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Abstract

In this paper we get some generalizations of Rakotch’s results [10] using the notion
of w-distance on a metric space.
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Resumen

En este trabajo usando la nocion de w — distancia sobre un espacio mtrico obten-
emos alugunas generalizaciones del teorema de Rakotch [10].
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1 Introduction

In 1996, O. Kada, T. Suzuki & W. Takahashi [6] introduced the concept of w-distance on
a metric space, gave some examples, properties of w-distance and they improved Caristi’s
fixed point [1], Ekeland’s e-variational principle [5] and the non-convex minimization the-
orem according to W. Takahashi [17]. Finally, by the use of the concept of w-distance
they proved a fixed point theorem in a complete metric space. This theorem generalized
the fixed theorems of Subrahmanyan [14], Kannan [7] and Ciric [3]. In the same year T.
Suzuki & W. Takahashi [15] gave another property of the w-distance and using this no-
tion they proved a fixed point theorem for set-valued mappings on complete metric spaces
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which are related with Nadler’s fixed point theorem [9] and Edelstein theorem [4]. More-
over, they gave a characterization of completeness metric spaces. In 1997, T. Suzuki [16],
proved several fixed point theorems which are generalizations of the Banach contraction
principle and Kannan’s fixed point theorems, and moreover, they discuss a characteriza-

tion of metric completeness. In this paper we prove some fixed point theorems which are
generalizations of Rakotch’s theorem.

2 Preliminaries

Throughout this paper we denote by N the set of positive integers, by R the set of real
numbers and Rt = [0, +00].

Definition 2.1. Let (M,d) be a metric space. A function p: M x M — [0,400] is called
a w-distance on M if the following conditions are satisfied:

wi.- p(x,z) < pla,y) +ply, 2) for any x,y,z € M.
wy.- For any x € M, p(z,-) : M — [0,400] is lower semi continuous.

ws.- For any € > 0 exists 0 = () > 0 such that,
p(z,z) <6 and p(z,y) < 0 imply d(x,y) < €.

The metric d is a w-distance on M. Some other examples of w-distances are given
in [6] and [15]. The following results are crucial in the proof of our theorems. The next
lemma was proved in [6].

Lemma 2.2. Let (M,d) be a metric space and let p be a w-distance on M. Let {ay,} and

{Bn} be sequences in [0,+00) converging to 0, and let x,y,z € M. Then the following
hold:

a.- If p(zpn,y) < ay and p(zy,z) < By for any n € N then y = z. In particular, if
p(z,y) =0 and p(z,z) =0 then y = z.

b.- If p(xn, yn) < ap and p(zy, z) < B, for any n € N then {y,} converges to z.
c.- If p(xn, zp) < oy, for any n,m € N with m > n then {x,} is a Cauchy sequence.
d.- If p(y,zy,) < oy, for any n € N then {x,} is a Cauchy sequence. [

Definition 2.3. Let (M,d) be a metric space. A finite sequence {xo,x1,...,x,} of points
of M is called an e-chain joining xo and x,, if d(x;—1,x;) < € foreache >0, i =1,2,...,n.

Definition 2.4. A metric space (M,d) is said to be e-chainable if for each pair (z,y) of
its points there exists an e-chain joining x and y.

Every connected metric space is e-chainable but the converse in not always true. How-
ever, for compact spaces both are equivalent. The following result was proved in [15].
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Lemma 2.5. Let ¢ € (0,400) and let (M,d) be an e-chainable metric space. Then the
function p: M x M — [0,+00) defined by

n
p(z,y) = inf{z d(xi—1,2;)/{x0,21,...,Tn}is an e-chain joining x and y}
i=1

15 a w-distance on M. ]
We extend the class of functions introduced by Rakotch [10] in the following definition.

Definition 2.6. Let (M,d) be a metric space and let p be a w-distance on M. We denote
by F the family of functions A(x,y) satisfying the following conditions:

a.- Mz,y) = Ap(z,y)), i.e., X is dependent on the w-distance p on M.
b.- 0 < A(p) <1 for every p > 0.
c.- A(p) is monotonically decreasing function of p.
Now we introduce the following definition.
Definition 2.7. Let (M,d) be a metric space and let p be a w-distance on M. A mapping

T : M — M is called a w-Rakotch contraction if there exists a function \(x,y) € F such
that

p(Tx, Ty) < Mz, y)p(z,y)

for all x,y € M.
Remarks:
a.- If p =d then T is called a Rakotch contraction.
b.- If A(z,y) =k, 0 <k < 1 then we get for all z,y € M
p(Tx, Ty) < kp(z,y).
T is called an w-contraction [6] and [15], and if p = d then T is a Banach contraction.
c- If Mz,y) =k 0 <k <1 then for all x # y implies
p(Tz, Ty) < plz,y)

and we call T' a w-contractive mapping. It is clear that if p = d then x # y implies
d(Tz,Ty) < d(z,y) and T is called a contractive mapping.
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3 Fixed point theorems

The next result generalizes Rakotch’s theorem [10].

