotch contraction, then there exists a function
λ(x, y) ∈ F such that

p(Tmx, Tmy) ≤ λ(x, y)p(x, y)

for every x, y ∈ M .
Hence by theorem 3.1 there exists a unique z ∈ M such that z = Tmz for m ∈ N and
Tz = T (Tmz) = Tm(Tz) it follows that z = Tz.
Let us remark that in case λ(x, y) = k, 0 ≤ k < 1, p = d and (M,d) complete metric
space we get the Chu-Diaz’s Theorem [2].
Now we get another generalization of Rakotch’s Theorem [10] using Maia’s Theorem [11].

Theorem 3.3. Let M be a non empty set, d, and ρ two metrics on M , p and q their
respective ω-distances on M and T : M → M a mapping. Suppose that:

a.- p(x, y) ≤ q(x, y) for all x, y ∈ M.

b.- (M,d) is a complete metric space.

c.- T : (M,ρ) → (M,ρ) is a ω-Rakotch contraction, i.e., there exists λ(x, y) ∈ F such
that

q(Tx, Ty) ≤ λ(x, y)q(x, y)

for every x, y ∈ M .
Then there exists z ∈ M such that Tz = z and moreover p(z, z) = 0.

Proof: Let x0 ∈ M and define xn = T nx0, n ∈ N. from (c), {xn} is a Cauchy sequence
in (M,ρ). By (a) and lemma 2.2, {xn} is a Cauchy sequence in (M,d) and by (b) it
converges. The rest of the proof is similar to Theorem 3.1.

Now we generalize a result given by Singh-Deb-Gardner in [13].

Theorem 3.4. Let ε ∈ (0,+∞) be and let (M,d) be a complete ε-chainable metric space.
If T is a mapping from M into itself satisfying, 0 < d(x, y) < ε implies
d(Tx, Ty) ≤ λ(x, y)d(x, y) for all x, y ∈ M and λ(x, y) ∈ F . Then T has a unique
z ∈ M such that z = Tz.

Proof: Since (M,d) is ε-chainable for every x, y ∈ M we define the function
p : M × M → [0,+∞) as follows:

p(x, y) = inf{
n∑

i=1

d(xi−1, xi)/{x0, . . . , xn} is an ε-chain joining x and y}.
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From lemma 2.2, p is a ω-distance on M satisfying d(x, y) ≤ p(x, y). Given x, y ∈ M and
any ε-chain {x0, . . . , xn} with x0 = x and xn = y we have for i = 1, . . . , n,

d(Txi−1, Txi) ≤ λ[d(xi−1, xi)]d(xi−1, xi) < λ(ε)ε < ε

. Hence Tx0, . . . , Txn is an ε-chain joining Tx and Ty, and

p(Tx, Ty) ≤
n∑

i=1

d(Txi−1, Txi) ≤
n∑

i=1

λ(d(xi−1, xi)d(xi−1, xi))

. Since {x0, . . . , xn} is an arbitrary ε-chain we have

p(Tx, Ty) ≤ λ(x, y)p(x, y),

hence by theorem 3.1, T has a unique fixed point z ∈ M, z = Tz.

Remark: If λ(x, y) = k, 0 ≤ k < 1 and p = d we get the result due to Edelstein [4].

Finally, the following result generalizes Singh’s theorem [12].

Theorem 3.5. Let ε ∈ (0,+∞) be and let (M,d) a complete ε-chainable metric space. If
T is a mapping from M into itself satisfying the condition,

d(x, y) < ε implies d(Tmx, Tmy) ≤ λ(x, y)d(x, y)

for every x, y ∈ M , for m ∈ M and λ(x, y) ∈ F , then T has a unique fixed point in M .

Proof: As in theorem 3.4 we define p as follows:

p(x, y) = inf{
n∑

i=1

d(xi−1, xi)/{x0, . . . , xn}is a ε-chain joining x and y}.

By lemma 2.2, p is a ω-distance on M satisfying d(x, y) ≤ p(x, y). As in theorem 3.3 we
have that Tm satisfies the condition

p(Tmx, Tmy) ≤ λ(x, y)p(x, y)

for all x, y ∈ M, m ∈ N and therefore by theorem 3.4 we conclude that Tm has a unique
z ∈ M such that z = Tmz. It follows that T has a unique fixed point z and moreover
p(z, z) = 0.

Finally, using the ideas of M.Telci-K.Tas [18] we obtain a generalization of Rakotch’s
theorem on noncomplete metric spaces.

Theorem 3.6. Let (M,d) be a noncomplete metric space and let p be a ω-distance on M .
Let T : M → M be a ω-Rakotch contraction and suppose that there exists a point u ∈ M
such that

θ(u) = inf{θ(x)/x ∈ M}

where θ(x) = p(x, Tx) for all x ∈ M . Then u is a fixed point of T .
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Proof: Suppose that u 6= T (u), since otherwise u would be a fixed point of T . Now since
T is a ω-Rakotch contraction there exists λ(x, y) ∈ F such that

p(Tx, Ty) ≤ λ(p(x, y))p(x, y)

for all x, y ∈ M and so

θ(Tu) = p(Tu, T 2u) ≤ λ(p(u, Tu))p(u, Tu) < p(u, Tu) = θ(u)

which is a contradiction.

The author wishes to thank the referees for their comments.
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