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Abstract. We present the asymptotic analysis of a Darcy-Stokes coupled
system, modeling the fluid exchange between a narrow channel (Stokes flow)
and a porous medium (Darcy flow), coupled through a C2 curved interface.
The channel is a cylindrical domain between the interface (Γ) and a parallel
translation of itself (Γ + ǫ êN , ǫ > 0). The introduction of a change variable
(to fix the domain geometry) and the introduction of two systems of coor-
dinates: the Cartesian and a local one (consistent with the geometry of the
surface), permit to find the limiting form of the system when the width of the
channel tends to zero (ǫ → 0). The limit problem is a coupled system with
Darcy flow in the porous medium and Brinkman flow on the curved interface
(Γ).
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Análisis asintótico de un sistema Darcy-Stokes

acoplado a través de una interfaz curva
Resumen. En el trabajo se presenta el análisis asintótico de un sistema
Darcy-Stokes acoplado a través de una interfaz curva. El sistema modela el
intercambio de fluido entre un canal angosto (flujo Stokes) y un medio poroso
(flujo Darcy). El canal es un dominio cilíndrico definido entre la interfaz (Γ)
y una traslación paralela de dicha superficie (Γ + ǫêN , ǫ > 0). Utilizando un
cambio de variables para fijar un dominio de referencia e introduciendo dos
sistemas de coordenadas, el Cartesiano canónico y el local (consistente con
la geometría de la superficie), es posible encontrar la forma límite cuando
el ancho del canal tiende a cero (ǫ → 0). El problema límite es un sistema
acoplado con flujo Darcy en el medio poroso y flujo Brinkman en la interfaz
(Γ).
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262 F.A. Morales

1. Introduction

In this paper we continue the work presented in [14], extending the result to a more
general and realistic scenario. That is, we find the limiting form of a Darcy-Stokes (see
equations (26)) coupled system, within a saturated domain Ωǫ inRN , consisting in three
parts: a porous medium Ω1 (Darcy flow), a narrow channel Ωǫ

2 whose width is of order
ǫ (Stokes flow) and a coupling interface Γ = ∂Ω1 ∩ ∂Ωǫ

2 (see Figure 1 (a)). In contrast
with the system studied in [14], where the interface is flat, here the analysis is extended
to curved interfaces. It will be seen that the limit is a fully-coupled system consisting
of Darcy flow in the porous medium Ω1 and a Brinkman-type flow on the part Γ of its
boundary, which now takes the form of a parametrized N − 1 dimensional manifold.

The central motivation in looking for the limiting problem of our Darcy-Stokes system is
to attain a new model, free of the singularities present in (26). These are the narrowness
of the channel O(ǫ) and the high velocity of the fluid in the channel O(ǫ), both (geometry
and velocity) with respect to the porous medium. Both singularities have a substantial
negative impact in the computational implementation of the system, such as numerical
instability and poor quality of the solutions. Moreover, when considering the case of
curved interfaces, the geometry of the surface aggravates these effects, making even more
relevant the search for an approximate singularity-free system as it is done here.

The relevance of the Darcy-Stokes system itself, as well as its limiting form (a Darcy-
Brinkman system) is confirmed by the numerous achievements reported in the literature:
see [2], [4], [6] for the analytical approach, [3], [5], [9], [13] for the numerical analysis point
of view, see [11], [21] for numerical experimental coupling and [12] for a broad perspective
and references. Moreover, the modeling and scaling of the problem have already been
extensively justified in [14]. Hence, this work is focused on addressing (rigorously) the
interface geometry impact in the asymptotic analysis of the problem. It is important
to consider the curvature of interfaces in the problem, rather than limiting the analy-
sis to flat or periodic interfaces, because the fissures in a natural bedrock (where this
phenomenon takes place) have wild geometry. In [7], [8] the analysis is made using ho-
mogenisation techniques for periodically curved surfaces, which is the typical necessary
assumption for this theory. In [17], [18] the analysis is made using boundary layer tech-
niques, however no explicit results can be obtained, as usually with these methods. An
early and simplified version of the present result can be found in [16], where incorporating
the interface geometry in the asymptotic analysis of a multiscale Darcy-Darcy coupled
system is done and a explicit description of the limiting problem is given.

The successful analysis of the present work is because of keeping an interplay between
two coordinate systems: the Cartesian and a local one, consistent with the geometry of
the interface Γ. While it is convenient to handle the independent variables in Cartesian
coordinates, the asymptotic analysis of the flow fields in the free fluid region Ωǫ

2 is more
manageable when decomposed in normal and tangential directions to the interface (the
local system). The a-priori estimates, the properties of weak limits, as well as the struc-
ture of the limiting problem will be more easily derived with this double bookkeeping of
coordinate systems, rather than disposing of them for good. It is therefore a strategic
mistake (not a mathematical one, of course) to seek a transformation flattening out the
interface, as it is the usual approach in traces’ theory for Sobolev spaces. The proposed
method is significantly simpler than other techniques and it is precisely this simplicity
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(a) Original Domain (b) Scaled Domain after the change of variable
x 7→ ϕ(x), with ϕ defined in Equation (10).

Figure 1. Figure (a) depicts the original domain with a thin channel on top, where we set the Stokes
flow. Figure (b) depicts the domain after scaling by the change of variables x 7→ ϕ(x), where ϕ is
defined in Equation (10). This will be the domain of reference which is used for asymptotic analysis of
the problem.

which permits to obtain the limiting form explicit description for a problem of such
complexity, as a multiscale coupled Darcy-Stokes.

Notation

We shall use standard function spaces (see [1], [20]). For any smooth bounded region
G in RN with boundary ∂G, the space of square integrable functions is denoted by
L2(G) and the Sobolev space H1(G) consists of those functions in L2(G) for which
each of its first-order weak partial derivatives belongs to L2(G). The trace is the con-
tinuous linear function γ : H1(G) → L2(∂G) which agrees with the restriction to the
boundary on smooth functions, i.e., γ(w) = w

∣∣
∂G

if w ∈ C(cl(G)). Its kernel is

H1
0 (G)

def
= {w ∈ H1(G) : γ(w) = 0}. The trace space is H1/2(∂G)

def
= γ(H1(G)),

the range of γ endowed with the usual norm from the quotient space H1(G)/H1
0 (G),

and we denote by H−1/2(∂G) its topological dual. Column vectors and correspond-
ing vector-valued functions will be denoted by boldface symbols, e.g., we denote the

product space
[
L2(G)

]N
by L2(G) and the respective N -tuple of Sobolev spaces by

H1(G)
def
=

[
H1(G)

]N
. Each w ∈ H1(G) has gradient ∇w =

(
∂w
∂x1

, . . . , ∂w
∂xN

)
∈ L2(G),

furthermore we understand it as a row vector. We shall also use the space Hdiv(G)
of vector functions w ∈ L2(G) whose weak divergence ∇ · w belongs to L2(G). The
symbol n̂ stands for the unit outward normal vector on ∂G. If w is a vector function
on ∂G, we indicate its normal component by w

n̂
= γ(w) · n̂, and its normal projection
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264 F.A. Morales

by w(n̂) = w
n̂
n̂. The tangential component is denoted by w(tg) = w − w(n̂). The

notations wN ,wT indicate respectively, the last component and the first N − 1 compo-
nents of the vector function w in the canonical basis. For the functions w ∈ Hdiv(G),
there is a normal trace defined on the boundary values, which will be denoted by
w · n̂ ∈ H−1/2(∂G). For those w ∈ H1(G) this agrees with γ(w) · n̂. Greek letters
are used to denote general second-order tensors. The contraction of two tensors is given
by σ : κ =

∑
i, j σijκij . For a tensor-valued function κ on ∂G, we denote the normal

component (vector) by κ(n̂)
def
=

∑
j κij n̂j ∈ RN , and its normal and tangential parts

by κ(n̂) · n̂ = κ(n̂)
n̂

def
=

∑
i, j κijn̂in̂j , κ(n̂)tg

def
= κ(n̂) − κ

n̂
n̂, respectively. For a

vector function w ∈ H1(G), the tensor (∇w)ij =
∂wi

∂xj
is the gradient of w and the tensor

(
E(w)

)
ij
= 1

2

(
∂wi

∂xj
+

∂wj

∂xi

)
is the symmetric gradient.

The set B0
def
= {ê1, . . . , , êN} indicates the standard canonical basis in RN . For a

column vector x =
(
x 1, . . . , xN−1, xN

)
∈ RN we denote by x̃ =

(
x1, . . . , xN−1

)
the

vector in RN−1 consisting of the first N − 1 components of x. In addition, we identifyRN−1 × {0} with RN−1 by x = (x̃, xN). The operators ∇T , ∇T · denote respectively
theRN−1-gradient and theRN−1-divergence in the first N−1-canonical directions, i.e.,

∇T

def
=

(
∂

∂x1
, . . . , ∂

∂xN−1

)
; moreover, we regard ∇T as a row vector. Finally, ∇t,∇t

T denote

the corresponding operators written as column vectors.

Remark 1.1. It shall be noticed that different notations have been chosen to indicate the
first N − 1 components: we use x̃ for a vector variable as x, while we use wT for a vector
function w (or the operator ∇T ,∇ ). This difference in notation will ease keeping track
of the involved variables and will not introduce confusion.

Preliminary Results

We close this section recalling some classic results.

Lemma 1.2. Let G ⊂ RN be an open set with Lipschitz boundary, and n̂ be the unit
outward normal vector on ∂G. Let the normal trace operator u ∈ Hdiv(G) 7→ u · n̂ ∈
H−1/2(∂G) be defined by

〈
u · n̂, φ

〉
H−1/2(∂G), H1/2(∂G)

def
=

∫

G

(
u ·∇φ+∇ ·uφ

)
dx, φ ∈ H1(G). (1)

For any g ∈ H−1/2(∂G) there exists u ∈ Hdiv(G) such that u · n̂ = g on ∂G and
‖u‖Hdiv(G) ≤ K‖g‖H−1/2(∂G), with K depending only on the domain G. In particular, if

g belongs to L2(∂G), the function u satisfies the estimate ‖u‖Hdiv(G) ≤ K‖g‖0,∂G.

Proof. See Lemma 20.2 in [19]. �XXX

Next we recall a central result to be used in this work

Theorem 1.3. Let X,Y, X′,Y′ be Hilbert spaces and their corresponding topological
duals. Let A : X → X′, B : X → Y′, C : Y → Y′ be linear and continuous operators
satisfying the following conditions
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i. A is non-negative and X-coercive on ker(B);

ii. B satisfies the inf-sup condition

inf
y∈Y

sup
x∈X

|Bx(y)|
‖x‖X ‖y‖Y

> 0 ; (2)

iii. C is non-negative and symmetric.

Then, for every F1 ∈ X′ and F2 ∈ Y′, the problem (3) below has a unique solution
(x,y) ∈ X×Y:

(x,y) ∈ X×Y : Ax+ B′y = F1 in X′,

−Bx+ Cy = F2 in Y′.
(3)

Moreover, the solution satisfies the estimate

‖x‖X + ‖y‖Y ≤ c (‖F1‖X′ + ‖F2‖Y′), (4)

for a positive constant c depending only on the preceding assumptions on A, B, and C.

Proof. See Section 4 in [10]. �XXX

2. Geometric setting and formulation of the problem

In this section we introduce the Darcy-Stokes coupled system when the interface is curved,
analogous to the one presented in [14]. We begin with the geometric setting

2.1. Geometric setting and change of coordinates

We describe here the geometry of the domains to be used in the present work; see Figure

1 (a) for the case N = 2. The ǫ-domain Ωǫ def
= Ω1 ∪ Γ ∪ Ωǫ

2 is composed of two disjoint

bounded open sets Ω1 and Ωǫ
2 inRN sharing a common interface Γ

def
= ∂Ω1∩∂Ωǫ

2 ⊆RN .
The domain Ω1 is the porous medium and Ωǫ

2 is the free fluid region. For simplicity we
have assumed that the domain Ωǫ

2 is a cylinder defined by the interface Γ and a small
height ǫ > 0. It follows that the interface must verify specific requirements for a successful
analysis

Hypothesis 1. There exist G0, G bounded open connected domains in RN−1 such that
cl(G) ⊂ G0, and a function ζ : G0 → R in C2(G0), such that the interface Γ can be
described by

Γ
def
=

{(
x̃, ζ (x̃)

)
: x̃ ∈ G

}
. (5)

That is, Γ is aparametrized N − 1 manifold in RN . In addition, the domain Ωǫ
2 is

described by

Ωǫ
2

def
=

{(
x̃, y

)
: ζ (x̃) < y < ζ (x̃) + ǫ, x̃ ∈ G

}
. (6)

Remark 2.1. i. Observe that the domain G is the orthogonal projection of the open
surface Γ ⊆RN into RN−1.
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ii. Notice that due to the properties of ζ it must hold that if n̂ = n̂(x̃) is the upwards
unitary vector, orthogonal to the surface Γ, then

δ
def
= inf

{
n̂(x̃) · êN : x̃ ∈ G

}
> 0. (7)

Here êN is the last element of the standard canonical basis in RN .

