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Abstract
In this paper, we present a piecewise smooth system, that describes the
dynamics of a single vehicle moving through a street that has a sequence of
lights that turn on and off with a specific frequency. The model presents
three dynamic ways: accelerated, decelerated and zero state. Besides,
we show the description of the mathematical model used to simulate the
system. The simulation was developed under an event-based scheme and
implemented in Matlab. To make the numerical analysis, we take as a pa-
rameter study the cycle traffic light, which provides benefits to vehicular
traffic system due to its configuration is achieved implementing optimiza-
tion strategies for the phenomenon of green wave and reduces the travel
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time as the vehicle minimizes the number of stops along the road. Also, the
stability was studied for the periodic orbits one and two. Finally, we made
an approximation of fuel consumption. We assume that this is proportional
to the mechanical energy produced by the motor. From this point of view,
it can be concluded that it is possible to apply modeling and simulation
strategies based on dynamic systems to understand the complex behaviors
associated with the travel of vehicles in a traffic controlled by traffic lights.

Keywords: Vehicular traffic; stability; fuel consumption; dynamical sys-
tems; modeling and simulation; non-smooth dynamics; applied mathemat-
ics.

Aproximación analítica de consumo de combustible
y comportamiento periódico para un vehículo que
viaja a través de una serie de semáforos

Resumen
En el siguiente artículo, se presenta un sistema suave por tramos que des-
cribe la dinámica de un vehículo que se mueve a través de una calle con
semáforos que se encienden y apagan con una frecuencia específica. El mo-
delo presenta tres comportamientos dinámicos: acelerado, desacelerado y
detenido. Además, se muestra la descripción del modelo matemático utili-
zado para simular el sistema. La simulación se desarrolló bajo un esquema
basado en eventos y se implementó en Matlab. Para realizar el análisis
numérico, se toma como parámetro el ciclo de los semáforos, que mejora
el sistema de tráfico vehicular debido a que con su configuración se logran
implementar estrategias de optimización permitiendo que los vehículos se
desplacen en ola verde y reduzcan el tiempo de viaje, minimizando así,
el número de paradas a lo largo del camino y reduciendo el consumo de
combustible debido a las paradas y aceleradas. Además, se estudió la es-
tabilidad de las órbitas periódicas uno y dos que presenta el modelo de
simulación, así como sus implicaciones dinámicas. Finalmente, se presenta
una propuesta para calcular el consumo de combustible, asumiendo que es
proporcional a la energía mecánica producida por el motor, resulta en una
propuesta novedosa que permite a las secretarias de movilidad comprender
los comportamientos de los vehículos en vías principales de las ciudades.
Desde este punto de vista, se puede concluir que es posible aplicar es-
trategias de modelado y simulación basadas en sistemas dinámicos para
comprender los comportamientos complejos asociados al desplazamiento
de los vehículos en una via controlada por semáforos.

Palabras clave: Tráfico vehicular; estabilidad; consumo de combustible;
sistemas dinámicos; modelado y simulación; sistemas no suaves; matemá-
tica aplicada.
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1 Introduction

Currently, there are around 870 million automobiles in the world.
This makes the road infrastructure of some overpopulated cities is
not sufficient with respect to the great demand, collapsing in huge
traffic jams, generating chaos and plunging the humankind into one
of the most increasing problems like traffic congestion [1].

Although, automobiles represent a solution to the mobility prob-
lem, they constitute one of the major sources of pollution. Due
to this supply a series of toxic substances in the environment, well
known as greenhouse gases (carbon monoxides CO, hydrocarbons,
among others), as a consequence of the complete non-combustion of
the petroleum products necessary for the functioning of cars. In the
same way, the produced noise pollution may generate a series of neg-
ative responses in human beings, such as balance disorders, ill feeling
and fatigue, among others. On the other hand, the consequences
caused by traffic accidents add invaluable losses because these take
the lives of 1.2 million people in the world and more than 50 million
individuals are injured [2],[3],[4].