Theorem 3.1. Let (M,d) be a complete metric space and let p be an w-distance on M.
Let T : M — M be an w-Rakotch contraction. Then there exists a unique z € M such
that Tz = z. Further, the z satisfies p(z,z) =0

PROOF: Since T is a w-Rakotch contraction there exists a mapping A(z,y) € F such that
p(Tz, Ty) < Mz, y)p(z, y)

for all z,y € M.
Let xg € M and define z,, = T"xg,n € N

P(@n, Tnt1) = p(Txp—1,Txn) < Mxp-1,2n)p(Xn—1,2,) < ... <
n—1
< [ Mok, @xi0)p(ao, To)
k=0
and
P(@nt1,2n) = p(Txp, Trp—1) < Map, Tn-1)p(@n, 2p-1) < ... <
n—1
< [T Ao, wrs1))p(ao, Tao).
k=0

It follows that

p(Tn, Tny1) < p(zo, To)
and

p(Tnt1,xn) < p(Txo, o)
foralln=1,2,....

Now we prove that
p(xo,zn) < C

for some C >0and n=1,2,3,...
In fact,

p(x1, Tn41) < A(p(zo, on))p(20, Zn)
and by the triangle inequality

(20, Tn)AD(20, 1) + p(21, Tnt1) + P(Tnt1, Tn)

and

p(x0, 2n) < p(x0, Tx0) + AM(P(20, Zn))P(20, Tn) + P(Tnt1, Tn)
hence
p(xo, Txo) + p(Txo, z0)

p(x(b $n) <
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Now if p(z,Tx,) > «ap for a given oy > 0, then by the monotonicity of A(p) it follows
that
A(p(zo, Tzn)) < Mao)

and therefore
p(z0, Txo) + p(Two, 70)

1-— )\(Oéo)
On the other hand if p(xg, k1) > €0,k = 0,1,...,n — 1 for any €9 > 0 then by mono-
tonicity of A it follows that

=C.

p(x07 xn) <

Ap(zk, Tr11)) < Aeo)
and hence
P(@n; Tns1) < [Meo)]"p(zo, Txo).
But 0 < A(eg) < 1 by lemma 2.1 we have lim p(z,,z,+1) =0.
We shall show that {z,} is a Cauchy seg[;gflce in (M,d). For m > 0, p(xn, Tpim) <

n—1

H)‘[p(‘r/ﬂ $k+m)]p($0, TLZ'()).

k=0
If p(zk, Tprm) > €0 for any given €9 > 0 and k= 0,1,...,n — 1 then

p(xmxn-i-m) < [)\(Eo]n)p(xo,Txo) —0

as n — oo and by lemma 2.1 we have that {x,} is a Cauchy sequence. Since (M,d) is
complete, {z,,} converges to some z € M. Since x,, — z and p(xy,.) is lower semicontin-
uous,
P(Tn, 2) < nhlbi_r)noop(xmfpm) < A"(e0)p(x0, Tx0)
so lim p(xy,,z) =0.
n—oo
On the other hand,
p(mn, TZ) = p(Txn—ly TZ) < )\(p(xn—l,z))p(xn—ly Z) < p(xn—la Z)

so lim p(z,,Tz) = 0 and by lemma 2.2 we have Tz = z.
n—oo

Now,
pl(2:7) = p(T=.T2) < Mz 2oz, 2) < plz.2)
so p(z,z) =0.
If y = Ty then
p(z,y) = p(Tz,Ty) < Az, y)p(2,y) <p(zy)
and p(z,y) = 0 so by lemma 2.1 we have z = y. [
Remarks:

a.- In case p = d, (M,d) is a complete metric space and T : M — M is a Rakotch
contraction then we get the Rakotch’s theorem [10].

b.- If (M, d) a complete metric space and A(x,y) =k, 0 < k < 1 we get a generalization
of the Banach Contraction Principle [8] and [15].
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Theorem 3.2. Let (M,d) be a complete metric space, let p be a w-distance on M and
T : M — M is a mapping such that for some integer m € N T is an w-Rakotch
contraction. Then T has a unique fixed point, i.e., there exists z € M such that Tz = z
and moreover holds p(z,z) = 0.

PROOF: Since for some m € N T™ is a w-Rakotch contraction, then there exists a function
Az,y) € F such that

p(T™z, T™y) < M, y)p(z,y)

for every x,y € M.

