Boletín de Matemáticas Vol. XXI Nº 2,3 1987 APUNTES

LAS PROPORCIONES DEL SOL DE LOS PASTOS*

Victor Samuel Albis

El origen de esta nota es la pregunta que nos hiciera O. Granda sobre las proporciones que podrían encontrarse en el motivo prehispánico denominado el sol de los pastos por Afanador et al. [1985]. Este motivo permea la decoración de petroglifos y ceramios de las etnias pasto y quillasinga, habitantes precolombinos de los Andes del sur de Colombia y norte del Ecuador. Los mismos autores señalan que también se encuentra, al sur, en ceramios y tejidos arqueológicos de la región de Chuquibamba, provincia de Condesuyos, en Arequipa, Perú, y, al norte, entre los calimas de Colombia (q.n.v.). Además el

Trabajo realizado en su fase inicial en el Proyecto de Investigaciones Históricas en la Matemática Colombiana, de la Sociedad Colombiana de Matemáticas, financiado parcialmen e por COLCIENCIAS (202-1-01-74). La finalización del trabajo se realizó dentro del proyecto Antropología y Matemáticas, Fase I, de la Facultad de Ciencias, UNAL.

diseño aún persiste en la artesanía contemporánea de los tejidos indígenas de la región de Otavalo, Ecuador.

Por otra parte, esta nota forma parte de una serie dedicada a la reconstrucción del pensamiento geométrico de nuestras culturas prehispánicas, usan do la metodología que nos proporciona el estudio de los diseños que aparecen en la ornamentación ar tística de objetos y utensilios, en la que subyacen los grupos de las simetrías planas, como expresión geométrica del ritmo, y las proporciones. Esta ornamentación, podemos con Bourbaki [1972, 368], considerarla, "con todo derecho, como una parte de las matemáticas desarrolladas por estas civilizaciones". Esta posición contrasta con la de autores anteriores, que como Gow [1884, 123], afirmaban co sas como la siguiente:

He buscado, en vano, en muchos libros que se proponen describir los hábitos y psicología de las razas inferiores, alguna alusión a su conocimiento geó metrico en forma de algunas operaciones que impliquen nociones geométricas.

El desciframiento de las ideas geométricas sub yacentes en la ornamentación prehispánica contribu ye no sólo a la reafirmación de nuestra identidad cultural y a la reconstrucción conjetural, pero co herente, del origen de la matemática, mediante estudios comparativos, sino que también conduce, co-

112 apuntes

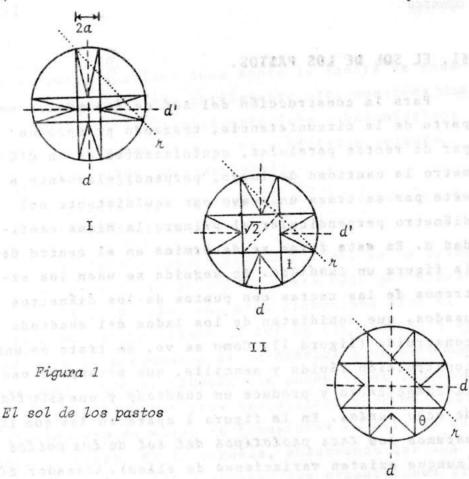
mo veremos, a reflexiones sobre la manera de ensenarla haciéndola más interesante para nuestros alum nos, usando ingredientes estéticos y humanísticos ligados profundamente a nuestra historia cultural (Cfr. [Albis, 1986; Gerdes, 1986])

Los dibujos de las figuras 3 a 6 se han tomadode Afanador et al. 1985.

Este trabajo consta de dos partes: en la prime ra, con base en la evidencia presentada por Afanador et al., establecemos tres prototipos para el diseño que ellos llaman el sol de los pastos, y es tudiamos la frecuencia de su aparición en esta mues tra, indicando el interés que puede tener continuar el estudio de estos tres prototipos. Anotemos aquí que cada uno de ellos se transforma en otro de manera continua. En la segunda, observamos que los prototipos II y III contienen dos proporciones dinámicas muy conocidas: $\sqrt{2}$ y $1+\sqrt{2}$, lo que permite que se generen recurrente y geométricamente. A par tir de esta observación hacemos un estudio algebraico de las propiedades de la segunda de éstas proporciones, como una aplicación de cómo usar la geometría prehispánica para motivar la introducción de nuevos e importantes conceptos matemáticos al nivel de secundaria.