For simplicity of notation in the following we write

iii.
Γ + ǫ

def
=

{(
x̃, ζ (x̃) + ǫ

)
: x̃ ∈ G

}
, (8)

iv.

Ω2
def
= Ω1

2, Ω
def
= Ω1. (9)

In order to conduct the asymptotic analysis of the coupled system, a domain of reference
Ω needs to be settled (see Figure 1 (b)). Therefore, we adopt a bijection between domains
and account for the changes in the differential operators.

Definition 2.2. Let ϕ : Ωǫ
2 → Ω be the change of variables defined by

ϕ(y1, . . . , yN−1, yN )
def
=





y1
...

yN−1

ǫ−1
(
yN − ζ(y1, . . . , yN−1)

)
+ ζ

(
y1, . . . , yN−1

)





, (10)

with y = (y1, . . . , yN−1, yN ) ∈ Ωǫ
2. Also, denote x = (x1, . . . , xN−1, z)

def
= ϕ(y), i.e.,

x = (x1, . . . , xN−1, z) ∈ Ω2, x · êℓ = ϕ(y) · êℓ for all ℓ = 1, . . .N, (11)

where ê1, . . . , êN are the standard canonical basis in RN .

Remark 2.3. Observe that ϕ : Ωǫ
2 → Ω2 is a bijective map (see Figure 1 (b)).

Gradient operator

Denote by y
∇, x∇ the gradient operators with respect to the variables y and x respec-

tively. Due to the convention of equation 9 above, a direct computation shows that these
operators satisfy the relationship

y
∇

t =

{
y
∇T

t

∂
∂yN

}
=

[
I (1− ǫ−1) x∇T

tζ

0 ǫ−1

]{
x
∇T

t

∂z

}
. (12)

In the block matrix notation above, it is understood that I is the identity matrix inR(N−1)×(N−1), ∇T ζ,0 are vectors in RN−1 and ∂z = ∂
∂z . In order to apply these

changes to the gradient of a vector function w, we recall the matrix notation

y
∇w =




y
∇w1

...
y
∇wN


 =




x
∇Tw1 + (1− ǫ−1)∂zw1

x
∇T ζ ǫ−1 ∂zw1

...
...

x
∇TwN + (1− ǫ−1)∂zwN

x
∇T ζ ǫ−1 ∂zwN


 . (13)
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Reordering we get

y
∇w (x̃, xN) =

[
xDǫw

1

ǫ
∂z w

]
. (14)

Here, the operator x
Dǫ is defined by

x
Dǫw

def
= x

∇Tw +
(
1− 1

ǫ

)
∂zw

x
∇T

tζ, (15)

i.e., x
Dǫw ∈ RN×(N−1); it is introduced to have a more efficient notation. In the next

section we address the interface conditions.

Divergence operator

Observing the diagonal of the matrix in (13) we have

y
∇ ·w (x̃, xN) =

(
x
∇T ·wT +

(
1− 1

ǫ

)
∂z wT · x∇T · ζ

)
(x̃, z) +

1

ǫ
∂zwN (x̃, z) . (16)

Remark 2.4. The prescript indexes y,x written on the operators above were used only
to derive the relation between them; however, they will be dropped once the context is
clear.

Local vs global vector basis

It shall be seen later on, that the velocities in the channel need to be expressed in terms of
an orthonormal basis B, such that the normal vector n̂ belongs to B, and the remaining
vectors are locally tangent to the interface Γ. Since ζ : G →R is a C2 function, it follows
that x̃ 7→ n̂(x̃) is at least C1.

Definition 2.5. Let B0
def
=

{
ê1, . . . , êN−1, êN

}
be the standard canonical basis in RN .

For any x̃ ∈ G let B = B(x̃) def
=

{
ν̂1, . . . , ν̂N−1, n̂

}
be an orthonormal basis in RN .

Define the linear map U(x̃) :RN →RN by

U(x̃)ν̂i
def
= êi, for i = 1, . . . , N − 1, U(x̃)n̂

def
= êN . (17)

We say the map x̃ 7→ U(x̃) is a stream line localizer if it is of class C1. In the sequel
we write it with the following block matrix notation:

U(x̃)
def
=

[
UT,tg(x̃) UT,n̂(x̃)
UN,tg(x̃) UN,n̂(x̃)

]
. (18)

Here, the indexes T and N stand for the first N − 1 components and the last component
of the vector field. The indexes tg and n̂ indicate the tangent and normal directions to
the interface Γ.

Remark 2.6. i. Since ζ is bounded an C2(G), clearly for each x̃ ∈ G, a basis B ={
ν̂1, . . . , ν̂N−1, n̂

}
can be chosen so that x̃ 7→ U(x̃) is C1. In the following it will

be assumed that U is a stream line localizer.
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ii. Notice that by definition U(x̃) is an orthogonal matrix for all x̃ ∈ G.

Next, we express the velocity fields w2 in terms of the normal and tangential components,
using the following relations:

w2
n̂(x̃ ) = w2 · n̂(x̃), (19a)

w2
tg(x̃) =





w2 · ν̂1(x̃)
...

w2 · ν̂N−1(x̃)





. (19b)

Clearly, if w2 = w2(x̃, xN ) is expressed in terms of the canonical basis, the relationship
between velocities is given by

w2
(
x̃, xN

)
= U(x̃)

{
w2

tg(x̃)

w2
n̂(x̃ )

}
(
x̃, xN

)

=

[
UT,tg(x̃) UT,n̂(x̃)

UN,tg(x̃) UN,n̂(x̃)

]{
w2

tg(x̃)

w2
n̂(x̃ )

}
(
x̃, xN

)
.

(20)

Remark 2.7. We stress the following observations

i. The procedure above does not modify the dependence of the variables; only the way
velocity fields are expressed as linear combinations of a convenient (stream line)
orthonormal basis.

ii. The fact that U is a smooth function allows to claim that w2
tg belongs to

[
H1(Ω2)

]N−1
and w2

n̂
∈ H1(Ω2).

iii. In order to keep notation as light as possible, the dependence of the matrix U with
respect to x̃, as well as the normal and tangential directions n̂, tg will be omitted
whenever is not necessary to write explicitly these parameters.

iv. Recall that for any vector field v, v(n̂) = (v · n̂)n̂ denotes its normal projection
on the direction n̂, while v(tg) = v − v(n̂), i.e., the component orthogonal to n̂

(and tangent to Γ). Considering the previous, given any two flow fields u2,w2, the
following isometric identities hold:

u2
tg ·w2

tg = u2(tg) ·w2(tg),

u2
n̂
·w2

n̂
= u2(n̂) ·w2(n̂),

u2 ·w2 = u2(tg) ·w2(tg) + u2(n̂) ·w2(n̂) = u2
tg ·w2

tg + u2
n̂
w2

n̂
.

(21)

Proposition 2.8. Let w2 ∈ H1(Ω2), and let w2
n̂
,w2

tg be as defined in (19). Then,

i.

∂zw
2
(
x̃, xN

)
= U(x̃)

{
∂z w

2
tg(x̃)

∂z w
2
n̂(x̃ )

}
(
x̃, xN

)
. (22)
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ii.

∥∥∂zw2
∥∥2
0,Ω2

=
∥∥∂zw2

T

∥∥2
0,Ω2

+
∥∥∂zw2

N

∥∥2
0,Ω2

=
∥∥∂zw2

tg

∥∥2
0,Ω2

+
∥∥∂zw2

n̂

∥∥2
0,Ω2

.
(23)

Proof. i. It suffices to observe that the orthogonal matrix U defined in (20) is inde-
pendent from z.

ii. Due to (22), we have

∣∣∂zw2 (x̃, xN)
∣∣2 = ∂zw

2 (x̃, xN) · ∂zw2 (x̃, xN)

= U(x̃)

{
∂z w

2
tg(x̃)

∂z w
2
n̂(x̃ )

}
(x̃, xN) · U(x̃)

{
∂z w

2
tg(x̃)

∂z w
2
n̂(x̃ )

}
(x̃, xN)

=

∣∣∣∣

{
∂z w

2
tg(x̃)

∂z w
2
n̂(x̃ )

}∣∣∣∣
2

.

The last equality holds true because the matrix U(x̃) is orthogonal at each point
x̃ ∈ G, therefore it is an isometry in the Hilbert spaceRN endowed with the standard

inner product. Recalling that
∣∣∂zw2

T

(
x̃, xN

)∣∣2 +
∣∣∂zw2

N

(
x̃, xN

)∣∣2 =
∣∣∂zw2

(
x̃, xN

)∣∣2
for all x = (x̃, xN), the result follows.

�XXX

2.2. Interface conditions and the strong form

The interface conditions need to account for stress and mass balance. We start decom-
posing the stress in its tangential and normal components; the former is handled by the
Beavers-Joseph-Saffman (24a) condition and the latter by the classical Robin boundary
condition (24b); this gives

σ2(n̂)tg = ǫ2 β
√
Qv2(tg) , (24a)

σ2(n̂)
n̂
− p2 + p1 = αv1 · n̂ on Γ. (24b)

In the expression (24a) above, ǫ2 is a scaling factor introduced to balance out the
geometric singularity coming from the thinness of the channel. In addition, the
coefficient α ≥ 0 in (24b) is the fluid entry resistance.

Next, recall that the stress satisfies σ2 = 2 ǫ µE(v2) (where the scale ǫ is intro-
duced according to the thinness of the channel and µ > 0 is the shear viscosity of the
fluid; see also Hypothesis 2) and that ∇ ·v2 = 0 (since the system is conservative); then
we have

∇ · σ2 = ∇ ·
[
2 ǫ µE

(
v2

)]
= ǫ µ∇ ·∇v2.

Replacing in the equations (24) we derive the following set of interface conditions:

ǫ µ
(∂ v2

∂ n̂
−
(∂ v2

∂ n̂
· n̂

)
n̂
)
= ǫ2β

√
Qv2(tg) , (25a)
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ǫ µ
(∂ v2

∂ n̂
· n̂

)
− p2 + p1 = αv1 · n̂, (25b)

v1 · n̂ = v2 · n̂ on Γ. (25c)

The condition (25c) states the fluid flow (or mass) balance.

With the previous considerations, the Darcy-Stokes coupled system in terms of
the velocity v and the pressure p is given by

∇ ·v1 = h1 , (26a)

Qv1 +∇p1 = 0 , in Ω1. (26b)

∇ · v2 = 0, (26c)

−∇ · 2ǫµE(v2) +∇p2 = f2 , in Ω2. (26d)

Here, equations (26a), (26b) correspond to the Darcy flow filtration through the porous
medium, while equations (26c) and (26d) stand for the Stokes free flow. Finally, we adopt
the following boundary conditions:

p1 = 0 on ∂Ω1 − Γ. (27a)

v2 = 0 on ∂Ωǫ
2 −

(
Γ + ǫ

)
. (27b)

∂ v2

∂ n̂
−
(∂ v2

∂ n̂
· n̂

)
n̂ = 0 on Γ + ǫ, (27c)

v2 · n̂ = v 2
n̂
= 0 on Γ + ǫ. (27d)

The system of equations (26), (27) and (25) constitute the strong form of the Darcy-
Stokes coupled system.

Remark 2.9. i. For a detailed exposition on the system’s scaling, namely, the fluid
stress tensor σ2 = 2 ǫ µE(v2) and the Beavers-Joseph-Saffman condition (24a), to-
gether with the formal asymptotic analysis, we refer to [15].

ii. A deep discussion on the role of each physical variable and parameter in equations
(26), as well as the meaning of the boundary conditions (27), can be found in Sections
1.2, 1.3 and 1.4 in [14].

2.3. Weak variational formulation and a reference domain

In this section we present the weak variational formulation of the problem defined by the
system of equations (26), (27) and (25), on the domain Ωǫ. Next, we rescale Ωǫ

2 to get a
uniform domain of reference. We begin defining the function spaces where the problem
is modeled.

Definition 2.10. Let Ω,Ω1,Ω
ǫ
2,Γ be as introduced in Section 2.1; in particular, Ω2 and

Γ satisfy Hypothesis 1. Define the spaces

Xǫ
2

def
=

{
v ∈ H1(Ωǫ

2) : v = 0 on ∂Ωǫ
2 −

(
Γ + ǫ

)
, v · n̂ = 0 onΓ + ǫ

}
, (28a)
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Xǫ def
=

{
[v1,v2 ] ∈ Hdiv(Ω

ǫ
1)×Xǫ

2 : v1 · n̂ = v2 · n̂ onΓ
}

=
{
v ∈ Hdiv(Ω

ǫ) : v2 ∈ Xǫ
2

}
,

(28b)

Yǫ def
= L2(Ωǫ), (28c)

endowed with their respective natural norms. Moreover, for ǫ = 1 we simply write X,
X2 and Y.

In order to attain well-posedness of the problem, the following hypothesis is adopted.

Hypothesis 2. It will be assumed that µ > 0 and that the coefficients β, α are non-
negative and bounded almost everywhere. Moreover, the tensor Q is elliptic, i.e., there
exists a positive constant CQ such that (Qx) · x ≥ CQ‖x‖2 for all x ∈RN .