Due to the vehicular problems in the cities, there is a need to
carry out theoretical studies [5],[6]. This is why it is daily invested
in time, human capital and development of new theories or even cre-
ation of tools that provide scientific basis to the possible strategies
implemented by the government entities to improve mobility in cities.
As an example, and to mention one of the most relevant authors in
literature, as can be seen in Toledo [7],[8],[9], the construction of a
model in which one single vehicle is considered, moving through a two-
way traffic light sequence, with a specific period; the most relevant
contribution of this work, is that the nontrivial dynamics depends
on the finite acceleration and breaking power of vehicles for a set of
parameters.

In a later work, Toledo establishes in [10], control strategies based
on the synchronization of the traffic lights, which allowed to improve
the vehicle traffic, moreover, the resonance in terms of travel time,
speed and fuel consumption were studied in this work. An important
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result of the Toledo model, apply the control strategy, is that the
behavior close to resonance does not depend on finite acceleration
and breaking power of the vehicle. Furthermore, in this deterministic
model, it was shown that the resonance was an independent universal
behavior of the geometry of the system for the case of the green wave
strategies.

In 2009, Varas researched whether the universal behavior close to
resonance persists, when several cars interact along the same route.
To know the behavior of this dynamics, used a cellular automaton
model [11] . One of the most recent works in this respect, is the work
carried out by Mesa in [12], where the description and comparison
of four vehicle traffic models are presented. This work explains the
dynamic of one single car that moves through a sequence of traffic
lights that turns on and off. See more on [13],[14].

The mathematical model, as well as the results of the numeri-
cal analysis are presented in this document. The main contribution,
which is intended to be highlighted on this occasion, is quite useful at
the moment of analyzing the periodic behaviors associated with the
dynamic of the vehicle. Thus, the methodology used is explained to
carry out the stability analysis and consequently, conclude about how
the orbits in question are or are not stable. This in order to propose
a formula that allows to calculate the fuel consumption, if necessary,
a vehicle had one dynamic or another.

2 Mathematical model

In the Toledo’s one-dimensional model [7], it is assumed that an au-
tomobile travels through a two-way (green and red) traffic light se-
quence, where the car presents one of the following behaviors:

• Positive acceleration a− until the vehicle reaches the cruising
speed or maximum speed vmax.

• Constant speed vmax, when the acceleration is zero.

• Deceleration −a− until the vehicle stops.
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• A zero speed when the vehicle is stationary, waiting for the traffic
light to turn green.

2.1 Description of the model

From the above and [8], the dynamic of the system can be repre-
sented using a piecewise soft system, four situations are presented in
this model, which depend on acceleration, that is, accelerated state,
zero state with maximum speed, zero state with zero speed and decel-
erated state. To make an appropriate description of each event, it is
considered that the following state variables (x1, y1) are the position
and velocity of the vehicle respectively, a acceleration of the vehicle
in a time t, which will change depending on which state the vehicle
is:

⎧⎪⎨
⎪⎩
dx1

dt
= x2

dx2

dt
= a

(1)

2.2 Configuration of the traffic light

It is considered that the nth traffic light will be modelled through the
function (2).

f (t;ωn, ϕn) = sin (ωnt+ ϕn) (2)

Where

• ωn =
2π

Tn
: indicates the switching frequency of the nth traffic

light.

• Tn : the cycle of the nth traffic light, i.e., the time that the green
light takes to turn green again.
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• ϕn: denotes the phase difference between traffic lights.

Moreover, these are the following assumptions or conditions that
should be complied by the traffic lights:

• If sin (ωnt+ ϕn) > 0, then the traffic light is green.

• If sin (ωnt+ ϕn) > 0, then the traffic light is red.

The normalized cycle Tsn of the nth traffic light was used in [2],[3].
It is necessary to highlight the importance of the Equation (3), given
that this allows to obtain the real cycle of the nth traffic light in units
of time, making use of the system parameters.

Tn =
2πLn

Tsnvmax
(3)

where Ln is defined as the distance that separates one traffic light
from another and vmax the maximum velocity, whose conclusion may
be; the cycle of the nth traffic light is obtained in units of time.