\$1. EL SOL DE LOS PASTOS.

Para la construcción del sol de los pastos se parte de la circunferencia, trazando primero un par de rectas paralelas, equidistantes de un diámetro la cantidad a; luego, perpendicularmente a este par se traza un nuevo par equidistante del diâmetro perpendicular al primero la misma cantidad a. En esta forma se determina en el centro de la figura un cuadrado. En seguida se unen los extremos de las rectas con puntos de los diámetros usados, que equidisten de los lados del cuadrado construido (figura 1). Como se ve, se trata de una construcción rápida y sencilla, que presupone una circunferencia y produce un cuadrado y una estrella de ocho puntas. En la figura l aparecen los que lla maremos los tres prototipos del sol de los pastos (aunque existen variaciones de ellos). Afanador et al. tienen parcialmente razón en afirmar que esta estrella es diferente de las estrellas mudéjares, introducidas en la Colonia para decorar los arteso nados de las iglesias. En efecto, el grupo de simetrías de cualquier estrella mudéjar es el grupo diédrico Dg, generado por ocho reflexiones, cuyos ejes pasan por el centro del circulo, formando, dos consecutivos, ángulos de (45/2)°, y por una rotación a de 45° (figura 2). En cambio, en el sol de los pas tos, a menos que se trate del prototipo III, el gru



po de simetrías del diseño es el grupo diédrico \mathcal{D}_4 , generado por cuatro reflexiones, cuyos ejes pasan por el centro del círculo, formando, dos consecutivos, ángulos de 45°, y por una rotación β de 90°. En el prototipo III el grupo de simetrías es \mathcal{D}_8 , pues en este caso el sol de los pastos coinci-

III nen parcialmente razón en altruar cue esta

introducidas en la Colonia para decorar les aviese

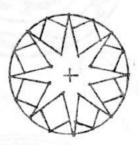
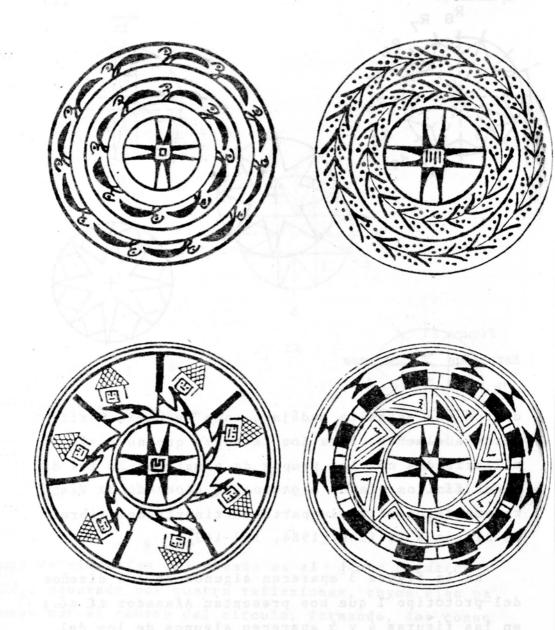


Figura 2
Estrellas mudéjares

de con una estrella mudéjar, como se puede verificar visualmente. Para los lectores que no están familiarizados con los grupos de simetrías de los di seños finitos planos o grupos de Leonardo da Vinci, recomendamos mirar la parte pertinente del libro de Alsina & Trillas [1984, 147-149].

En la figura 3 aparecen algunos de los diseños del prototipo I que nos presentan Afanador et al.; en las figuras 4 y 5 aparecen algunos de los del prototipo II y en la figura 6 algunos de los del prototipo III.

