SOBRE UN PROBLEMA DE MAXIMIZACION Y UNA NUEVA SERIE PARA e.

por

Francisco LLERAS

Dado un número real S estrictamente positivo, nos proponemos hallar N números X_0, \ldots, X_N , reales estric tamente positivos, tales que su suma sea S y que su producto P sea máximo. Sean, pues,

$$S = \sum_{i=0}^{N} X_i$$
 $y P = \prod_{i=0}^{N} X_i$,

donde $S \geq X_i \geq 0$. Usando

$$X_0 = s - \sum_{i=1}^{N} X_i$$

tenemos

(1)
$$P = \left[S - \sum_{i=0}^{N} X_i \right] \cdot \prod_{i=0}^{N} X_i .$$

Derivando (1) con respecto a X_k , resulta

$$\frac{\partial P}{\partial X_{k}} = -\prod_{i=1}^{N} X_{i} + \left[S - \sum_{i=0}^{N} X_{i} \right] \cdot \frac{\prod_{i=1}^{N} X_{i}}{X_{k}}$$

(2)
$$\frac{\partial P}{\partial X_k} = \frac{\prod_{i=1}^{N} X_i}{X_k} \left[-X_k + S - \Sigma_{i=1}^{N} X_i \right]$$

para k = 0,...,N. Tomando $\partial P/\partial X_k = 0$, k=0,1,...,N, obtenemos vondiciones para que la función P tome un valor máximo. Como

$$(\prod_{i=1}^{N} X_i)/X_k \neq 0,$$

debe tenerse

$$-X_{k} + S - \sum_{i=1}^{N} X_{i} = -X_{o} + S - \sum_{i=1}^{N} X_{i},$$

^() El autor agradece las valiosas sugerencias de los Redactores del Boletín.

de donde

$$X_{k} = X_{0} = S/(N+1)$$
, para $k = 0,..., N$.

Es decir, todos los sumandos deben ser iguales entre sí si queremos que P tome un valor máximo. Podemos, pues, replantear el problema inicial en la forma siguiente:

Dado un número real estrictamente positivo S, hallar un número entero N, estrictamente positivo, tal que
si X = S/N la función $P(X) = X^N$ sea máxima en el punto S/N. Pero como N = S/X, se trata entonces de maximi
zar a $P(X) = X^{S/X}$ sujeta a la condición de que S/X debe ser un entero positivo.

Suponiendo que < X varía de manera continua > , tene mos

$$\log P(X) = \frac{S}{X} \log X ,$$

de donde, derivando con respecto a X,

$$\frac{P'(X)}{P(X)} = \frac{S}{X^2} (1 - \log X) .$$

0 sea

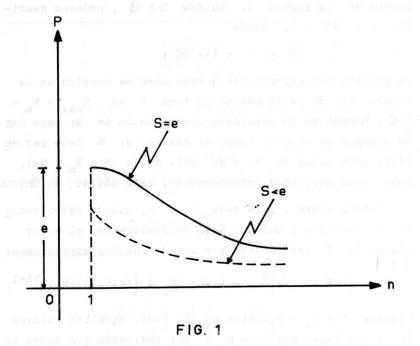
$$P'(X) = SP(X)(1 - \log X)/X^2$$
.

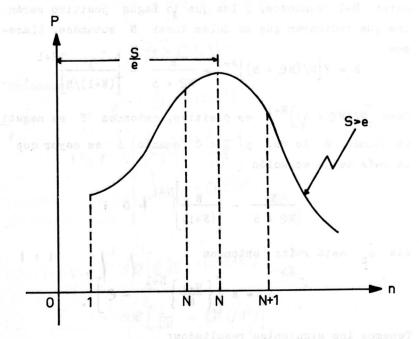
Ahora P puede tomar un valor máximo cuando P'(X) = 0; como S.P(X) \neq 0, esto sólo ocurre cuando log X = 1, es decir, cuando X = ℓ . Veamos que se trata efectivamente de un máximo; para ello aplicamos el criterio de la segum da derivada, así:

$$P''(X) = \frac{S}{x^2}(1 - \log X)P'(X) + P(X)\left[-\frac{2S}{x^3}(1 - \log X) - \frac{S}{X^3}\right],$$

y entonces $P''(e) = -P(e)S/e^3$; como S, P(e) y e^3 son todos positivos, P''(e) < 0, luego en e, P toma un valor máximo.

De lo anterior se deduce inmediatamente que si $S \leq \mathcal{C}$, P considerada como función de N, es decir, $P(N) = (S/N)^N$, en el sistema de coordenadas NOP, tendrá la forma que a-





parece en la figura 1. Cuando S > e, podemos escribir $S = Ne + \delta$, donde

$$Ne \leq S < (N+1)e;$$

la gráfica correspondiente a este caso se muestra en la figura 2. El valor máximo lo toma P en $N_{máx} = N_m = S/C$, cuando se le considera como función de N; pero S/C no siempre es entero, luego el máximo, si N debe ser entero, debe estar en N o en N+1, donde $N \le N_m < N+1$, pues, como mostramos anteriormente, este máximo es único.

Veamos ahora, para cada N y δ, cuándo deben tomar se N sumandos y cuándo N+1. Evidentemente, el valor máximo de P estárá dado por una de las dos expresiones:

$$P_1 = [(NQ + \delta)/N]^N$$
, o bien $P_2 = [(NQ + \delta)/(N+1)]^{N+1}$.