2.3 Dynamic system states

Making use of the system of Equation (1) and the traffic light con-
ditions, it is established that each dynamic state can be expressed in
the following way:

2.4 Accelerated state “S+”:

it occurs when the driver increases the speed constantly, i.e., the car
has a constant and positive acceleration a+, until the vehicle reaches
the cruised speed vmaxowed on the road. In this way, the system is as
follows in the Equation (4).⎧⎪⎨

⎪⎩
dx1

dt
= x2

dx2

dt
= a+

(4)
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2.5 Zero state:

this is because the car may present zero acceleration in two situations
during the tour. For this reason, the zero state is divided into two
modes:

2.5.1 Zero state with maximum speed “S0m”: it occurs when the
vehicle reaches maximum speed allowed on the road vmax. For this
reason, this velocity should be maintained, i.e., its acceleration is zero.
Later, the system of equations is determined by the Equation (5).⎧⎪⎨

⎪⎩
dx1

dt
= x2

dx2

dt
= 0

(5)

2.5.2 Zero state with zero speed “S0”: it occurs when the vehi-
cle is stationary, considering the position of a traffic light, which is
expected to turn green, i.e., sin (ωnt + ϕn) > 0,. Then, the system of
equations is as we shown in (6).⎧⎪⎨

⎪⎩
dx1

dt
= 0

dx2

dt
= 0

(6)

2.6 Decelerated state “S−”:

when the evolution of the system is in a decelerated motion, the vehi-
cle is forced to decrease its velocity constantly, due to the traffic light
is red, i.e., sin (ωnt+ ϕn) ≤ 0. Then, the equations associated with
this state are those found in Equation (7).⎧⎪⎨

⎪⎩
dx1

dt
= x2

dx2

dt
= −a−

(7)
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When the vehicle approaches the nth traffic light with speed x2,
the driver should decide whether to slow the car down or not, depend-
ing on the following traffic light signal. Then, the safety distance or
stopping distance is defined as the distance required by a car that
travels at a velocity x2 to stop. Determining the safety distance is
necessary to optimize safety in vehicles, line of tracks and signaling

design [12]. For this case, ds =
v2max

2a−
is defined as the safety distance

[7],[8].

3 Simulation analysis

In [8], the behavior of a vehicle was studied when it is considered
that all the traffic lights present fixed distances and have the same
switching rate with a zero phase difference; i.e., Ln = L, ωn = ω
and ϕn = 0 respectively, different types of orbits were obtained under
these assumptions. The main objective of this article is to study the
stability of the periodic orbits 1T and 2T as a particular case, as well
as fuel consumption, assuming that this is proportional to the me-
chanical energy. In addition to carry out the respective comparisons
in the cases in which the dynamics of the vehicle evolves through a
green wave and the periodic orbits 1T and 2T .

3.1 Bifurcation diagram

Assuming the fact that Ln = L, ωn = ω and ϕn = 0, a bifurcation
diagram was built, see Figure 1, this was developed varying the nor-
malized traffic light cycle. For the equation (3) and the assumptions
previously described, it is assumed that Tsn = Ts, the equivalence il-
lustrates that this parameter will be the same for all the traffic lights,
this is charted along the horizontal axis and the normalized position
of the car is shown in the vertical axis. Different phenomena can
be observed in this bifurcation diagram, indicating the dynamic rich-
ness of the system; with behaviors such as fractals, multiple periods,
duplicity of period, chaos, hard and soft bifurcations, among others.
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In Figure 1 Bifurcation diagram, when Ts takes values between 0.7
and 1, lines that increase are observed as Ts approaches to the value
of 1 and multiple periods are observed. Then, when Ts is increasing,
it presents a duplicity of period route to the chaos, where this chaotic
behavior is truncated and an orbit from period two appears again
and finally, an orbit form period one. It is important to highlight
that hard and soft transitions are also observed in Figure 1. For
example, there is a soft transition when 1.0 < Ts < 1.1 and a hard
transition is observed when 1.3 < Ts < 1.4.
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Figure 1: Bifurcation Diagram. Source: The authors.