116

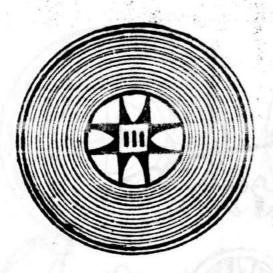


Ceramios

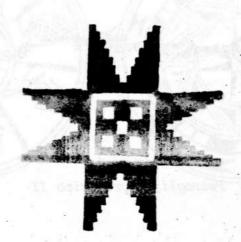
Figura 3 Sol de los pastos: prototipo I

Figura 4 Petroglifo: prototipo II

118



Ceramios



Tejidos de Otavalo

Figura 5 Sol de los pastos: prototipo II

Ceramio

Tejidos de Otavalo

Figura 6 Sol de los pastos: prototipo III

gube ong da ouge radionation participant and hallons a concerna-

apuntes

En el siguiente cuadro resumimos estas observa ciones:

N -	Ceramios		Petroglifo			Otavalo	
Prototipo I	7	43,75	-		<u>-</u>)	_	
Prototipo II	8	50,00	1		100	4	66,66
Prototipo III	1(?)	6,25	4	9	-	2	33,33
Totales	16	100,00	1	37	100	6	99,99

Ante la falta de datos sobre lugares de hallaz go y dataciones, de los que no informan Afanador et al., no es posible determinar la confiabilidad o la homogeneidad relativa de la muestra presentada por estos autores. De manera que las siguientes conclusiones sólo tienen un carácter provisional. El prototipo III únicamente aparece de modo claro en la artesanía contemporánea de Otavalo, pues la inclusión del ceramio de la figura 6 nos deja algunas dudas. Luego, sobre la base de la evidencia presentada, es razonable suponer que su aparición es posterior y posiblemente influenciada por la estrella mudéjar o la trama geométrica en que se rea lizan los tejidos de esta artesanía.

Por otra parte y sobre la misma evidencia, en los ceramios prehispánicos los prototipos I y II aparecen equidistribuidos; mientras que el prototi

po I no aparece en los tejidos de Otavalo y el II aparece con más frecuencia que el III; lo anterior, sin embargo, no resuelve el problema de si el prototipo II es el diseño básico original, lo que des de el punto histórico-geométrico sería muy interesante. Con la información suministrada, tampoco es posible rastrear la difusión de este motivo en le área panandina, en el espíritu, por ejemplo, de la teoría aloctonista de Kauffmann Roig, que propone el origen de la alta cultura peruana en la antigua cultura de Valdivia, Ecuador. Creemos que lo anterior muestra lo conveniente que sería retomar el trabajo de Afanador et al. y continuarlo en esta dirección.

§2. LAS PROPORCIONES DEL SOL DE LOS PASTOS.

Pasamos ahora a identificar las proporciones que aparecen en los tipos II y III del sol de los pastos. Para hacerlo necesitaremos recordar la siguiente definición de proporción: dado un rectángulo de lados a y b se define la proporción del rectángulo como el cociente.

$$p(a,b) = max(a,b) / min(a,b);$$

es claro que con esta definición se tiene p(a,b) > 1y que p(a,b) = 1 cuando, y sólo cuando, el rectángulo es un cuadrado. Si p(a,b) es un número racional, decimos que la proporción es conmensurable; si p(a,b) es irracional, hablamos de una proporción inconmensurable o dinámica.

Con regla y compás es posible construir una gama amplia de rectángulos con proporciones dinámicas: basta construir primero, con estos instrumentos, un segmento irracional de longitud mayor que uno (por ejemplo, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $1+\sqrt{2}$, $\sqrt{1+\sqrt{5}}$), y luego un rectángulo que tenga por lados l y este segmento.

Como una construcción con regla y compás es equivalente a una hecha con cuerdas y estacas, no es descabellado pensar en que las proporciones dinámicas tuviesen una temprana aparición en la historia de la geometría, entre los ritualistas de las cuerdas y las estacas [Seidenberg, 1962;1981]. De hecho, estas proporciones pueden identificarse tan to en construcciones y diseños sagrados como civiles, en muchas culturas antiguas o primitivas, en casi todos los continentes [Alsina & Trillas (1984) p.245 y sigs.; Liétaerd (1985)]. Y, siempre dentro de la historia de la geometría, no podemos olvidar tampoco el papel decisivo que las proporciones dinámicas tuvieron en la geometrización del álgebra. realizada por la escuela pitagórica [van der Warden (1983) p.88 y sgtes.].