Theorem 2.11. Consider the boundary-value problem defined by the equations (26), the
interface coupling conditions (25) and the boundary conditions (27); then,

i. A weak variational formulation of the problem is given by

[
vǫ, pǫ

]
∈ Xǫ ×Yǫ :

∫

Ω1

(
Qv1, ǫ ·w1 − p1,ǫ∇ ·w1

)
dy +

∫

Ωǫ
2

(
ǫ µ∇v 2,ǫ − p 2,ǫδ

)
: ∇w2 dỹdyN

+ α

∫

Γ

(
v 2,ǫ · n̂

) (
w2 · n̂

)
dS +

∫

Γ

ǫ2 β
√
Q v

2,ǫ
tg ·w2

tg dS

=

∫

Ωǫ
2

f 2, ǫ ·w2 dỹ dyN , (29a)

∫

Ω1

∇ · v1,ǫ ϕ1 dy +

∫

Ωǫ
2

∇ · v 2,ǫ ϕ2 dỹ dyN =

∫

Ω1

h1, ǫ ϕ1 dy, (29b)

for all
[
w, ϕ

]
∈ Xǫ ×Yǫ.

ii. The problem (29) is well-posed.

iii. The problem (29) is equivalent to

[v ǫ,p ǫ] ∈ X×Y :
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∫

Ω1

Qv1,ǫ ·w1 dx−
∫

Ω1

p1,ǫ ∇ ·w1 dx− ǫ

∫

Ω2

p 2,ǫ
∇T ·w2

T dx̃ dz

− ǫ
(
1− 1

ǫ

) ∫

Ω2

p 2,ǫ ∂z w
2
T ·∇T ζ dx̃ dz −

∫

Ω2

p 2,ǫ ∂zw
2
N dx̃ dz

+ ǫ2
∫

Ω2

µDǫv 2,ǫ : Dǫw2 dx̃ dz +

∫

Ω2

µ∂z v
2,ǫ · ∂z w2 dx̃ dz

+ α

∫

Γ

(
v1,ǫ · n̂

) (
w1 · n̂

)
dS + ǫ2

∫

Γ

β
√
Qv

2,ǫ
tg ·w2

tg dS

= ǫ

∫

Ω2

f2,ǫ ·w2 dx̃ dz, (30a)

∫

Ω1

∇ ·v1,ǫϕ1 dx+ ǫ

∫

Ω2

∇T · v 2,ǫ
T

ϕ2 dx̃ dz

+ ǫ
(
1− 1

ǫ

)∫

Ω2

∂zv
2,ǫ
T

·∇T ζ ϕ
2 dx̃ dz +

∫

Ω2

∂zv
2,ǫ
N

ϕ2 dx̃ dz =

∫

Ω1

h1, ǫ ϕ1 dx,

(30b)

for all [w,Φ] ∈ X×Y.

Proof. i. See Proposition 3 in [14]. We simply highlight that the term∫
Ω2

ǫ2β
√
Qv

2,ǫ
T · w2

T
dS has been replaced by

∫
Ω2

ǫ2β
√
Qv 2

tg · w2
tg dS, due to the

isometric identities (21).

ii. See Theorem 6 in [14]. The technique identifies the operators A,B, C in the varia-
tional statements (29a) and (29b), then it verifies that these operators satisfy the
hypotheses of Theorem 1.3; this result delivers well-posedness.

iii. A direct substitution of the expressions (14) and (16) in the statements (29), com-
bined with the definition (15) yields the system (30). (Also notice that the determi-
nant of the matrix in the right hand side of the equation (14) is equal to ǫ−1.) Finally,
observe that the boundary conditions of space Xǫ

2, defined in (28a) are transformed
into the boundary conditions of X2 because none of them involve derivatives.

�XXX

Remark 2.12. In order to prevent heavy notation, from now on we denote the volume
integrals by

∫
Ω1

F =
∫
Ω1

F dx and
∫
Ω2

F =
∫
Ω2

F dx̃ dz. We will use the explicit notation∫
Ω2

F dx̃ dz only when specific calculations are needed. Both notations will be clear from
the context.

3. Asymptotic analysis

In this section, we present the asymptotic analysis of the problem, i.e., we obtain a-priori
estimates for the solutions

(
(v ǫ, p ǫ) : ǫ > 0

)
, derive weak limits and conclude features

about them (velocity and pressure). We start recalling a classical space.
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Definition 3.1. Let Ω2 be as in Definition 1 and define the Hilbert spaces

H(∂z ,Ω2)
def
=

{
w ∈ L2(Ω2) : ∂z w ∈ L2(Ω2)

}
, (31a)

H(∂z ,Ω2)
def
=

{
w ∈ L2(Ω2) : ∂z w ∈ L2(Ω2)

}
, (31b)

endowed with the corresponding inner products

〈
u, v

〉
H(∂z ,Ω2)

def
=

∫

Ω2

(u v + ∂zu ∂zv ), (31c)

〈
u,v

〉
H(∂z ,Ω2)

def
=

∫

Ω2

(uv + ∂zu ∂zv ). (31d)

Lemma 3.2. i. Let H(∂z,Ω2) be the space introduced in Definition 3.1; then, the trace
map w 7→ w

∣∣
Γ

from H(∂z,Ω2) to L2(Γ) is well-defined. Moreover, the following
Poincaré-type inequalities hold in this space:

‖w‖0,Γ ≤
√
2
(
‖w‖0,Ω2 + ‖∂z w‖0,Ω2

)
, (32a)

‖w‖0,Ω2 ≤
√
2
(
‖∂z w‖0,Ω2 + ‖w‖0,Γ

)
, (32b)

for all w ∈ H(∂z ,Ω2).

ii. Let H(∂z ,Ω2) be the vector space introduced in Definition 3.1; then, for any w ∈
H(∂z,Ω2) the estimates analogous to (32) hold.

iii. Let w2 ∈ H1(Ω2) ⊂ H(∂z ,Ω2) and let w2
n̂
,w2

tg be as defined in (19); then,

∥∥w2
n̂

∥∥
0,Ω2

≤
∥∥ ∂z w2

n̂

∥∥
0,Ω2

+ 2 ‖w2
n̂
‖0,Γ, (33a)

∥∥w2
tg

∥∥
0,Ω2

≤
∥∥ ∂z w2

tg

∥∥
0,Ω2

+ 2 ‖w2
tg ‖0,Γ. (33b)

Proof. i. The proof is a direct application of the fundamental theorem of calculus on
the smooth functions C∞(Ω2), which is a dense subspace in H(∂z,Ω2).

ii. A direct application of equations (32) on each coordinate of w ∈ H(∂z,Ω2) delivers
the result.

iii. It follows from a direct application of (i) and (ii) on w2
n̂
, w2

tg, respectively.

�XXX

Next we show that the sequence of solutions is globally bounded under the following
hypothesis.

Hypothesis 3. In the following, it will be assumed that the sequences (f2,ǫ : ǫ > 0) ⊆
L2(Ω2) and (h1,ǫ : ǫ > 0) ⊆ L2(Ω1) are bounded, i.e., there exists C > 0 such that

∥∥f2,ǫ
∥∥
0,Ω2

≤ C,
∥∥h1,ǫ

∥∥
0,Ω1

≤ C, for all ǫ > 0. (34)
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Theorem 3.3 (Global a-priori Estimate). Let ([v ǫ, p ǫ] : ǫ > 0) ⊆ X ×Y be the sequence
of solutions to the ǫ-Problems (30). There exists a constant K > 0 such that

∥∥v1,ǫ
∥∥2
0,Ω1

+
∥∥Dǫ

(
ǫv 2,ǫ

)∥∥2

0,Ω2
+
∥∥∂zv 2,ǫ

∥∥2
0,Ω2

+
∥∥v2,ǫ

n̂

∥∥2
0,Γ

+
∥∥ǫv2,ǫ

tg

∥∥2
0,Γ

≤ K,

for all ǫ > 0. (35)

Proof. Set w = vǫ in (30a), ϕ = pǫ in (30b) and add them together. (Observe that the
mixed terms were canceled out on the diagonal.) Next, apply the Cauchy-Bunyakowsky-
Schwartz inequality to the right hand side and recall the Hypothesis 2; this gives

∥∥v1,ǫ
∥∥2

0,Ω1
+ ǫ 2

∫

Ω2

Dǫ v 2,ǫ : Dǫ v 2,ǫ +
∥∥ ∂zv 2,ǫ

∥∥2
0,Ω2

+
∥∥v1,ǫ · n̂

∥∥2

0,Γ
+
∥∥ ǫv2,ǫ

tg

∥∥2
0,Γ

≤ 1

k

(∥∥f2,ǫτ

∥∥
0,Ω2

∥∥(ǫv2,ǫ
tg

)∥∥
0,Ω2

+
∥∥f2,ǫ

n̂

∥∥
0,Ω2

∥∥(ǫv2,ǫ
n̂

)∥∥
0,Ω2

+

∫

Ω1

h1, ǫ p1,ǫ dx
)
. (36)

We continue focusing on the last summand of the right hand side in the expression above,
i.e.,

∫

Ω1

h1,ǫ p1,ǫ dx ≤
∥∥ p1,ǫ

∥∥
0,Ω1

∥∥h1,ǫ
∥∥
0,Ω1

≤ C
∥∥∇p1,ǫ

∥∥
0,Ω1

∥∥h1,ǫ
∥∥
0,Ω1

=
∥∥Qv1,ǫ

∥∥
0,Ω1

∥∥h1,ǫ
∥∥
0,Ω1

≤ C̃
∥∥v1,ǫ

∥∥
0,Ω1

.

(37)

The second inequality holds due to Poincaré’s inequality, given that p1,ǫ = 0 on ∂Ω1−Γ,
as stated in Equation (27a). The equality holds due to (26b). The third inequality holds
because the tensor Q and the family of sources (h1,ǫ : ǫ > 0) ⊂ L2(Ω1) are bounded as
stated in Hypothesis 2 and Hypothesis 3 (Equation (34)), respectively. Next, we control
the L2(Ω2)-norm of v 2,ǫ. Since v 2,ǫ ∈ H1(Ω2) ⊂ H(∂z,Ω2), the estimates (33) apply;
combining them with (37) and the bound (34) (from Hypothesis 3) in Inequality (36) we
have

∥∥v1,ǫ
∥∥ 2

0,Ω1
+ ǫ2

∫

Ω2

Dǫv 2,ǫ : Dǫv 2,ǫ +
∥∥∂zv 2,ǫ

∥∥ 2

0,Ω2
+

∥∥v1,ǫ · n̂
∥∥ 2

0,Γ
+
∥∥ǫv2,ǫ

tg

∥∥ 2

0,Γ

≤ C
(∥∥ ∂z

(
ǫv2,ǫ

tg

) ∥∥
0,Ω2

+ 2
∥∥ (ǫv2,ǫ

tg

) ∥∥
0,Γ

+
∥∥ ∂z

(
ǫv2,ǫ

n̂

) ∥∥
0,Ω2

+ 2
∥∥ (ǫv2,ǫ

n̂

) ∥∥
0,Γ

+ C̃
∥∥v1,ǫ

∥∥
0,Ω1

)

≤ C
(∥∥ ∂z

(
ǫv 2,ǫ

) ∥∥
0,Ω2

+ 2
∥∥ (ǫv2,ǫ

tg

) ∥∥
0,Γ

+ 2
∥∥ (ǫv2,ǫ

n̂

) ∥∥
0,Γ

+ C̃
∥∥v1,ǫ

∥∥
0,Ω1

)
.

Here, the last inequality is due to the equality ‖∂z
(
ǫv 2,ǫ

)
‖20,Ω2

= ‖∂z
(
ǫv2,ǫ

tg

)
‖20,Ω2

+

‖∂z
(
ǫv 2,ǫ

N

)
‖20,Ω2

. Next, using the equivalence of norms ‖ · ‖ 1 , ‖ · ‖ 2 for 4-D vectors in
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the previous expression yields

∥∥v1,ǫ
∥∥ 2

0,Ω1
+ ǫ2

∫

Ω2

Dǫ v 2,ǫ : Dǫ v 2,ǫ +
∥∥ ∂zv 2,ǫ

∥∥ 2

0,Ω2
+

∥∥v2,ǫ
n̂

∥∥ 2

0,Γ
+
∥∥ ǫv2,ǫ

tg

∥∥ 2

0,Γ

≤ C
{∥∥∂z

(
ǫv 2,ǫ

)∥∥2

0,Ω2
+
∥∥(ǫv2,ǫ

tg

)∥∥2
0,Γ

+
∥∥(ǫv2,ǫ

n̂

)∥∥2
0,Γ

+ C̃
∥∥v1,ǫ

∥∥2
0,Ω1

}1/2

≤ C
{∥∥v1,ǫ

∥∥2
0,Ω1

+
∥∥ Dǫ

(
ǫv 2,ǫ

) ∥∥2
0,Ω2

+
∥∥∂zv 2,ǫ

∥∥2
0,Ω2

+
∥∥v2,ǫ

n̂

∥∥2
0,Γ

+
∥∥ ǫv2,ǫ

tg

∥∥2
0,Γ

}1/2

.