3.2 Evolution in time

Before observing the charts that show state variable evolution, it is
important to highlight Table 1, given that it relates the normalized
parameter cycle T_s with the cycle T_n and the time in green of a
traffic light using the Equation (3), where the parameters are vmax =
14m⁄s and L = 200m. In addition to the function presented in the
Equation (2), which models the traffic light, it is assumed that the
positive semi cycle is equal to the negative semi cycle, therefore, the
time in green is equal to the time in red.
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Table 1: Relationship of parameters between the normalized cycle and time in
green

Normalized cycle Traffic light
cycle (sec)

Time in green
(sec)

0.05 1795.15 897.57
0.1 897.57 448.39
0.2 448.78 224.39
0.5 179.52 89.75
0.9 99.73 49.86
1.0 89.78 44.89
1.2 74.80 37.39
1.4 64.11 32.05

As observed in Table 1, when Ts is close to zero, the time in green
from the traffic light is long. For example: for Ts = 0.05, the time
in green is approximately 15 minutes, which would make no sense
to configure a traffic light with a cycle Tn = 30 mins. Therefore,
the orbits for Ts = 1.4, T2 = 1.2 and Ts = 1.0 were obtained in [8].
The normalized speed of the vehicle is shown in a thick continuous
line, the normalized position is shown in a dashed line and the traffic
light signal is shown in a thin continuous line, that allow to evidence
different behaviors for each value used from the parameter are shown
in Figures 2, 3 and 4.

Comparing the bifurcation diagram from Figure 1 with the results
in Figure 2, it is assumed that an orbit of period one is observed in
this case. Moreover, with the help of the circle from Figure 2, which
allows to visualize the normalized position of the vehicle when the
traffic light switches. It is important to highlight that the position is
always the same.
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Figure 2: Evolution in Time for Ts = 1.4 representation. Source: The authors.
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Figure 3: Evolution in Time for Ts = 1.2 Simulation. The dotted line refers to
the normalized position, the solid dark line refers to the normalized speed, the
green circular point refers to the signal change at the traffic light, and the sine
signal is the periodic behavior that represents the ignition frequency and off for
the traffic light. Source: The authors.

In Figure 3, an orbit from period two is observed when the nor-
malized traffic light cycle takes the value of Ts = 1.2. Furthermore,
the circles show the normalized position of the car when the traffic
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light changes from green to red, given that the sine function changes
the positive semi cycle to negative and this coincides every two traffic
lights; in addition, the vehicle is required to stop every two traffic
lights.

In Figure 4, the thick continuous line remains at its maximum
value; i.e., the vehicle maintains its maximum speed and achieves to
cross all the traffic lights in green, this behavior is known as a green
wave. These charts were obtained and analyzed in [12].
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Figure 4: Evolution in Time for Ts = 1.0 Simulation. The dotted line refers to
the normalized position, the solid dark line refers to the normalized speed, the
green circular point refers to the signal change at the traffic light, and the sine
signal is the periodic behavior that represents the ignition frequency and off for
the traffic light. Source: The authors.

4 Stability analysis

A stability analysis for a periodic orbit 1T and a periodic orbit 2T will
be carried out in this section. These orbits were found in [8] for the
model that describes the dynamic of a single car that travels on a road,
which has n traffic lights, where it was considered that all the traffic
lights present fixed distances, i.e., Ln = L. The function modeled
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by the traffic light is given by the Equation (2), with ωn=ω, in this
way, they have the same cycle T and a zero-phase difference, ϕn = 0.
This indicates that all the traffic lights have the same frequency, the
switching frequency.

Figure 5: Solutions Domain. Source: The authors.