Hagamos $Y = P_1 - P_2$. Para un N dado, aquellos valores de δ que hagan negativo a Y nos indicarán que deben to marse N+1 sumandos, y los que lo hagan positivo serán los que indicarán que se deben tomar N sumandos. LLamemos

$$Z = Y \left[N/(Ne + \delta) \right]^{N+1} = \frac{N}{Ne + \delta} - \left[\frac{1}{(N+1)/N} \right]^{N+1}.$$

Como $\left[N/(N\varrho+\delta)\right]^{N+1}$ es positivo, entonces Y es negativo cuando Z lo es, y Z < 0 cuando δ es mayor que la raíz de la ecuación

$$\frac{N}{NC + \delta} - \left[\frac{N}{(N+1)}\right]^{N+1} = 0 \quad ;$$

sea δ esta raíz; entonces

$$\delta_{o} = N \left[\left\{ \frac{N+1}{N} \right\}^{N+1} - e \right].$$

Tenemos los siguientes resultados:

Theat	N	δο	Ne + δ ₀
	od se skil sakas	1,2812	4,000;;;
	2	1,3134	6,08833
	3	1,3266	9,481481
	mit is about 1	ab it wine for their	farantiani asan ar
	10	1,3483	28,53115

<<<<o>>>>

Vamos a mostrar que $\lim_{n\to\infty} \delta_0 = \ell/2$. Llamemos

$$y = \left[(N+1)/N \right]^{N+1} ;$$

tenemos entonces:

log y = (N+1) log(1 + 1/N)
=(N+1)
$$\left[\frac{1}{N} - \frac{1}{2} \frac{1}{N^2} + O(1/N^3) \right]$$

= $\frac{N+1}{N} - \frac{N+1}{2N^2} + O(1/N^2)$
= $1 + \frac{1}{2N} + O(1/N^2)$.

Entonces:

$$y = e^{1 + \frac{1}{2N} + O(1/N^2)}$$

$$\delta_{o} = N \left[\left\{ \frac{N+1}{N} \right\}^{N+1} - e \right]$$

$$= N \left[e^{1 + \frac{1}{2N} + O(1/N^{2})} - e \right]$$

$$= N e \left[e^{\frac{1}{2N}} + O(1/N^2) - 1 \right]$$

$$= N e \left[\frac{1}{2N} + O(1/N^2) \right]$$

$$= \frac{\mathbf{e}}{2} + \mathbf{O}(1/\mathbf{N}).$$

Luego $\lim_{n\to\infty} \delta_0 = \mathcal{C}/2$, pues $O(1/N)\to 0$ cuando $N\to\infty$. (Para la notación O, ver [1].)

Se puede también obtener el anterior límite, lim δ , $n\!\!\to\!\!\infty$ formalmente de la siguiente manera:

Si fuese posible cambiar el orden de la sumatoria $\Sigma_{k=2}^{N+1}$ y el límite cuando $N\to\infty$ en la última expresión, es decir,

$$\lim_{N\to\infty} \Sigma_{k=2}^{N+1} \dots = \Sigma_{k=2}^{\infty} \lim_{N\to\infty} \dots,$$

entonces se tendría:

(4)
$$\lim_{N\to\infty} N\left[\left\{\frac{N+1}{N}\right\}^{N+1} - \mathbf{e}\right] = 1 + \sum_{k=2}^{\infty} \frac{1 - (1 + 2 + \dots + (k-2))}{k!}$$

= $1 + \frac{1}{2} + \sum_{k=3}^{\infty} \frac{2 - (k-1)(k-2)}{2(k!)}$,

puesto que $\lim_{N\to\infty} N \cdot \Sigma_{k=N+2}^{\infty} (1/k!) = 0$. En realidad, se puede demostrar que la expresión en (4) es igual a $\ell/2$ = $\lim_{N\to\infty} \delta$, como sigue. Sea

$$Q = 1 + \frac{1}{2!} + \sum_{k=3}^{\infty} \frac{2 - (k-1)(k-2)}{2(k!)},$$

entonces:

$$2(\mathbf{Q} - \mathbf{Q}) = 2 \left[\sum_{k=0}^{\infty} \frac{1}{k!} - \left\{ 1 + \frac{1}{2!} + \sum_{k=3}^{\infty} \frac{2 - (k-1)(k-2)}{2(k!)} \right\} \right]$$

$$= 2 + \sum_{k=3}^{\infty} \frac{(k-1)(k-2)}{k!} = 2 + \sum_{k=1}^{\infty} \frac{(k+1)k}{(k+2)!}$$

(5) =
$$2 + \sum_{k=1}^{\infty} \frac{k(k+2) - (k+1) + 1}{(k+2)!}$$

= $2 + \sum_{k=1}^{\infty} \left\{ \frac{1}{(k-1)!(k+1)} - \frac{1}{k!(k+2)} \right\} + \sum_{k=1}^{\infty} \frac{1}{(k+2)!}$
= $2 + \frac{1}{0!2} + \left\{ Q - (1 + 1 + \frac{1}{2!}) \right\} = Q$.
Así, $2(Q - Q) = Q$, $\delta Q = Q/2$.

En el procedimiento anterior, encontramos una nueva expresión, en (5), para e:

(6)
$$e = 2 + \sum_{k=3}^{\infty} \frac{(k-1)(k-2)}{k!} = 2 + \sum_{k=0}^{\infty} \frac{1}{k!(k+3)}$$

Esta serie converge más rápidamente que la clásica; en efecto, comparemos algunos valores.

VALORES DE LAS SERIES:

N	Clásica	Nueva	
0	1,0000	2,3333	

1	2,0000	2,5833
2	2,5000	2,6833
3 1 1 2 2	2,6666	2,7111
4	2,70833	2,71706

Departamento de Matemáticas Universidad Nacional de Colombia Recibido, abril de 1967.

REFERENCIAS:

 APOSTOL, T.M.: Calculus, vol.I, Blaisdell: Nueva York, 1960.