(38)

From the expression above, the global Estimate (35) follows. �XXX

In the next subsections we use weak convergence arguments to derive the functional
setting of the limiting problem (see Figure 2), for the structure of the limiting functions.

(a) Limit solutions in the reference domain (b) Velocity and Pressure Schematic Traces for the
solution on the hyperplane {(x̃, z) : x̃ = x̃0}.

Figure 2. Figure (a) depicts the dependence of the limit solution [v, p], for both regions Ω1, Ω2 and
a generic hyperplane {(x̃, z) : x̃ = x̃0}. Figure (b) shows plausible schematics for traces of the velocity
and pressure restricted to the hyperplane {(x̃, z) : x̃ = x̃0}, depicted in Figure (a).

Corollary 3.4 (Convergence of the Velocities). Let ([v ǫ, p ǫ] : ǫ > 0) ⊆ X × Y be the
sequence of solutions to the ǫ-Problems (30). There exists a subsequence, still denoted
(v ǫ : ǫ > 0), for which the following holds:

i. There exist v1 ∈ Hdiv(Ω1) such that

v1,ǫ → v1 weakly in Hdiv(Ω1), (39a)

∇ ·v1,ǫ = h1. (39b)
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ii. There exist χ ∈ L2(Ω2) and v2 ∈ H1(Ω2) such that

∂zv
2,ǫ → χ weakly in L2(Ω2) , ∂z

(
ǫv 2,ǫ

)
→ 0 strongly in L2(Ω2), (40a)

ǫv 2,ǫ → v2 weakly in H1(Ω2), strongly in L2(Ω2); (40b)

moreover, v2 satisfies
v2 = v2 (x̃) . (40c)

iii. There exists ξ ∈ H(∂z ,Ω2) such that

v
2,ǫ
n̂

→ ξ weakly in H(∂z,Ω2),
(
ǫv2,ǫ

n̂

)
→ 0 strongly in H(∂z,Ω2); (41a)

furthermore, ξ satisfies the interface and boundary conditions

ξ
∣∣
Γ
= v1 · n̂

∣∣
Γ
, ξ

∣∣
Γ+1

= 0. (41b)

iv. The following properties hold:

v2 · n̂ = 0, χ · n̂ = ∂zξ. (42)

Proof. i. (The proof is identical to part (i) of Corollary 11 in [14]; we write it here
for the sake of completeness.) Due to the global a-priori estimate (35), there must
exist a weakly convergent subsequence and a limit v1 ∈ Hdiv(Ω1) such that (39a)
holds only in the weak L2(Ω1)-sense. Because of the hypothesis 3 and the equation
(26c), the sequence (∇ ·v1,ǫ : ǫ > 0) ⊂ L2(Ω1) is bounded. Then, there must exist
yet another subsequence, still denoted the same, such that (39a) holds in the weak
Hdiv(Ω1)-sense. Now, recalling that the divergence operator is linear and continuous
with respect to the Hdiv-norm, the identity (39b) follows.

ii. From the estimate (35), it follows that (∂zv
2,ǫ : ǫ > 0) is bounded in L2(Ω2).

Then, there exists a subsequence (still denoted the same) and χ ∈ L2(Ω2) such that
(∂zv

2,ǫ : ǫ > 0) and (∂z(ǫv
2,ǫ) : ǫ > 0) satisfy the statement (40a). Also from

(35) the trace on the interface
(
ǫv 2,ǫ

∣∣
Γ
: ǫ > 0

)
is bounded in L2(Γ). Applying the

inequality (32b) for vector functions, we conclude that
(
ǫv 2,ǫ : ǫ > 0

)
is bounded in

L2(Ω2) and consequently in H(∂z,Ω2). Then, there must exist v2 ∈ H(∂z,Ω2) such
that

ǫv 2,ǫ → v2 weakly in H(∂z ,Ω2). (43)

Also, from the strong convergence in the statement (40a), it follows that v2 is
independent from z, i.e., (40c) holds.

Again, from (35) we know that the sequence
(
ǫDǫ v 2,ǫ : ǫ > 0

)
is bounded

in L2(Ω2). Recalling the identity (15) we have that the expression

ǫDǫ v 2,ǫ = ∇T

(
ǫv 2,ǫ

)
+ (ǫ − 1)∂z v

2,ǫ
∇

t
T ζ

is bounded. In the equation above, the left hand side and the second summand of
the right hand side are bounded in L2(Ω2); then we conclude that the first sum-
mand of the right hand side is also bounded. Hence, we have

(
ǫ∇v 2,ǫ : ǫ > 0

)

is bounded in L2(Ω2), and therefore the sequence
(
ǫv 2,ǫ : ǫ > 0

)
is bounded in

H1(Ω2); consequently, the statement (40b) holds.
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iii. Since
(
∂z v

2,ǫ : ǫ > 0
)
⊂ L2 (Ω2) is bounded, in particular

(
∂z v

2,ǫ · n̂ : ǫ > 0
)
⊂

L2 (Ω2) is also bounded. From (35), we know that
(
v 2,ǫ · n̂

∣∣
Γ
: ǫ > 0

)
⊂ L2 (Γ) is

bounded and again, due to Inequality (32b), we conclude that
(
v 2,ǫ · n̂ : ǫ > 0

)
⊂

L2
(
Ω2

)
is bounded. Then, the sequence

(
v 2,ǫ · n̂ : ǫ > 0

)
is bounded in H(∂z ,Ω2);

consequently, there must exist a subsequence (still denoted the same) and a limit
ξ ∈ H(∂z ,Ω2), such that (v2,ǫ

n̂
: ǫ > 0) and (ǫv2,ǫ

n̂
: ǫ > 0) satisfy the statement

(41a). From here it is immediate to conclude the relations (41b).

iv. Since (ǫv 2,ǫ · n̂) → 0, and due to (43), we conclude that v2 · n̂ = 0. Finally, due to
(40), we have that χ · n̂ = ∂z ξ, and the proof is complete.

�XXX

Theorem 3.5 (Convergence of Pressures). Let ([v ǫ, p ǫ] : ǫ > 0) ⊆ X×Y be the sequence
of solutions to the ǫ-Problems (30). There exists a subsequence, still denoted (p ǫ : ǫ > 0),
verifying the following:

i. There exists p1 ∈ H1(Ω1) such that

p1,ǫ → p1 weakly in H1(Ω1) and strongly in L2(Ω1), (44a)

Qv1 +∇p1 = 0 in Ω1, p1 = 0 on ∂Ω1 − Γ, (44b)

where v1 is the weak limit of Statement (39a).

ii. There exists p2 ∈ L2(Ω2) such that

p 2,ǫ → p2 weakly in L2(Ω2). (45)

iii. The pressure p =
[
p1, p2

]
belongs to L2(Ω).

Proof. i. (The proof is identical to part (i) Lemma 12 in [14]; we write it here for the
sake of completeness.) Due to (26b) and (36) it follows that

∥∥∇p1,ǫ
∥∥
0,Ω1

=
∥∥√Qv1,ǫ

∥∥
0,Ω1

≤ C,

where C is an adequate positive constant. From (27a), the Poincaré inequality gives

the existence of a constant C̃ > 0 satisfying

∥∥p1,ǫ
∥∥
1,Ω1

≤ C̃
∥∥∇p1,ǫ

∥∥
0,Ω1

, for all ǫ > 0. (46)

Therefore, the sequence (p1,ǫ : ǫ > 0) is bounded in H1(Ω1), and the convergence
statement (44a) follows directly. Again, given that p1,ǫ satisfies the Darcy equation
(26b) and that the gradient ∇ is linear and continuous in H1(Ω1), the equality
Qv1 +∇p1 = 0 in (44b) follows. Finally, since p1,ǫ

∣∣
Ω1−Γ

= 0 for every element of

the weakly convergent subsequence, and the trace map ϕ 7→ ϕ
∣∣
Γ

is linear, it follows

that p1 satisfies the boundary condition in (44b).
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ii. In order to show that the sequence (p 2,ǫ : ǫ > 0) is bounded in L2(Ω2), take any
φ ∈ C∞

0 (Ω2) and define the auxiliary function

̟(x̃, z)
def
=

∫ ζ(x̃)+1

z

φ(x̃, t) dt, ζ(x̃) ≤ z ≤ ζ(x̃) + 1. (47)

Since ζ ∈ C2(G), it is clear that ̟ ∈ H1(Ω2) and ‖̟‖ 1,Ω2 ≤ C‖φ‖0,Ω2 . Hence, the

function w2 def
=

(
0T , ̟

)
= ̟ êN belongs to X2; moreover,

‖w2 ‖0,Ω2 + ‖ ∂z w2 ‖0,Ω2 ≤ C̃ ‖φ ‖0,Ω2 ,

‖w2(tg)
∣∣
Γ
‖0,Γ = ‖w2

tg

∣∣
Γ
‖0,Γ ≤ C̃ ‖φ ‖0,Ω2 .

(48)

Here, the second inequality follows from the first one and due to the estimate (32a).
Next, observe that ̟ êN · n̂(·)1Γ ∈ L2(Γ) ⊆ H−1/2(∂Ω1); then, Lemma 1.2 gives
the existence of a function w1 ∈ Hdiv (Ω1) such that

w1 · n̂ = w2 · n̂ = ̟(x̃, ζ(x̃))êN · n̂(x̃) =
∫ ζ(x̃)+1

ζ(x̃)

φ (x̃, t) dt on Γ,

w1 · n̂ = 0 on ∂Ω1 − Γ,

‖w1‖Hdiv(Ω1) ≤ ‖̟ êN · n̂(·)‖0,Γ ≤ C‖φ‖0,Ω2 .

(49)

Here, the last inequality holds because sup{n̂(x̃) · êN : x̃ ∈ Γ} < ∞. Hence, the

function w
def
= [w1,w2] belongs to the space X. Testing (30a) with w yields

∫

Ω1

Qv1,ǫ ·w1 −
∫

Ω1

p1,ǫ ∇ ·w1

+

∫

Ω2

p 2,ǫ φ+ ǫ2
∫

Ω2

µDǫ v 2,ǫ : Dǫ w2 −
∫

Ω2

µ∂z v
2,ǫ
N

φ

+ α

∫

Γ

(
v1,ǫ · n̂

)(
w1 · n̂

)
dS + ǫ2

∫

Γ

γ
√
Qv

2,ǫ
tg ·w2

tgdS = ǫ

∫

Ω2

f
2,ǫ
N ̟.

(50)

Applying the Cauchy-Bunyakowsky-Schwarz inequality to the integrals, and reor-
dering, we get

∣∣∣
∫

Ω2

p 2,ǫ φ
∣∣∣ ≤ C1

∥∥v1,ǫ
∥∥
0,Ω1

∥∥w1
∥∥
0,Ω1

+
∥∥ p1,ǫ

∥∥
0,Ω1

∥∥ ∇ ·w1
∥∥
0,Ω1

+ C2

∥∥ ǫDǫ v 2,ǫ
∥∥
0,Ω2

∥∥ ǫDǫ w2
∥∥
0,Ω2

+ C3

∥∥ ∂z v 2,ǫ
N

∥∥
0,Ω2

∥∥φ
∥∥
0,Ω2

+ C4

∥∥v1,ǫ · n̂
∥∥
0,Γ

∥∥w2 · n̂
∥∥
0,Γ

+ C5 ǫ
∥∥ǫv2,ǫ

tg

∥∥
0,Γ

∥∥w2
tg

∥∥
0,Γ

+
∥∥ ǫ f2,ǫN

∥∥
0,Ω2

∥∥̟
∥∥
0,Ω2

.

We pursue estimates in terms of ‖φ‖0,Ω2 ; to that end we first apply the
fact that all the terms involving the solution on the right hand side, i.e.,
v1,ǫ, p1,ǫ, ǫDǫ v 2,ǫ, ∂z v

2,ǫ
N , v1,ǫ · n̂ and v

2,ǫ
tg

∣∣
Γ

are bounded. In addition, the for-

cing term ǫ f2,ǫN is bounded. Replacing the norms of the aforementioned terms by a
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generic constant on the right hand side we have

∣∣∣
∫

Ω2

p 2,ǫ φ
∣∣∣ ≤C

(∥∥w1
∥∥
0,Ω1

+
∥∥ ∇ ·w1

∥∥
0,Ω1

+
∥∥ ǫDǫw2

∥∥
0,Ω2

+
∥∥φ

∥∥
0,Ω2

+
∥∥w2 · n̂

∥∥
0,Γ

+ ǫ
∥∥w2

tg

∥∥
0,Γ

+
∥∥̟

∥∥
0,Ω2

)
.