Diremos que una figura (o diseño) tiene la proporción p(a,b) = p si en ella aparece un segmento

de longitud p, para alguna unidad adecuada. Con esta definición vamos a estudiar las proporciones dinámicas que aparecen en los prototipos II y III del sol de los pastos.

2.1. LAS PROPORCIONES DINAMICAS EN EL PROTOTIPO II.

En la figura 7 podemos distinguir fácilmente la proporción $p=\sqrt{2}$; pero en ella también mostramos que a partir de un sol de prototipo II podemos generar una sucesión de soles del mismo prototipo, proporcionales entre sí, y tales que sus segmentos homólogos están en progresión geométrica. Luego el hecho que $\sqrt{2}$ aparezca en el diseño de prototipo II le imprime un dinamismo generativo. En la figura 7, hemos señalado las siguientes progresiones geométricas: 1, 3, $3^2, \ldots, y\sqrt{2}$, $3\sqrt{2}$, $3^2\sqrt{2}$, ... Esto no es un hecho aislado, como veremos en seguida con mayor enjundia en el prototipo III.

2.2. LAS PROPORCIONES DINAMICAS EN EL PROTOTIPO III.

En la figura 8 podemos distinguir la proporción $\theta=1+\sqrt{2}$, así como también la generación dinámica de diseños del prototipo III. Es clara, también de la figura, la generación de la progresión geométrica 1, θ , θ^2 , θ^3 , θ^4 ,.... Usando que

(1)
$$\theta^2 = 2\theta + 1 \iff \theta^2 - 2\theta - 1 = 0,$$

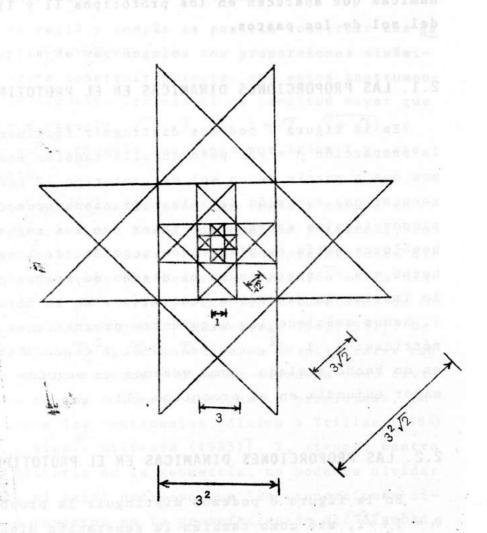
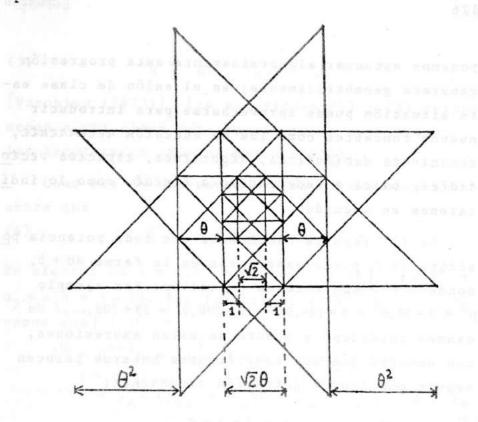
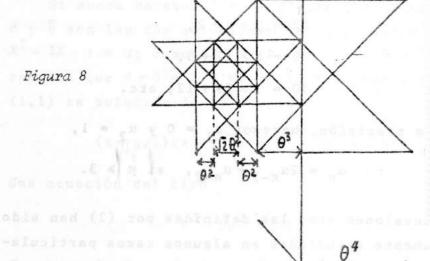


Figura 7





podemos estudiar algebraicamente esta progresión generada geométricamente; en el salón de clase esta situación puede aprovecharse para introducir nuevos conceptos como los de sucesión recurrente, ecuaciones diofánticas, algoritmos, espacios vecto riales, bases e independencia lineal, como lo indicaremos en seguida.