Hence by theorem 3.1 there exists a unique z € M such that z = T™z for m € N and
Tz=T(T"z) =T"(Tz) it follows that z = T'z.

Let us remark that in case A(z,y) = k, 0 < k < 1, p = d and (M,d) complete metric
space we get the Chu-Diaz’s Theorem [2].

Now we get another generalization of Rakotch’s Theorem [10] using Maia’s Theorem [11].
|

Theorem 3.3. Let M be a non empty set, d, and p two metrics on M, p and q their
respective w-distances on M and T : M — M a mapping. Suppose that:

a.- p(‘ray) < Q(‘Tay) fOT’ all T,y € M.
b.- (M,d) is a complete metric space.

c- T :(M,p) — (M,p) is a w-Rakotch contraction, i.e., there exists \(x,y) € F such
that

q(Tz, Ty) < XMz, y)q(z,y)

for every x,y € M.
Then there exists z € M such that Tz = z and moreover p(z,z) = 0.

PROOF: Let xyp € M and define z,, = T"xg,n € N. from (c), {x,} is a Cauchy sequence
in (M,p). By (a) and lemma 2.2, {z,} is a Cauchy sequence in (M,d) and by (b) it
converges. The rest of the proof is similar to Theorem 3.1. [ |

Now we generalize a result given by Singh-Deb-Gardner in [13].

Theorem 3.4. Let ¢ € (0,400) be and let (M, d) be a complete e-chainable metric space.
If T is a mapping from M into itself satisfying, 0 < d(z,y) < € implies
d(Tz, Ty) < MNx,y)d(x,y) for all x,y € M and N x,y) € F. Then T has a unique
z € M such that z =Tz.

PrROOF: Since (M,d) is e-chainable for every z,y € M we define the function
p: M x M —[0,4+00) as follows:

p(z,y) = inf{Zd(wi_l,xi)/{xo, ..., &y} is an e-chain joining x and y}.
i=1
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From lemma 2.2, p is a w-distance on M satisfying d(z,y) < p(z,y). Given z,y € M and
any e-chain {zg,...,x,} with o = z and x,, = y we have for i =1,...,n,

d(Txi—1,Tx;) < Nd(xi—1,z;)]d(xi—1,2;) < Me)e < e
. Hence Txg,...,Tx, is an e-chain joining Tz and Ty, and
p(Tl‘, Ty) S Zd(Tﬂ)i_l, T:Ei) § Z/\(d(!l?i_l, l‘i)d(l‘i_l, :EZ))
i=1 =1

. Since {zo,...,2,} is an arbitrary e-chain we have

p(Tz, Ty) < Mz, y)p(z,y),
hence by theorem 3.1, T has a unique fixed point z € M, z =Tz.
Remark: If A(z,y) =k, 0 <k <1 and p = d we get the result due to Edelstein [4].

Finally, the following result generalizes Singh’s theorem [12].

Theorem 3.5. Let ¢ € (0,+00) be and let (M,d) a complete e-chainable metric space. If
T is a mapping from M into itself satisfying the condition,

d(z,y) < e implies d(T™z,T™y) < Mz, y)d(z,y)
for every x,y € M, form € M and XN x,y) € F, then T has a unique fized point in M.

PROOF: As in theorem 3.4 we define p as follows:

p(z,y) = inf{Zd(mi_l,xi)/{xo, ..., Zp}is a e-chain joining x and y}.

i=1

By lemma 2.2, p is a w-distance on M satisfying d(z,y) < p(z,y). As in theorem 3.3 we
have that T satisfies the condition

p(T"z, T™y) < Mz, y)p(z,y)

for all z,y € M, m € N and therefore by theorem 3.4 we conclude that 7™ has a unique
z € M such that z = T™z. It follows that T has a unique fixed point z and moreover
p(z,2) =0. |

Finally, using the ideas of M.Telci-K.Tas [18] we obtain a generalization of Rakotch’s
theorem on noncomplete metric spaces.

Theorem 3.6. Let (M,d) be a noncomplete metric space and let p be a w-distance on M.
Let T : M — M be a w-Rakotch contraction and suppose that there exists a point uw € M
such that

O(u) =inf{b(z)/x € M}

where 6(x) = p(x,Tx) for all x € M. Then u is a fized point of T.
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PROOF: Suppose that u # T'(u), since otherwise u would be a fixed point of T'. Now since
T is a w-Rakotch contraction there exists A(z,y) € F such that

p(Tz, Ty) < Ap(x, y))p(z,y)
for all x,y € M and so
0(Tu) = p(Tu, T?u) < XMp(u, Tu))p(u, Tu) < p(u, Tu) = 0(u)

which is a contradiction. []

The author wishes to thank the referees for their comments.
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