(51)

In the expression above the first summand of the second line needs further analysis.
We have

∥∥ ǫDǫw2
∥∥
0,Ω2

=
∥∥ ǫ∇T w2 + (ǫ − 1) ∂z w

2
∇

t
T
ζ
∥∥
0,Ω2

≤ ǫ
∥∥∇T w2 + ∂z w

2
∇

t
T ζ

∥∥
0,Ω2

+
∥∥ ∂z w2

∇
t

T ζ
∥∥
0,Ω2

≤ ǫ
∥∥∇T w2 + ∂z w

2
∇

t
T ζ

∥∥
0,Ω2

+
∥∥ ∂z w2

∥∥
0,Ω2

∥∥∇t
T ζ

∥∥
0,Ω2

.

Combining (48) with the expression above, we conclude

∥∥ ǫDǫ w2
∥∥
0,Ω2

≤ ǫ
∥∥∇T w2 + ∂z w

2
∇

t
T
ζ
∥∥
0,Ω2

+ C
∥∥φ

∥∥
0,Ω2

. (52)

Introducing the latter estimate in the inequality (51), the first two summands on
the right hand side of the first line are bounded by a multiple of ‖φ ‖0,Ω2 due to
(49). The second and third summands on the second line are trace terms which are
also controlled by a multiple of ‖φ ‖0,Ω2 , due to (48). The fourth summand on the
second line is trivially controlled by ‖φ ‖0,Ω2 because of its construction. Combining
all these observations with (52), we get

∣∣∣
∫

Ω2

p 2,ǫ φ
∣∣∣ ≤ ǫ

∥∥∇T w2 + ∂z w
2
∇

t
T ζ

∥∥
0,Ω2

+ C
∥∥φ

∥∥
0,Ω2

,

where C > 0 is a new generic constant. Taking upper limit as ǫ → 0 in the previous
expression gives

lim sup
ǫ ↓ 0

∣∣∣
∫

Ω2

p 2,ǫ φ
∣∣∣ ≤ C

∥∥φ
∥∥
0,Ω2

. (53)

The above holds for any φ ∈ C∞
0 (Ω2), then, the sequence (p 2,ǫ : ǫ > 0 ) ⊂ L2(Ω2) is

bounded and, consequently, the convergence statement (45) follows.

iii. From the previous part, it is clear that the sequence
(
[p1,ǫ, p 2,ǫ] : ǫ > 0

)
is bounded

in L2(Ω); therefore, p also belongs to L2Ω), which completes the proof.

�XXX

Remark 3.6. Notice that the upwards normal vector n̂ orthogonal to the surface Γ is
given by the expression

n̂ =
1

|(−∇T ζ, 1)|

{
−∇

t
T
ζ

1

}
, (54a)

and the normal derivative satisfies

|(−∇T ζ, 1)|∂ n̂
= |(−∇T ζ, 1)|

∂

∂n̂
= n̂ ·∇, on Γ. (54b)
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We use the identities above to identify the dependence of χ, ξ and p2 (see Figure 2
above).

Theorem 3.7. Let χ, ξ be the higher order limiting terms in Corollary 3.4 (ii) and (iii),
respectively. Let p2 be the limit pressure in Ω2 in Lemma 3.5 (ii). Then,

∂z ξ = −v1 · n̂
∣∣
Γ
, ξ(x̃, z) = v1 · n̂(x̃)

(
1− z

)
, for ζ(x̃) ≤ z ≤ ζ(x̃) + 1. (55a)

p2 = p2(x̃). (55b)

χ = χ(x̃), χ · n̂ = −v1 · n̂ on Γ. (55c)

In particular, ∂zξ = ∂zξ(x̃).

Proof. Take Φ =
(
0, ϕ2

)
∈ Y, test (30b) and reorder the summands conveniently; we

have

0 =ǫ

∫

Ω2

∇T · v 2,ǫ
T

ϕ2 + ǫ

∫

Ω2

∂zv
2,ǫ
T

·∇Tζ ϕ
2 −

∫

Ω2

∂zv
2,ǫ
T

·∇Tζ ϕ
2 +

∫

Ω2

∂zv
2,ǫ
N

ϕ2

=

∫

Ω2

∇T ·
(
ǫv 2,ǫ

T

)
ϕ2 +

∫

Ω2

∂z
(
ǫv 2,ǫ

T

)
·∇T ζ ϕ

2 +

∫

Ω2

∂zv
2,ǫ ·

(
−∇T ζ, 1

)
ϕ2

=

∫

Ω2

∇T ·
(
ǫv 2,ǫ

T

)
ϕ2 +

∫

Ω2

∂z
(
ǫv 2,ǫ

T

)
·∇T ζ ϕ

2 +

∫

Ω2

|(−∇T ζ, 1)| ∂z(v 2,ǫ · n̂)ϕ2.

Letting ǫ ↓ 0 in the expression above we get

∫

Ω2

∇T · v2ϕ2 +

∫

Ω2

∂zv
2 ·∇T ζ ϕ

2 +

∫

Ω2

|(−∇T ζ, 1)| ∂z ξ ϕ2 = 0.

Recalling Equation (40c) we have that ∂z v
2 = 0; hence,

∫

Ω2

∇T · v2 ϕ2 +

∫

Ω2

∣∣(−∇T ζ, 1
)∣∣ ∂zξ ϕ2 = 0.

Since the above holds for all ϕ2 ∈ L2
0(Ω2), it follows that

∇T · v2 + |(−∇T ζ, 1)|∂z ξ = c,

where c is a constant. In the previous expression we observe that two out of three terms
are independent from z; then it follows that the third term is also independent from z.
Since the vector (−∇Tζ, 1) is independent from z, we conclude that ∂zξ = ∂zξ(x̃). This,
together with the boundary conditions (41b), yield the second equality in (55a).

Take Ψ =
(
φ 1, . . . , φN

)
∈ (C∞

0 (Ω2))
N

, for each i = 1, 2, . . . , N ; build the “antideriva-

tive" ̟i of φi using the rule (47), and define w2 =
(
̟1, . . . , ̟N

)
. Use Lemma 1.2 to

construct w1 ∈ Hdiv(Ω1) such that w1 · n̂ = w2 · n̂ on Γ, w1 · n̂ = 0 on ∂Ω1 − Γ and

∥∥w1
∥∥
Hdiv(Ω1)

≤ C
∥∥Ψ

∥∥
L2(Ω2)

; (56)
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therefore, w
def
=

(
w1, w2

)
∈ X2. Test (30a) with w and regroup the higher order terms;

we have
∫

Ω1

Qv1,ǫ ·w1 −
∫

Ω1

p1,ǫ ∇ ·w1 − ǫ

∫

Ω2

p 2,ǫ
∇T ·w2

T

− ǫ

∫

Ω2

p 2,ǫ ∂z w
2
T
·∇T ζ +

∫

Ω2

p 2,ǫ ∂z w
2
T
·∇T ζ −

∫

Ω2

p 2,ǫ ∂zw
2
N

+ ǫ2
∫

Ω2

µDǫv 2,ǫ : Dǫw2 +

∫

Ω2

µ∂z v
2,ǫ · ∂z w2

+ α

∫

Γ

(
v1,ǫ · n̂

) (
w1 · n̂

)
dS + ǫ 2

∫

Γ

γ
√
Qv

2,ǫ
tg ·w2

tg dS = ǫ

∫

Ω2

f2,ǫ ·w2.

(57)

The limit of all the terms in the expression above when ǫ ↓ 0 is clear except for one
summand, which we discuss independently; i.e.,

ǫ2
∫

Ω2

µDǫv 2,ǫ : Dǫw2 = ǫ2
∫

Ω2

µDǫv 2,ǫ :
(
∇T w2 + ∂z w

2
∇

t
T ζ −

1

ǫ
∂z w

2
∇

t
T ζ

)

= ǫ2
∫

Ω2

µDǫv 2,ǫ :
(
∇T w2 + ∂z w

2
∇

t
T
ζ
)

+ ǫ

∫

Ω2

µDǫv 2,ǫ : ∂z w
2
(
−∇

t
T
ζ
)
.

In the latter expression, the first summand clearly tends to zero when ǫ ↓ 0. Therefore,
we focus on the second summand:

ǫ

∫

Ω2

µDǫv 2,ǫ : ∂z w
2
(
−∇

t
T ζ

)
=

∫

Ω2

µ∇T

(
ǫv 2,ǫ

)
: ∂z w

2
(
−∇

t
T ζ

)

+

∫

Ω2

µ∂z
(
ǫv 2,ǫ

)
∇

t
T ζ : ∂z w

2
(
−∇

t
T ζ

)
+

∫

Ω2

µ∂zv
2,ǫ

(
−∇

t
T ζ

)
: ∂z w

2
(
−∇

t
T ζ

)
.

All the terms in the right hand side can pass to the limit. Recalling the statement (40a),
we conclude that

ǫ2
∫

Ω2

µDǫv 2,ǫ : Dǫw2 →
∫

Ω2

µ∇T v2 : ∂z w
2
(
−∇

t
T ζ

)

+

∫

Ω2

µχ
(
−∇

t
T ζ

)
: ∂z w

2
(
−∇

t
T ζ

)
.

Letting ǫ ↓ 0 in (57), and considering the equality above, we get

∫

Ω1

Qv1 ·w1 −
∫

Ω1

p1 ∇ ·w1 +

∫

Ω2

p2
(
∂z w

2
T , ∂z w

2
N

)
·
(
∇T ζ, −1

)

+

∫

Ω2

µ∇T v2 : ∂z w
2
(
−∇

t
T ζ

)
+

∫

Ω2

µχ
(
−∇

t
T ζ

)
: ∂z w

2
(
−∇

t
T ζ

)

+

∫

Ω2

µχ · ∂z w2 + α

∫

Γ

(
v1 · n̂

) (
w1 · n̂

)
dS = 0.

(58)
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We develop a simpler expression for the sum of the fourth, fifth and sixth terms:

∫

Ω2

µ∇T v2 : ∂z w
2
(
−∇

t
T ζ

)
+

∫

Ω2

µχ
(
−∇

t
T ζ

)
: ∂z w

2
(
−∇

t
T ζ

)
+

∫

Ω2

µχ · ∂z w2

=

∫

Ω2

µ
(
∇v2 · (−∇T ζ, 1)

)
· ∂z w2 +

∫

Ω2

µχ (−∇T ζ, 1)
t : ∂z w

2(−∇T ζ, 1)t

=

∫

Ω2

µ|(−∇Tζ, 1)| ∂ n̂
v2 · ∂z w2 +

∫

Ω2

µχ · ∂zw2 (−∇T ζ, 1) · (−∇T ζ, 1).

Here ∂
n̂

is the normal derivative defined in the identity (54b). We introduce the previous
equality in (58); this yields

∫

Ω1

Qv1 ·w1 −
∫

Ω1

p1 ∇ ·w1 −
∫

Ω2

|(−∇Tζ, 1)|p2 ∂z
(
w2 · n̂

)

+

∫

Ω2

µ |(−∇T ζ, 1)|∂ n̂
v2 · ∂z w2 +

∫

Ω2

µχ · ∂z w2
∣∣(−∇T ζ, 1

)∣∣2

+ α

∫

Γ

(
v1 · n̂

) (
w1 · n̂

)
dS = 0. (59)

Next, we integrate by parts the second summand in the first line, add it to the first
summand and recall that ∂zw

2 = −Ψ by construction. Hence,

−
∫

Γ

p1
(
w1 · n̂

)
dS +

∫

Ω2

|(−∇T ζ, 1)|p2 n̂ ·Ψ

−
∫

Ω2

µ|(−∇T ζ, 1)|∂ n̂
v2 ·Ψ−

∫

Ω2

µχ ·Ψ |(−∇T ζ, 1)|2 +α

∫

Γ

(
v1 · n̂

) (
w1 · n̂

)
dS = 0.

(60)

In the expression above we develop the surface integrals as integrals over the projection
G of Γ on RN−1; this gives

−
∫

Γ

p1
(
w1 · n̂

)
dS + α

∫

Γ

(
v1 · n̂

) (
w1 · n̂

)
dS

=

∫

G

1

n̂ · êN
[
− p1

∣∣
Γ
+ α

(
v1 · n̂

∣∣
Γ

)](
w1 · n̂

∣∣
Γ

)
dx̃.

Recalling that w1 · n̂ =

∫ ζ(x̃)+1

ζ(x̃)

Ψ(x̃, z) dz · n̂ on Γ, the latter equality becomes in

∫

G

1

n̂ · êN
[
− p1

∣∣
Γ
+ α

(
v1 · n̂

∣∣
Γ

)] ∫ ζ(x̃)+1

ζ(x̃)

Ψ(x̃, z) dz · n̂(x̃) dx̃

=

∫

G

∫ ζ(x̃)+1

ζ(x̃)

1

n̂ · êN
[
− p1

∣∣
Γ
+ α

(
v1 · n̂

∣∣
Γ

)]
(x̃) n̂(x̃) ·Ψ(x̃, z) dz dx̃

=

∫

Ω2

1

n̂ · êN
[
− p1

∣∣
Γ
+ α

(
v1 · n̂

∣∣
Γ

)]
n̂ ·Ψ dz dx̃.
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Introducing the previous in (60), we have

∫

Ω2

1

n̂ · êN
[
− p1

∣∣
Γ
+ α

(
v1 · n̂

∣∣
Γ

)]
n̂ ·Ψ dz dx̃+

∫

Ω2

|(−∇T ζ, 1)|p2 n̂ ·Ψ dx̃dz

−
∫

Ω2

µ |(−∇T ζ, 1)|∂ n̂
v2 ·Ψ dx̃ dz −

∫

Ω2

µ
∣∣(−∇T ζ, 1

)∣∣2 χ ·Ψ dx̃dz = 0.