De (1) resulta făcilmente que toda potencia positiva de θ puede expresarse en la forma $a\theta + b$, donde a y b son enteros positivos. Por ejemplo $\theta^3 = 2 + 5\theta$, $\theta^4 = 5 + 12\theta$, $\theta^5 = 12 + 29\theta$, $\theta^6 = 29 + 70\theta$,.... Un examen cuidadoso y atento de estas expresiones, nos muestra que sus coeficientes enteros parecen seguir una ley de formación recurrente:

$$2 = 2 \times 1 + 0$$
,
 $5 = 2 \times 2 + 1$,
 $12 = 2 \times 5 + 2$,
 $29 = 2 \times 12 + 5$,
 $70 = 2 \times 29 + 12$, etc.

Con más precisión, hacemos $u_1 = 0$ y $u_2 = 1$,

(2)
$$u_n = 2u_{n-1} + u_{n-2}, \quad \text{si } n \geqslant 3.$$

Sucesiones como las definidas por (2) han sido ampliamente estudiadas en algunos casos particulares, como el de la sucesión de Fibonacci: $v_1 = v_2 = 1$,

(3)
$$v_n = v_{n-1} + v_{n-2}, \quad \text{si } n \geqslant 3,$$

[Vorobiev (1973)]. Las sucesiones (2) y (3) pertenecen a una clase muy importante de sucesiones: las recurrentes [Markushévich (1974)].

Como era de esperarse, es posible demostrar ahora que

(4)
$$\theta^n = u_n + u_{n+1}\theta, \quad \text{si } n > 1.$$

En efecto, si $n=1,\theta^1=u_1+u_2\theta$, y si $n=2,\theta^2=u_2+u_3\theta=1+2\theta$. Por inducción, si $\theta^{n-1}=u_{n-1}+u_n\theta$, vemos que

$$\begin{split} \theta^{n} &= \theta^{n-1}\theta = (u_{n-1} + u_{n}\theta)\theta = u_{n-1}\theta + u_{n}\theta^{2} \\ &= u_{n} + (u_{n-1} + 2u_{n})\theta = u_{n} + u_{n+1}\theta, \quad n \geq 3, \end{split}$$

donde hemos usado (1) y (2).

Si ahora hacemos $\overline{\theta}=1-\sqrt{2}$ (el conjugado de θ), θ y $\overline{\theta}$ son las dos soluciones de la ecuación $X^2-2X-1=0$; como $(X-\theta)(X-\overline{\theta})=X^2-(\theta+\overline{\theta})X+\theta\overline{\theta}$, resulta que $\theta+\overline{\theta}=2$ y $\theta\overline{\theta}=-1$. Por tanto, (x,y)=(1,1) es solución de la ecuación

$$(x + y\sqrt{2})(x - y\sqrt{2}) = x^2 - 2y^2 = -1.$$

Una ecuación del tipo

$$x^2 - Dy^2 = \pm 1,$$

D > 0 y sin factores cuadráticos, se llama una ecua

ción de Pell-Fermat. Como también se tiene

$$\overline{\theta} = u_n + u_{n+1}\overline{\theta}$$

(fácil, usando inducción), deducimos las relaciones

(6)
$$\begin{cases} \theta^{n} = u_{n} + u_{n+1} \theta = (u_{n} + u_{n+1}) + u_{n+1} \sqrt{2}, \\ \bar{\theta}^{n} = u_{n} + u_{n+1} \bar{\theta} = (u_{n} + u_{n+1}) - u_{n+1} \sqrt{2}; \end{cases}$$

de donde (puesto que $\theta \overline{\theta}$ = -1) resulta, para cada $n \geqslant 1$, que

$$(x_n, y_n) = (u_n + u_{n+1}, u_{n+1})$$

es la solución entera positiva de la ecuación de Pell-Fermat

(7)
$$x^2 - 2y^2 = \pm 1.$$

La relación (2) nos permite, pues, construir recurrentemente las soluciones enteras positivas de (7). Por esta razón la sucesión $(u_1,u_2,u_3,\ldots,u_n,\ldots)$ se llama también una sucesión de Pell-Fermat. Es interesante notar que los pitagóricos ya tenían una construcción recurrente para las soluciones de (7). En efecto, si $d_n = u_n + u_{n+1}$ y $\ell_n = u_{n+1}$, es fácil verificar que