The Figure 5 explains the visualization of the model solution space.
Due to the periodicity of the solutions in Figure 2, the X-axis repre-
sents the distance traveled by the vehicle. This takes values in the
interval [0, L], where L is the distance between two consecutive traffic
lights; time t is illustrated along the Y-axis. This variable takes val-
ues in the interval [0, T ], where T is the traffic light cycle. Finally, the
Z-axis represents the velocity v of the car, which takes values in the
interval [0, vmax]. To represent the orbits to be studied, the notation
explained in Table 2 will be adopted, which will depend on the state
of the vehicle:

4.1 Periodic orbit 1T

The Figure 6 is obtained using Figure 2 and notation form Table
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Table 2: System States

State Notation
Zero state vmax S0m

Zero state v = 0 S0

Decelerated state,a+ = 2m/s2 S−
Accelerated state, a− = 6m/s2 S+

Figure 6: Periodic Orbit 1T Analysis. Source: The authors.

First of all, it is important to explain the notation used in Figure
6:

x
(i)
1 :the final position in the i-th stretch.

x
(i)
1 :the final velocity in the i-th stretch

x
(0)
2 :initial position of the path

x
(0)
2 :initial velocity of the path.

Where i = 1, 2, 3, 4. In addition, a stretch is considered as a part
of the path, in which a state is conserved. For example, the first
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stretch in Figure 6 begins when the vehicle presents a position x
(0)
1

and a speed x
(0)
2 and finishes when the vehicle has a maximum speed

vmax and is in position x
(1)
1 .In this way, the periodic orbit 1T has four

stretches, given that four changes of state occur.
As the interest of this section is to study the stability of the orbit

1Ts+soms−s0, it is necessary to find the Jacobian matrix:

J1 =

⎛
⎜⎜⎜⎝
dx

(3)
1

dx
(0)
1

dx
(3)
1

dx
(0)
2

dx
(3)
2

dx
(0)
1

dx
(3)
2

dx
(0)
2

⎞
⎟⎟⎟⎠ (8)

To find each component of J1, Figure 6 is used as well as the
Equations. (4),(5),(6) and (7).

By observing Figure 6, it is understood that in the fourth stretch,
the car is in zero state S0, that is, the vehicle is stationary, therefore:

x
(4)
1 = x

(3)
1

x
(4)
2 = x

(3)
2 (9)

To determine these unknown numbers, it is necessary to know the
final position and velocity of each stretch.

x
(1)
1 =

1

2

(
vmax − x

(2)
0

)2
a+

+ x
(2)
0

vmax − x
(0)
2

a+
+ x

(0)
1 (10)

the final position x
(2)
1 of the second section is:

x
(2)
1 = x

(1)
1 + vmaxt2 (11)

Where
t2 =

1

vmax

(
L− x

(1)
1 − v2max

2a−

)
(12)
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and substituting x
(1)
1 , the travel time from the second stretch is

determined as:

t2 =
1

vmax

⎛
⎜⎝L−

(
vmax − x

(0)
2

)2
2a+

− x
(0)
2

vmax − x
(0)
2

a+
− x

(0)
1 − v2max

2a−

⎞
⎟⎠
(13)

Finally, it is assumed that the final position x
(3)
1 in the third stretch

is given by:

x
(3)
1 =

(
vmax − x

(0)
2

)2
2a+

+ x
(0)
2

vmax − x
(0)
2

a+
+ x

(0)
1 + vmaxt2 +

v2max

2a−
(14)

In addition, by observing Figure 6, it is assumed that the car
stopped when finishing the third stretch, then the final speed in the
third stretch is x(3)

2 = 0. To find the first order partial derivative, the
Equations. (13) and (14) are used, it also should be considered that:
x
(3)
1 = h

(
t2, x

(0)
1 , x

(0)
2

)
;t2 = k

(
x
(0)
1 , x

(0)
2

)
, therefore:

dx
(3)
1

dx
(0)
1

=
dx

(3)
1

dt2

dt2

dx
(0)
1

+
dx

(3)
1

dx
(0)
1

(15)

In the same way,
dx

(3)
1

dx
(0)
1

is found as follows:

dx
(3)
1

dx
(0)
2

=
dx

(3)
1

dt2

dt2

dx
(0)
2

+
dx

(3)
1

dx
(0)
2

(16)

Then, calculating the respective derivatives, it is understood that
the Jacobian matrix J1 is the zero matrix. Therefore, it has two
associated zero eigenvalues. According to [15], if the product of the
eigenvalues is zero in the case of a dimensional M map, this means
that the orbit 1TS+SomS−S0 is extremely stable [16],[17].
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4.2 Periodic orbit 2T

Figure 7 is obtained using Figure 3 and notation form Table 2, this
is a graphic representation for the periodic orbit 2T for the model.