Since the above holds for all Ψ ∈
(
C∞

0 (Ω2)
)N

, it follows that

1

n̂ · êN
[
− p1

∣∣
Γ
+ α

(
v1 · n̂

∣∣
Γ

)]
n̂+ |(−∇T ζ, 1)|p2 n̂

− µ |(−∇Tζ, 1)|∂ n̂
v2 − µ |(−∇T ζ, 1)|2 χ = 0 , in L2(Ω2). (61)

In order to get the normal balance on the interface we could repeat the previous strategy,
but with a quantifier Ψ ∈ C ∞

0 (Ω2)
N satisfying Ψ =

(
Ψ · n̂

)
n̂, i.e., such that it is parallel

to the normal direction. This would be equivalent to replace Ψ by
(
Ψ · n̂

)
n̂ in all the

previous equations. Consequently, in order to get the normal balance, it suffices to apply
(
· n̂

|(−∇T ζ, 1)|2
)

to Equation (61); such operation yields:

1

n̂ · êN
1

|(−∇T ζ, 1)|2
[
− p1

∣∣
Γ
+ α

(
v1 · n̂

∣∣
Γ

)]

+
1

|(−∇T ζ, 1)|
p2 − µ

1

|(−∇T ζ, 1)|
∂
n̂
v2 · n̂− µ∂z ξ = 0. (62)

In the last expression the identity (42) has been used. Also notice that all the terms
are independent from z, then the equation (55b) follows. Consequently, all the terms
but the last in (61) are independent from z; therefore we conclude that χ is independent
from z. Recalling (42) and (55a), the second equality in (55c) follows and the proof is
complete. �XXX

4. The limiting problem

In this section we derive the form of the limiting problem and characterize it as a Darcy-
Brinkman coupled system, where the Brinkman equation takes place in a parametrized
(N −1)-dimensional manifold ofRN . First, we need to introduce some extra hypotheses
to complete the analysis.

Hypothesis 4. In the following, it will be assumed that the sequence of forcing terms(
f2,ǫ : ǫ > 0

)
⊆ L2(Ω2) and

(
h1,ǫ : ǫ > 0

)
⊆ L2(Ω1) are weakly convergent, i.e., there

exist f2 ∈ L2(Ω2) and h1 ∈ L2(Ω1) such that

f2,ǫ ⇀ f2, h1,ǫ ⇀ h1 . (63)

4.1. The tangential behavior of the limiting problem

Recalling (40c) and (42), clearly the lower order limiting velocity has the structure
{
v 2
tg

0

}
=

{
v 2
tg(x̃)
0

}
. (64)
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The above motivates the following definition.

Definition 4.1. Let x̃ 7→ U(x̃) be the matrix-valued map introduced in Definition 2.5.
Define the space Xtg ⊆ X2 by

Xtg
def
=

{
w2 ∈ X2 : w2 = U(x̃)

{
w2

tg(x̃)
0

}}
, (65)

endowed with the H1(Ω2)-norm.

We have the following result:

Lemma 4.2. The space Xtg ⊂ X2 is closed.

Proof. Let
(
w2 (ℓ) : ℓ ∈ N)

⊂ Xtg and w2 ∈ X2 be such that
∥∥w2

(
ℓ
)
− w2

∥∥
1,Ω2

→
0. We must show that w2 ∈ Xtg. First, notice that the convergence in X2 implies∥∥w2

(
ℓ
)
−w2

∥∥
0,Ω2

→ 0. Recalling (20) and the fact that U(x̃) is orthogonal, we have

[
UT,tg UT,n̂

UN,tg UN,n̂

]t
(x̃)

{
w2

T (ℓ)

w2
N
(ℓ)

}
(x̃) =

{
w2

tg (ℓ)

0

}
(x̃).

In the identity above, we observe that w2
T

(
ℓ
)
,w2

T

(
ℓ
)

are convergent in the H1-norm
and that the orthonormal matrix U has differentiability and boundedness properties.
Therefore, we conclude that w2

tg

(
ℓ
)

is convergent in the H1-norm, and denote the limit

by w2
tg = w2

tg

(
x̃, z

)
. Now take the limit in the expression above in the L2-sense; given

that there are no derivatives involved, we have

[
UT,tg UT,n̂

UN,tg UN,n̂

]t
(x̃)

{
w2

T

w2
N

}
(x̃) =

{
w2

tg

(
x̃, z

)

0

}
.

Observe that the latter expression implicitly states that w2
tg = w2

tg(x̃). Finally, applying
once more the inverse matrix, we have

w2 =

{
w2

T

w2
N

}
(x̃) =

[
UT,tg UT,n̂

UN,tg UN,n̂

]
(x̃)

{
w2

tg

0

}
(x̃).

Here the equality is in the L2-sense. However, we know that w2
tg ∈

[
H1

(
Ω2

)]N−1
,

therefore the equality holds in the H1-sense too, i.e. Xtg is closed as desired. �XXX

Next we use space Xtg to determine the limiting problem in the tangential direction.

Lemma 4.3 (Limiting tangential behavior’s variational statement). Let v2 be the limit found
in Theorem 3.4 (ii). Then, the following weak variational statement is satisfied:

−
∫

Ω2

p2∇T ·w2
T +

∫

Ω2

µ∇Tv
2 : ∇Tw

2 +

∫

Γ

β
√
Qv 2

tg ·w2
tg dS =

∫

Ω2

f 2
tg ·w2

tg,

for all w2 ∈ Xtg. (66)
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Proof. Let w2 ∈ Xtg; then w =
(
0,w2

)
∈ X; test (30a) with w and get

−ǫ

∫

Ω2

p 2,ǫ
∇T ·w2

T + ǫ2
∫

Ω2

µDǫv 2,ǫ : Dǫw2 + ǫ2
∫

Γ

β
√
Qv

2,ǫ
tg ·w2

tg dS = ǫ

∫

Ω2

f
2,ǫ
tg ·

Divide the whole expression over ǫ, expand the second summand according to the identity
(15) and recall that ∂z w

2 = 0; this gives

−
∫

Ω2

p 2,ǫ
∇T ·w2

T
+

∫

Ω2

µ
[
∇T

(
ǫv 2,ǫ

)
+ (ǫ − 1)∂z v

2,ǫ
∇

t
T
ζ
]
: ∇T w2

+

∫

Γ

β
√
Q ǫv2,ǫ

tg ·w2
tg dS =

∫

Ω2

f
2,ǫ
tg ·w2

tg.

Letting ǫ ↓ 0, the limit v2 meets the condition

−
∫

Ω2

p2∇T ·w2
T
+

∫

Ω2

µ
[
∇Tv

2 − χ∇t
T
ζ
]
: ∇Tw

2 +

∫

Γ

β
√
Qv 2

tg ·w2
tg dS

=

∫

Ω2

f 2
tg ·w2

tg. (67)

We modify the higher order term using the property ∂z w
2 = 0:

−
∫

Ω2

µχ∇t
T ζ : ∇Tw

2 =

∫

Ω2

µχ(−∇
t

T ζ, 1) : ∇w2 =

∫

Ω2

µ |(−∇T ζ, 1)|χ ·
(
∇w2 · n̂

)
.

Recall that w2 · n̂ = 0, because w2 ∈ Xtg; then ∂
n̂
w2 = ∇w2 · n̂ = 0. Replacing the

above expression in (67), the statement (66) follows because all the previous reasoning
is valid for w2 ∈ Xtg arbitrary. �XXX

4.2. The higher order effects and the limiting problem

The higher order effects of the ǫ-problem have to be modeled in the adequate space; to
that end we use the information attained. We know the higher order term χ satisfies the
condition (55c) and it belongs to L2(Ω2). This motivates the following definition:

Definition 4.4. Define

i. The subspace

W
n̂

def
=

{
[w1, η] ∈ X : ηtg = 0T , η · n̂ = w1 · n̂

∣∣
Γ
(x̃)(1 − z)

}
, (68)

endowed with its natural norm.

ii. The space of limit normal effects in the following way:

X0
n̂

def
=

{
[w1,η] ∈ Hdiv(Ω1)×H(∂z,Ω2) :

ηtg = 0T , ∂zη = 0, η · n̂ = −w1 · n̂
∣∣
Γ
(x̃)(1− z)

}
, (69a)

endowed with its natural norm
∥∥[w1, η

]∥∥ 2

X0
n̂

def
=

∥∥w1
∥∥ 2

Hdiv(Ω1)
+
∥∥η

∥∥ 2

H(∂z ,Ω2)
. (69b)
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Remark 4.5. i. It is direct to prove that X0
n̂

is closed.

ii. Observe that, due to its structure, the component η of an element in X0
n̂

can be
completely described by its normal trace on Γ, i.e., the norm

∥∥[w1, η
]∥∥ 2

X0
n̂

def
=

∥∥w1
∥∥ 2

Hdiv(Ω1)
+
∥∥η · n̂

∥∥ 2

0,Γ
(70)

is equivalent to the norm (69b). This feature will permit the dimensional reduction
of the limiting problem formulation later on (see Section 5.2).

iii. Let v1 and ξ be the limits found in the statements (39a) and (41a), respectively.
The function [v1, ξ] belongs to X0

n̂
, with

ξ
def
= U

{
0T

ξ

}
. (71)

This was one of the motivations behind the definition of the space X0
n̂

above.

iv. The information about the higher order term χ is complete only in its normal direc-
tion χ(n̂). Furthermore, the facts that χ depends only on x̃ (see Equation (55c))
and that χ · n̂ = ∂zξ = −v1 · n̂

∣∣
Γ
, show that only information corresponding to

the normal component of χ will be preserved by the modeling space X0
n̂
, while the

tangential component of the higher order term χ(tg) will be given away for good. It
is also observed that most of the terms involving the presence of χ require only its
normal component, e.g. χ · ∂

n̂
w2 = χ(n̂) · ∂

n̂
w2 in the third summand of the vari-

ational statement (66). This was the reason why the space X0
n̂

excludes tangential
effects of the higher order term.

Before characterizing the asymptotic behavior of the normal flux we need a technical
lemma.

Lemma 4.6. The subspace W
n̂
⊆ X is dense in X0

n̂
.

Proof. Consider an element w = (w1,η) ∈ X0
n̂
; then ηtg = 0T , and η · n̂ ∈ H(∂z ,Ω2)

is completely defined by its trace on the interface Γ. Given ǫ > 0, take ̟ ∈ H1
0 (Γ) such

that ‖̟ − η · n̂
∣∣
Γ
‖L2(Γ) ≤ ǫ. Now extend the function to the whole domain using the

rule ̺(x̃, z)
def
= ̟(x̃)(1− z); then ‖̺− η · n̂‖H(∂z ,Ω2) ≤ ǫ. From the construction of ̺ we

know that ‖̺
∣∣
Γ
− η · n̂

∣∣
Γ
‖0,Γ = ‖̟− η · n̂

∣∣
Γ
‖0,Γ ≤ ǫ. Define g = ̺

∣∣
Γ
− η · n̂

∣∣
Γ
∈ L2(Γ);

due to Lemma 1 there exists u ∈ Hdiv(Ω1) such that u · n̂ = g on Γ, u · n̂ = 0 on ∂Ω1−Γ
and ‖u‖Hdiv(Ω1) ≤ C1‖g‖0,Γ, with C1 depending only on Ω1. Then, the function w1 + u

is such that (w1 + u) · n̂ = w1 · n̂ + ̟ − η · n̂ = ̟ and ‖w1 + u − w1‖Hdiv(Ω1) =
‖u‖Hdiv(Ω1) ≤ C1‖g‖0,Γ ≤ C1 ǫ. Moreover, defining

w2 def
= U

{
0T

̺

}
,

we notice that the function (w1+u,w2) belongs to W
n̂
. Due to the previous observations

we have
∥∥w− (w1 + u, w2)

∥∥
X0 =

∥∥(w1,η)− (w1 + u,w2)
∥∥
X0

n̂

≤
√
C1 + 1 ǫ.
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Given that the constants depend only on the domains Ω1 and Ω2, it follows that W
n̂

is
dense in X0

n̂
. �XXX

Definition 4.7. Let µ be the shear viscosity of the fluid, and define its average in the
z-direction by

µ̄
def
=

∫ ζ(x̃)+1

ζ(x̃)

µ dz. (72)

Lemma 4.8 (Limiting normal behavior’s variational statement). Let v1, v2 be the limits
found in Corollary 3.4, and let p1, p2 be the limits found in Theorem 3.5. Then, the
following variational statement is satisfied:

∫

Ω1

Qv1 ·w1 dx−
∫

Ω1

p1 ∇ ·w1 dx+

∫

Γ

p2|(−∇T ζ, 1)|(w1 · n̂
∣∣
Γ
) dS

+

∫

Γ

(α + µ̄) (v1 · n̂)(w1 · n̂) dS = 0, for all w1 ∈ X0
n̂
. (73)

Here, µ̄ is the averaged viscosity introduced in Definition 4.7.