$$\ell_1 = d_1 = 1$$

(8)
$$\ell_{n+1} = \ell_n + d_n,$$

$$d_{n+1} = 2\ell_n + d_n,$$

fórmula recurrente que es mencionada tanto por Proclo (en sus comentarios a la República de Platón, 546C) como por Teón de Esmirna en sus Expositio re num mathematiconum. Proclo atribuye la formación de estas sucesiones a los pitagóricos; el mismo au tor indica la manera cómo éstos, basándose en la identidad

$$(2\ell + d)^2 + d^2 = 2\ell^2 + 2(\ell + d)^2$$
,

o, equivalentemente (usando (8)), en la siguiente

$$d_{n+1}^2 + d_n^2 = 2\ell_n^2 + 2\ell_{n+1}^2$$

y utilizando la primera inducción completa de que se tiene noticia en la historia de la matemática, demostraron que $(x_n,y_n)=(d_n,l_n)$ son soluciones (7). Como dice van der Waerden [(1983)p.136], el pitagórico que demostró lo anterior y encontró las fórmulas de recurrencia (8), debió ser un excelente matemático.

Vale la pena observar, también, que si escribi mos (7) en la forma

$$(d_n/\ell_n)^2 = 2 + (1/\ell_n)^2$$
,

las proporciones $d_n: \mathcal{L}_n$ dan una muy buena aproximación de la raíz cuadrada de 2, cuya bondad crece con n, pues $(\mathcal{L}_n)_{n\geqslant 1}$ es una sucesión estrictamente creciente de números positivos.

Los pitagóricos también estudiaron las ecuacio

nes $x^2 = 3y^2 + 1$ y $x^2 = 3y^2 - 2$. Para detalles sobre este particular y el origen de las ecuaciones de Pell-Fermat entre griegos e hindúes, remitimos al ya citado libro de van der Waerden.

También de (6) obtenemos

$$(-1)^n = u_n^2 + 2u_n u_{n+1} - u_{n+1}^2$$
, para $n \ge 1$,

lo que nos permite construir recurrentemente soluciones enteras positivas de las hipérbolas

(9)
$$x^2 + 2xy - y^2 = \pm 1,$$

usando nuevamente la relación (2). Un buen ejercicio, para los que conocen de programación de ordenadores, es la elaboración de algoritmos para calcular soluciones enteras positivas de (7) y (9), basándose en lo anterior.

Como en el caso de la sucesión de Fibonacci [Vorobiev (1973)p.105-106], las sucesiones $(s_n)_{n\geqslant 1}$ que cumplen

(10)
$$\delta_{n+2} = 2\delta_{n+1} + \delta_n, \quad n \geqslant 3,$$

conforman un espacio vectorial sobre los números reales, que tiene dimensión dos. (Esto es un caso particular de una situación más general que se encuentra descrita, por ejemplo, en [Markushévich (1974)]). Para verlo, tomemos dos sucesiones (δ_n) y (t_n) , distintas de la sucesión (0), que cumplan (10) y tales que $(\delta_n) \neq \lambda(t_n) = (\lambda t_n)$, para todo

número real λ (esto también se expresa diciendo que las dos sucesiones no son proporcionales); entonces $\delta_1/t_1 \neq \delta_2/t_2$. En efecto, si δ_1/t_1 y δ_2/t_2 fuesen iguales, tendríamos $(\delta_1+\delta_2)/(t_1+t_2) = \delta_2/t_2$ y, por tanto, $(\delta_1+2\delta_2)/(t_1+2t_2) = \delta_2/t_2$, es decir, $\delta_3/t_3 = \delta_2/t_2$, en virtud de (10). Una simple inducción nos conduce a que $\delta_1/t_1 = \delta_2/t_2 = \delta_3/t_3 = \ldots = \delta_N/t_N = \ldots = \lambda$ lo que es contrario a la supuesta no proporcionalidad de las dos sucesiones. Supongamos ahora que (w_N) también satisface (10), y consideremos el sistema de ecuaciones lineales

$$c_{1}s_{1} + c_{2}t_{1} = w_{1},$$

$$c_{1}s_{2} + c_{2}t_{2} = w_{2}.$$

Como, por hipótesis, $s_1/t_1 \neq s_2/t_2$, el determinante $s_1t_2-s_2t_1$ de este sistema no se anula, y, por tanto, admite soluciones únicas dadas por la regla de Cramer:

$$c_1 = \frac{w_1 t_2 - w_2 t_1}{s_1 t_2 - s_2 t_1}, \qquad c_2 = \frac{s_1 w_2 - s_2 w_1}{s_1 t_2 - s_2 t_1}.$$