Figure 7: Periodic Orbit 2T Analysis. Source: The authors.

From Figure 7 and making use of Table 2, the map that allows to
study the periodic orbit 2T is denoted as 2TS+SomS−SomS−S0.

It should be remembered that:

x
(i)
1 :the final position in the i− th stretch.

x
(i)
2 :the final velocity in the i− th stretch.

Where i = 1, 2, 3, 4, 5, 6, 7.
The periodic orbit 2T has seven stretches, given that seven changes

of state occur. As previously in the periodic orbit 1T, in this way it
is necessary to determine the final position and speed in the seventh
stretch x

(7)
1 and x

(7)
2 respectively, in terms of the initial conditions x(0)

1

and x
(0)
2 ; for this, it is necessary to use the equations. (4),(5),(6) and

(7), in order to find the final position and speed of each stretch.
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The final position in the first stretch is given by:

x
(1)
1 =

1

2

(
vmax − x

(2)
0

)2
a+

+ x
(2)
0

vmax − x
(0)
2

a+
+ x

(0)
1 (17)

For the third stretch of the travel, the final position x
(3)
1 in terms

of the initial conditions is:

x
(3)
1 =

1

2

(
vmax − x

(0)
2

)2
a+

+ x
(0)
2

vmax − x
(0)
2

a+
+ x

(0)
1 + vmax (T − t1 − t3)

− 1

2

(
x
(3)
2 − vmax

)2
a−

− vmax
x
(3)
2 − vmax

a−
(18)

In the same way, the final speed x
(3)
2 , in the same stretch, is de-

termined by:

(
x
(3)
2

)2
= −2a−

(
x
(3)
1 − x

(2)
1

)
+ v2max (19)

Given that the work is being done with a periodic orbit 2T and
with help of Figure 7, it is assumed that:

2L = x
(4)
1 + vmaxt5 +

v2max

2a−
(20)

Then, the travel time in the fifth stretch t5 is given by:

t5 =
1

vmax

⎛
⎜⎝2L−

v2max −
(
x
(3)
2

)2
2a+

− v2max

2a−
− x

(3)
1

⎞
⎟⎠ (21)

Finally, in the sixth stretch, the final position x
(6)
1 = x

(7)
1 is deter-

mined by:
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x
(6)
1 =

v2max

2a−
+ vmaxt5 +

v2max −
(
x
(3)
2

)2
2a+

+
v2max −

(
x
(3)
2

)2
2a−

+

v2max −
(
x
(0)
2

)2
2a+

+ vmax

(
T − vmax − x

(0)
2

a+
+

x
(3)
2 − vmax

a−

)
+ x

(0)
1

(22)

as the vehicle stops at the end of the sixth stretch, the final speed
is x

(6)
1 = x

(7)
1 = 0.

The purpose is to determine the stability of orbit 2TS+SomS−S+SomS−S0 ,
for this it is necessary to find the Jacobian matrix as follow:

J2 =

⎛
⎜⎜⎜⎝
dx

(6)
1

dx
(0)
1

dx
(6)
1

dx
(0)
2

dx
(6)
2

dx
(0)
1

dx
(6)
2

dx
(0)
2

⎞
⎟⎟⎟⎠ (23)

From the previous, the Jacobian matrix J2 is determined as:

J2 =

(
0

vmax

amax
0 0

)
(24)

Hence, the Jacobian matrix J_2 has two zero eigenvalues, then
its product is zero and for the stability criterion for dimensional M
maps, it is understood that the orbit 2TS+SomS−SomS−S0 is extremely
stable [16],[18].