Proof. Test (30a) with [w1,η] ∈ W
n̂

and let ǫ → 0; this gives

∫

Ω1

Qv1 ·w1 dx−
∫

Ω1

p1 ∇ ·w1 dx+

∫

Ω2

p2 ∂z ηT
·∇T ζ dx̃ dz −

∫

Ω2

p2 ∂zηN
dx̃ dz

+

∫

Ω2

µχ · ∂z η dx̃ dz + α

∫

Γ

(
v1 · n̂

) (
w1 · n̂

)
dS = 0. (74)

Notice that the third and fourth summands in the expression above can be written as

∫

Ω2

p2 ∂z ηT ·∇T ζ dx̃ dz −
∫

Ω2

p2 ∂zηN dx̃ dz = −
∫

Ω2

p2∂zη ·
{
−∇

t
T ζ
1

}

= −
∫

Ω2

p2|(−∇T ζ, 1)| ∂zη · n̂

= −
∫

Ω2

p2|(−∇T ζ, 1)|(−w1 · n̂
∣∣
Γ
)

= −
∫

Γ

p2|(−∇T ζ, 1)|(−w1 · n̂
∣∣
Γ
) dS,

where the second equality holds by the definition of W
n̂

and the last equality holds since
p2 is independent from z (see Equation (55b)). Next, recalling the identities (42), (55a)
and (55c), observe that

∫

Ω2

µχ · ∂zη =

∫

Ω2

µ (χ · n̂) ∂z(η · n̂) =
∫

Ω2

µ∂zξ (−w1 · n̂
∣∣
Γ
)

=

∫

Ω2

µ (−v1 · n̂
∣∣
Γ
) (−w1 · n̂

∣∣
Γ
)

=

∫

Γ

µ̄ (−v1 · n̂
∣∣
Γ
) (−w1 · n̂

∣∣
Γ
) dS.
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Replacing the last two identities in (74), we conclude that the variational statement
(73) holds for every test function in W

n̂
. Since the bilinear form of the statement is

continuous with respect to the norm ‖ · ‖X0
n̂

and W
n̂

is dense in X0
n̂
, it follows that the

statement holds for every element w ∈ X0
n̂
. �XXX

4.3. Variational formulation of the limit problem

In this section we give a variational formulation of the limiting problem and prove it is
well-posed. We begin characterizing the limit form of the conservation laws.

Lemma 4.9 (Mass conservation in the limit problem). Let v1,v2 be the limits found in
Theorem 3.4; then,

∇ · v1 = h1, in Ω1; (75a)

∫

Ω2

∇T · v2 ϕ2 −
∫

Γ

∣∣(−∇T ζ, 1
)∣∣(v1 · n̂

)
ϕ2 dS = 0,

for all ϕ2 ∈ L2(Ω2), ϕ
2 = ϕ2(x̃). (75b)

Proof. Take Φ =
(
ϕ1, 0

)
∈ Y, test (30b) and let ǫ ↓ 0; we have

∫

Ω1

∇ · v1ϕ1 =

∫

Ω1

h1 ϕ1, for all ϕ1 ∈ L2(Ω1).

The statement above implies (75a).

For the variational statement (75b), first recall the dependence of the limit veloc-
ity given in equation (55b). Hence, consider Φ =

(
0, ϕ2

)
∈ Y such that ϕ2 = ϕ2(x̃), test

(30b) and regroup terms using (54a). The previous yields
∫

Ω2

∇T ·
(
ǫv 2,ǫ

T

)
ϕ2 +

∫

Ω2

∂z
(
ǫv 2,ǫ

T

)
·∇T ζ ϕ2 +

∫

Ω2

|(−∇Tζ, 1)|∂z
(
v 2,ǫ · n̂

)
ϕ2 = 0.

Next, let ǫ ↓ 0 and get
∫

Ω2

∇T · v2 ϕ2 +

∫

Ω2

∂zv
2 ·∇T ζ ϕ2 +

∫

Ω2

|(−∇T ζ, 1)|∂zξ ϕ2 dx̃ dz = 0.

In the expression above, recall that ∂z v
2 = 0, ϕ2 = ϕ2(x̃) and the identity (55a); then,

the statement (75b) follows. �XXX

Next, we introduce the function spaces of the limiting problem:

Definition 4.10. Define the space of velocities by

X0 def
=

{
w + u : w ∈ X0

n̂
, u ∈ Xtg

}
, (76a)

endowed with the natural norm of the space X0
n̂

⊕
Xtg. Define the space of pressures by

Y0 def
=

{
Φ =

(
ϕ1, ϕ2

)
∈ Y : ϕ2 = ϕ2(x̃)

}
, (76b)

endowed with its natural norm.
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Theorem 4.11 (Limiting problem variational formulation). Let v1,v2 be the limits found
in Corollary 3.4, and let p1, p2 be the limits found in Theorem 3.5. Then, they satisfy
the following variational problem:

[
v, p

]
∈ X0 ×Y0 :

∫

Ω1

Qv1 ·w1 −
∫

Ω1

p1 ∇ ·w1 −
∫

Ω2

p2 ∇T ·w2
T +

∫

Ω2

µ∇Tv
2 : ∇Tw

2

+

∫

Γ

β
√
Qv 2

tg ·w2
tg dS +

∫

Γ

(α+ µ̄)
(
v1 · n̂

)(
w1 · n̂

)
dS +

∫

Γ

|(−∇T ζ, 1)|p2
(
w1 · n̂

)
dS

=

∫

Ω2

f 2
tg ·w2

tg, (77a)

∫

Ω1

∇ ·v1ϕ1 +

∫

Ω2

∇T · v2 ϕ2 −
∫

Γ

|(−∇T ζ, 1)|
(
v1 · n̂

)
ϕ2 dS =

∫

Ω1

h1 ϕ1, (77b)

for all
[
w, Φ

]
∈ X0 ×Y0.

Moreover, the problem (77) is well-posed. (Here, µ̄ is the averaged viscosity introduced
in Definition 4.7.)

Proof. Since [v, p ] satisfies the variational statements (66), (73), (75a), (75b) as shown
in Lemmas 4.3, 4.8 and 4.9, respectively, it follows that [v, p ] satisfies the problem (77)
above.

In order to show that the problem is well-posed we prove continuous dependence of the
solution with respect to the data. Test (77a) with

(
v1, v2

)
and (77b) with

(
p1, p2

)
, add

them together and get

∫

Ω1

Qv1 · v1 +

∫

Ω2

µ∇Tv
2 : ∇Tv

2

+

∫

Γ

β
√
Qv 2

tg · v 2
tg dS +

∫

Γ

(α+ µ̄)
(
v1 · n̂

)(
v1 · n̂

)
dS

=

∫

Ω2

f 2
tg · v 2

tg +

∫

Ω1

h 1 p1. (78)

Applying the Cauchy-Bunyakowsky-Schwarz inequality to the right hand side of the
expression above, and recalling that v 2

tg is constant in the z-direction, we get

∫

Ω2

f 2
tg · v 2

tg +

∫

Ω1

h 1 p1 ≤
∥∥f 2

tg

∥∥
0,Ω2

∥∥v 2
tg

∥∥
0,Ω2

+
∥∥h1

∥∥
0,Ω1

∥∥p1
∥∥
0,Ω1

≤
∥∥f 2

tg

∥∥
0,Ω2

∥∥v 2
tg

∥∥
0,Γ

+ C̃
∥∥h1

∥∥
0,Ω1

∥∥∇p1
∥∥
0,Ω1

≤
∥∥f 2

tg

∥∥
0,Ω2

∥∥v 2
tg

∥∥
0,Γ

+ C
∥∥h1

∥∥
0,Ω1

∥∥Qv1
∥∥
0,Ω1

≤ C̃
[∥∥∥f 2

tg

∥∥ 2

0,Ω2
+
∥∥h1

∥∥ 2

0,Ω1

]1/2[∥∥v 2
tg

∥∥ 2

0,Γ
+
∥∥v1

∥∥ 2

0,Ω1

]1/2
.

(79)
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Here, the second and third inequalities holds because p1 satisfies respectively the drained
boundary conditions (Poincaré’s inequality applies) and the Darcy’s equation as stated
in (44a). Finally, the fourth inequality is a new application of the Cauchy-Bunyakowsky-
Schwarz inequality for 2-D vectors. Introducing (79) in (78), and recalling Hypothesis 2
on the coefficients Q, α, β and µ, we have

[∥∥v1
∥∥ 2

0,Ω1
+
∥∥v1 · n̂

∥∥ 2

Γ
+
∥∥∇Tv

2
tg

∥∥ 2

0,Ω2
+
∥∥v 2

tg

∥∥ 2

0,Γ

]1/2
≤ C̃

[∥∥∥f 2
tg

∥∥ 2

0,Ω2
+
∥∥h1

∥∥ 2

0,Ω1

]1/2
. (80)

Recalling (39b), the expression above implies that

∥∥v1
∥∥
Hdiv(Ω1)

≤ C̃
[∥∥∥f 2

tg

∥∥ 2

0,Ω2
+
∥∥h1

∥∥ 2

0,Ω1

]1/2
. (81)

Next, given that w2
tg is independent from z (see (40c)), it follows that

∥∥v 2
tg

∥∥
0,Γ

=∥∥v 2
tg

∥∥
0,Ω2

and
∥∥∇v 2

tg

∥∥
0,Ω2

=
∥∥∇Tv

2
tg

∥∥
0,Ω2

. Therefore (80) yields

∥∥v2
∥∥
1,Ω2

≤ C̃
[∥∥∥f 2

tg

∥∥ 2

0,Ω2
+
∥∥h1

∥∥ 2

0,Ω1

]1/2
. (82)

Again, recalling that p1 satisfies the Darcy’s equation and the drained boundary condi-
tions (Poincaré’s inequality applies) as stated in (44a), the estimate (81) implies

∥∥p1
∥∥
1,Ω1

≤ C̃
[∥∥∥f 2

tg

∥∥ 2

0,Ω2
+
∥∥h1

∥∥ 2

0,Ω1

]1/2
. (83)

Next, in order to prove continuous dependence for p2, recall (61), where it is observed
that all the terms are already continuously dependent on the data; then it follows that

∥∥p2
∥∥
0,Ω2

≤ C
[∥∥f 2

tg

∥∥2

0,Ω2
+
∥∥h1

∥∥ 2

0,Ω1

]1/2
. (84)

Finally, in order to prove the uniqueness of the solution, assume there are two solutions,
test the problem (77) with its difference and subtract them. We conclude that the
difference of solutions must satisfy the problem (77) with null forcing terms. This implies,
due to (81), (82) (83) and (84), that the difference of solutions is equal to zero, i.e. the
solution is unique. Since (77) has a solution, which is unique and it continuously depends
on the data, it follows that the problem is well-posed. �XXX

Corollary 4.12. The weak convergence statements in Corollaries 3.4 and 3.5 hold for the
whole sequence

(
(v ǫ, p ǫ) : ǫ > 0

)
of solutions.

Proof. It suffices to observe that, due to Hypothesis 4, the limiting problem (77) has
unique forcing terms. Therefore, any subsequence of the solutions

(
(v ǫ, p ǫ) : ǫ > 0

)

would have a weakly convergent subsequence, whose limit is the solution of problem (77)
(v, p), which is also unique, due to Theorem 4.11. Hence, the result follows. �XXX

5. Closing remarks

We finish the paper highlighting some aspects that were meticulously addressed in [14].
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5.1. A mixed formulation for the limiting problem

For an independent well-posedness proof of the problem (77), define the operators

A0 : X0 → (X0)′, A0 def
=

[
Q+ γ′

n̂

[
α+ µ̄

]
γ
n̂

0
0 γ′

tgβ
√
Q γtg −∇T · µ∇T

]
(85a)

and

B0 : X0 → (Y0)′, B0 def
=

[
∇ · 0

γ′
tg|(−∇T ζ, 1)|γn̂ ∇T ·

]
. (85b)

Then, the variational formulation of the problem (77) has the following mixed formula-
tion:

[v, p ] ∈ X0 ×Y0 : A0 v − (B0)′ p = f2,

B0 v = h1.
(86)

The proof now follows showing that the hypotheses of Theorem 1.3 are satisfied. The
strategy is completely analogous to that exposed in Lemma 17, Lemma 18 and Theorem
19 in [14].

5.2. Dimensional reduction of the limiting problem

It is direct to see that since Xtg and Y0 do not change on the z-direction inside Ω2, the
integrals on this domain can be reduced to integrals on the interface Γ. This yields a
problem coupled on Ω1 × Γ equivalent to (77). To that end we introduce the space:

X00
n̂

def
=

{
w1 ∈ Hdiv(Ω1) : w

1 · n̂
∣∣
Γ
∈ L2(Γ)

}
, (87a)

endowed with the norm (70), and the space

X00
tg

def
=

{
w2 ∈ H1(Γ) : w2(x̃) · n̂(x̃) = 0 for all x̃ ∈ G,w2 = 0 on ∂Γ

}
, (87b)

endowed with its natural norm.