De aquí resulta que $(w_n) = c_1(s_n) + c_2(t_n)$; lue go, dos sucesiones que satisfacen (10), distintas de la sucesión cero y que no son proporcionales, forman una base del espacio vectorial de las sucesiones que satisfacen (10).

Usando (1) es fácil verificar ahora que las su

cesiones

$$(1,\theta,\theta^{2},\theta^{3},...,\theta^{n-1},...) = (s_{n})_{n>1}$$

$$(1,\bar{\theta},\bar{\theta}^{2},\bar{\theta}^{3},...,\bar{\theta}^{n-1},...) = (t_{n})_{n>1}$$

satisfacen (10), y como $\theta \neq \overline{\theta}$, ellas conforman una base del espacio vectorial de todas las sucesiones de números reales que satisfacen (10). De las fórmulas (4) y (5) obtenemos

(11)
$$u_n = \frac{1}{2\sqrt{2}} \theta^{n-1} - \frac{1}{2\sqrt{2}} \overline{\theta}^{n-1}, \quad n > 1,$$

que no es otra cosa que la expresión de $(u_n)_{n\geqslant 1}$ como combinación lineal de $(s_n)_{n\geqslant 1}$ y $(t_n)_{n\geqslant 1}$. La fór mula (11) corresponde a la llamada "fórmula de Binet" en el caso de la sucesión de Fibonacci [Voroviev (1973) p.106-107].

NOTAS.

1) El nombre "ecuación de Pell" fue acuñado por Euler, aún cuan do aquel poco o nada tuvo que ver con esta ecuación.

teorical that had

2) La identidad $(2\ell+d)^2+d^2=2\ell^2+2(\ell+d)^2$ se encuentra demostrada en los Elementos de Euclides, II 10.

sup arona rabilitav Irbai se (1) obnasi

BIBLIOGRAFIA

- [1] Afanador, C., M. Uscátegui & O. Granda, 1985

 Presencia del diseño prehispánico en la
 artesanía de los Andes Septentrionales.

 (45 Congreso Internacional de Americanis
 tas, Bogotá). Pasto (Universidad de Nari
 ño).
- [2] Albis, Víctor S., 1986 Arte prehispánico y Matemáticas. Rev. Universidad Nacional de Colombia (2a. época), II (7), jun/jul. 29-34.
- [3] Alsina, C. & E. Trillas 1984 Lecciones de álgebra y geometría. Barcelona (Gustavo Gili).
- [4] Bourbaki, N. (seudônimo) 1972 Elementos de historia de las matemáticas. Madrid (Alianza).
- [5] Gerdes, Paulus 1986 On the reconstruction of the history of geometrical thinking in Africa. Abstract presented to the 2nd Pan-African Congress of Mathematicians.

 University of Jos, Nigeria.
 - [6] Gow, James 1984 A short History of Greek Mathematics. Cambridge = 1963, New York (Chelsea).
 - [7] Liétaerd, B.E. 1985 Comunicación al 45 Congreso Internacional de Americanistas, Bogotá.

- [9] Seidenberg, A. 1962 The ritual origin of geometry. Archive for the History of Exact Sciences 2, 1-40.
- [10] Seidenberg, A. 1981 The ritual origin of the circle and square. Archive for the History of Exact Sciences 25, 269-327.
- [11] van der Waerden, B.L. 1983 Geometry and Algebra in Ancient Civilizations. Berlin (Springer-Verlag).
- [12] Vorobiev, N.N. 1973 Suite de Fibonacci.
 Moscou (Mir).

*

Departamento de Matemáticas y Estadística
Universidad Nacional de Colombia
BOGOTA. D.E.