Remark 5.1. Notice the following:

i. The space, X00
n̂

is isomorphic to X0
n̂

(69a).

ii. Since Γ is a surface (a parametrized manifold in RN ) as described by the identity
(6), it is completely characterized by its global chart ζ : G → R. Therefore a
function u : Γ → R, γ 7→ u(γ), can be seen as uG : G → R, x̃ 7→ u(x̃, ζ(x̃)),
with G being the orthogonal projection of the surface Γ into RN−1. Identifying u
with uG allows to well-define integrability and differentiability. Hence, the space
L2(Γ) is characterized by the equality:

∫
Γ
u2dS =

∫
G
u2
G|(∇ζ, 1)|dx̃, where dx̃ is the

Lebesgue measure in G ⊆RN−1. In the same fashion, the space H1(Γ) is the closure

of the C1(Γ) space in the natural norm ‖u‖20,Γ
def
= ‖u‖20,Γ + ‖∇Tu‖20,Γ. (Clearly, ∇T

suffices to store all the differential variation of a function u : Γ →R.)
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With the definitions above, define the space of velocities

X00 def
=

{
w+ u : w ∈ X00

n̂
, u ∈ X00

tg

}
, (88a)

endowed with the natural norm of the space X
0)
n̂

⊕
X00

tg . Next, define the space of
pressures by

Y00 def
= L2(Ω1)× L2(Γ), (88b)

endowed with its natural norm. Therefore, the problem (77) is equivalent to

[
v, p

]
∈ X00 ×Y00 :

∫

Ω1

Qv1 ·w1 −
∫

Ω1

p1 ∇ ·w1

−
∫

Γ

p2 ∇T ·w2
T +

∫

Γ

µ̄∇Tv
2 : ∇Tw

2 +

∫

Γ

β
√
Qv2 ·w2 dS

+

∫

Γ

(α+ µ̄)
(
v1 · n̂

)(
w1 · n̂

)
dS +

∫

Γ

|(−∇T ζ, 1)|p2
(
w1 · n̂

)
dS =

∫

Γ

f̄2 ·w2, (89a)

∫

Ω1

∇ ·v1ϕ1 +

∫

Γ

∇T · v2 ϕ2 −
∫

Γ

|(−∇T ζ, 1)|
(
v1 · n̂

)
ϕ2 dS =

∫

Ω1

h1 ϕ1, (89b)

for all
[
w, Φ

]
∈ X00 ×Y00,

where f̄2(x̃)
def
=

∫ ζ(x̃)+1

ζ(x̃) f2dz.

Remark 5.2 (The Brinkman equation). Notice that in the equation (89a), the product
v 2
tg ·w2

tg has been replaced by v2 ·w2 (for consistency ¯f2tg ·w2
tg was replaced by f̄2 ·w2).

This is done in order to attain a Brinkman-type form in the third, fourth and fifth
summands of equation (89a). Also notice that although v2 · n̂ = 0 and w2 · n̂ = 0, the
product ∇Tv

2 : ∇Tw
2 can not be replaced by ∇Tv

2
tg : ∇Tw

2
tg, due to the differential

operators (the orthogonal matrix U depends on x̃). This is the reason why we give up
expressing the activity on the interface Γ exclusively in terms of tangential vectors, as
its is natural to look for.

5.3. Strong convergence of the solutions

In contrast to the asymptotic analysis in [14], the strong convergence of the solutions can
not be concluded. The main reason is the presence of the higher order term χ, weak limit
of the sequence (∂zv

2,ǫ : ǫ > 0). As it can be seen in the proof of Theorem 4.3, the higher
order term χ can be removed because the quantifier w2 belongs to Xtg. However, when
testing the problem (30) on the diagonal [v ǫ, p ǫ] and adding the equations to get rid of
the mixed terms, the quantifier v 2,ǫ does not belong to Xtg. As a consequence, the terms
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‖√µDǫ(ǫv 2,ǫ)‖20,Ω2
+ ‖µ∂zv 2,ǫ‖0,Ω2 contain in its internal structure inner products of

the type

∫

Ω2

µ∂zv
2,ǫ

{
−∇ζ
1

}
: ∇(ǫv 2,ǫ) =

∫

Ω2

µ|(−∇ζ, 1)|∂zv 2,ǫ ·∇(ǫv 2,ǫ) · n̂, (90)

which can not be combined/balanced with other terms present in the evaluation of the
diagonal. The product above is not guaranteed to pass to the limit

∫
Ω2

µ|(−∇ζ, 1)|χ ·
∇v2 · n̂, because both factors are known to converge weakly, but none has been proved
to converge strongly. Such convergence would be ideal since v2 ∈ Xtg, therefore ∂

n̂
v2 =

∇v2 · n̂ = 0 and the term (90) would converge to zero. The latter would yield the strong
convergence of the norms for ‖∇T (ǫv

2,ǫ)‖0,Ω2 and ‖∂zv 2,ǫ‖0,Ω2 and the desired strong
convergence would follow.

More specifically, the surface geometry states that the normal (n̂) and the tangential
directions (tg) are the important ones, around which the information should be arranged.
On the other hand, the estimates yield its information in terms of x̃ (T ) and z (N). Such
disagreement has the effect of keeping intertwined the higher order and lower order terms
to the extent of allowing to conclude weak, but not strong convergence statements.

5.4. Ratio of velocities

The relationship of the velocity in the tangential direction with respect to the velocity in
the normal direction is very high and tends to infinity as expected for most of the cases.
We know that

(
‖v2,ǫ

n̂
‖0,Ω2 : ǫ > 0

)
is bounded, therefore ‖ ǫv2,ǫ

n̂
‖0,Ω2 = ǫ ‖v2,ǫ

n̂
‖0,Ω2 → 0.

Suppose first that v 2
tg 6= 0, and consider the ratios

‖v2,ǫ
tg ‖0,Ω2

‖v2,ǫ
n̂

‖0,Ω2

=
‖ ǫv2,ǫ

tg ‖0,Ω2

‖ ǫv2,ǫ
n̂

‖0,Ω2

≥
lim inf ‖ ǫv2,ǫ

tg ‖0,Ω2

‖ ǫv2,ǫ
n̂

‖0,Ω2

>
‖v 2

tg ‖0,Ω2 − δ

‖ ǫv2,ǫ
n̂

‖0,Ω2

> 0.

The lower bound holds true for ǫ > 0 small enough and adequate δ > 0; then we conclude
that the L2-norms’ ratio of the tangent component over the normal component blows-up
to infinity, i.e., the tangential velocity is much faster than the normal one in the thin
channel.

In contrast, if v 2
tg = 0 nothing can be concluded, since it can not be claimed that v1 ·n̂ = 0

on Γ unless f2 = 0 is enforced, trivializing the activity on Ω2. Therefore, it can only
be concluded that

∥∥v2,ǫ
tg

∥∥
0,Ω2

≫
∥∥v2,ǫ

n̂

∥∥
0,Ω2

for ǫ > 0 small enough, when v 2
tg 6= 0, as

discussed above.

5.5. Reduction to the flat horizontal case

In this section we show how the ǫ-problems (30) and the limit problem (77) are corres-
ponding generalizations of the systems (23) and (59) presented in [14]. We show this fact
in several steps:

a. Recall that in [14] the interface Γ is flat horizontal and, for convenience, it was assumed
that Γ ⊂ RN−1 × {0}. In our current scenario, this is attained by merely setting
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ζ = 0, which satisfies all the conditions of Hypothesis 1. Furthermore, the following
differential operators verify

∇ζ ≡ 0, ∇T ζ ≡ 0, Dǫw ≡ ∇Tw,

where Dǫw is defined in (15).

b. For ζ = 0, the stream line localizer of Definition 2.5 is the constant matrix valued
function x̃ 7→ U(x̃) = I, where I ∈ RN×N is the identity matrix. In particular
n̂ ≡ êN , which is independent from x̃.

c. Given that the stream line localizer is the identity matrix, the normal and tangential
velocities introduced in the equations (19) satisfy

w2
n̂
= w · n̂ = w2

N
, w2

tg = w2
T
.

Taking into account all the previous observations, the ǫ-problems (30) reduce to

[v ǫ,p ǫ] ∈ X×Y :

∫

Ω1

Qv1,ǫ ·w1 dx−
∫

Ω1

p1,ǫ ∇ ·w1 dx− ǫ

∫

Ω2

p 2,ǫ
∇T ·w2

T dx̃ dz−
∫

Ω2

p 2,ǫ ∂zw
2
N dx̃ dz

+ ǫ2
∫

Ω2

µ∇Tv
2,ǫ : ∇Tw

2 dx̃ dz +

∫

Ω2

µ∂z v
2,ǫ · ∂z w2 dx̃ dz

+ α

∫

Γ

(
v1,ǫ · n̂

) (
w1 · n̂

)
dS + ǫ2

∫

Γ

β
√
Qv 2,ǫ

T
·w2

T
dS

= ǫ

∫

Ω2

f2,ǫ ·w2 dx̃ dz, (91a)

∫

Ω1

∇ ·v1,ǫϕ1 dx + ǫ

∫

Ω2

∇T · v 2,ǫ
T

ϕ2 dx̃ dz +

∫

Ω2

∂zv
2,ǫ
N

ϕ2 dx̃ dz =

∫

Ω1

h1, ǫ ϕ1 dx,

(91b)

for all [w,Φ] ∈ X×Y.

The summands of the second line in (91a) can be written in the following way:

ǫ2
∫

Ω2

µ∇Tv
ǫ : ∇Tw

2 dx̃ dz = ǫ2
∫

Ω2

µ∇Tv
2,ǫ
T : ∇Tw

2
Tdx̃ dz + ǫ2

∫

Ω2

µ∇Tv
2,ǫ
N : ∇Tw

2
N dx̃ dz,

∫

Ω2

µ∂zv
2,ǫ · ∂zw2 dx̃ dz =

∫

Ω2

µ∂zv
2,ǫ
T

· ∂zw2
T
dx̃ dz +

∫

Ω2

µ∂zv
2,ǫ
N

· ∂zw2
N
dx̃ dz.

Introducing the changes above in (91), the system (23) in [14] is attained.

Again, taking into account the simplifications corresponding to a flat horizontal interface
(ζ ≡ 0) listed at the beginning of this section, the limit problem (77) reduces to
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[
v, p

]
∈ X0 ×Y0 :

∫

Ω1

Qv1 ·w1 −
∫

Ω1

p1 ∇ ·w1 −
∫

Ω2

p2 ∇T ·w2
T +

∫

Ω2

µ∇Tv
2 : ∇Tw

2

+

∫

Γ

β
√
Qv2

T ·w2
T dS+

∫

Γ

(α+ µ̄)
(
v1 · n̂

)(
w1 · n̂

)
dS+

∫

Γ

p2
(
w1 · n̂

)
dS =

∫

Ω2

f 2
T ·w2

T ,

(92a)
∫

Ω1

∇ ·v1ϕ1 +

∫

Ω2

∇T · v2 ϕ2 −
∫

Γ

(
v1 · n̂

)
ϕ2 dS =

∫

Ω1

h1 ϕ1, (92b)

for all
[
w, Φ

]
∈ X0 ×Y0.

Notice that since ζ ≡ 0, the spaces X00,Y00 in [14] are isomorphic to X0 and Y0 in (92),
respectively. Finally, reordering the summands in the equalities above and writing

∫

Ω2

µ∇Tv
2 : ∇Tw

2 =

∫

Γ

µ∇Tv
2 : ∇Tw

2dx̃ =

∫

Ω2

µ∇Tv
2 : ∇Tw

2dS,

∫

Ω2

∇T · v2 ϕ2 =

∫

Γ

∇T · v2 ϕ2dx̃ =

∫

Γ

∇T · v2 ϕ2dS,

we obtain the system (59) in [14].

The ǫ-problems (30) are isomorphic to the problems (23) in [14], and the limit problem
(77) is isomorphic to (59) (Theorem 21) in [14]. In addition, the reasoning proving that
(77) is the limit form of (30) stands for the case ζ ≡ 0. Next, the strong convergence
limitations discussed in Section 5.3 no longer hold, since the expression (90) reduces to

∫

Ω2

µ∂zv
2,ǫ

{
−∇ζ
1

}
: ∇(ǫv 2,ǫ) =

∫

Ω2

µ∂zv
2,ǫ · ∂zv 2,ǫ. (93)

From here, the same reasoning presented in Section 5 in [14] applies.

The previous observations, show that the present work entirely recovers the weak conver-
gence results analogous to those presented in [14], but extending them to a considerable
broader scenario. On the other hand, the strong convergence properties in [14] could not
be generalized, and they should be treated on a case-wise basis, using particular features
of the function ζ, as it was done in the equality (93) above.
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