5 Fuel consumption

For this work, it is assumed that the car moves on a straight path,
being subjected to an acceleration or deceleration, both constants,
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reason why the weather conditions will not be considered. The fuel
consumption calculation will be especially made for the periodic or-
bits 1T and 2T and finally for the green wave. In first place, the
instantaneous power P is considered as the energy transfer portion E
in time t [19]

P =
dE

dt
=

−→
F · −→v (25)

then,

E = E (0) +

∫ tf

t0

Fvdt (26)

Where:

tf : final time of the stretch
t0 :initial time of the stretch.
F :the force vector module.
v :the velocity vector module.
t :time.

According to [10], fuel consumption C can be estimated as shown
in the Equation (27).

C =

∫ tf

t0

Fvdt (27)

It is important to clarify that the friction force Fr will be con-
sidered, which is opposite to movement, external forces such as aero-
dynamic drag will not be considered, and the energy spent due to
internal frictions in the mechanism of the vehicle is also omitted. The
dissipation sources in the vehicle movement, which will depend on the
state of the car (accelerated, zero and decelerated) will be described
below. To represent the states of the vehicle, the notation explained
above and summarized in Table 2 will be adapted.

|146 Ingeniería y Ciencia



M. J. Mesa-Mazo, J. Valencia-Calvo and G. Olivar-Tost

Accelerated state “S+”: when the vehicle begins the route with
initial speed v0 and the driver accelerates until reaching the permissi-
ble maximum or cruising speed on the route, the kinetic energy shift
is calculated in Equation (28).

Ea+ =
mv2max

2
− mv20

2
(28)

Zero State with Maximum Speed “S0m”: when the vehicle travels
a distance xr free of stops, the work carried out is opposed to the
friction force and assuming a constant coefficient of friction μ along
the road, we have the following Equation (29).

Wr = Frxr (29)

Decelerated State “S−”: when the vehicle travels with a maximum
speed until reaching the safety distance and the traffic light is red, so
the driver is obliged to slow down until reaching the minimum speed
vmin; therefore, the energy lost while decelerating is given by the
Equation (30).

Ea− =
mv2max −mv2min

2
(30)

Zero State with Zero Speed “S0”: when the vehicle is stationary,
considering the position of a traffic light, which is expected to turn
green, the idle fuel consumption C0. The vehicle is stationary when
it is in zero state, then fuel consumption is proportional to awaiting
time with respect to the traffic light, i.e., C0 = k ∗ te, where te is the
time waited by the driver until the traffic light turns green and k is
the constant of proportionality.

With the above, fuel consumption is calculated for the cases where
it displays a behavior for the periodic orbits 1T and 2T and the green
wave for the model already explained.
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5.1 Fuel consumption for a periodic orbit 1T

The graphic representation of the periodic orbit 1T is observed in
Figure 8, in which four changes of state occur, these are: accelerated
S+, zero with maximum speed S0m, decelerated S− and zero with zero
speed S0.

Figure 8: Periodic Orbit 1T Analysis. Source: The authors.

The fuel consumption of the vehicle applied to the orbit 1TS+SomS−S0

will be carried out through each state, applying any of the Equations.
(28),(29) or (30).

For this orbit, it is necessary to calculate the consumption in each
state and add them algebraically. In this way, an approximation of
fuel consumption between two consecutive traffic lights is obtained.
When multiplying the value found by the number of stretches n− 1,
the total of the fuel used during the travel will be obtained, where
n is the number of traffic lights. In addition, it is considered that a
stretch is the path between two consecutive traffic lights.

From the above, it is assumed that the total fuel consumption
between two consecutive traffic lights is the sum of the consumption
in each state, i.e.:
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C ≈ C+ + C0m + C− + C0 (31)

As the waiting time with respect to the traffic light is small in com-
parison with the travel time, it is assumed that the fuel consumption
will be zero, i.e., C0 ≈ 0. Therefore, the consumption is:

C ≈ mv2max

2
+ Frxr +

mv2max

2
(32)

Where the distance traveled by the vehicle without stopping is:

xr = xr1 + xr2 (33)

And the distance traveled in the accelerate state S+ is:

xr1 =
v2max

2a+
(34)

The distance traveled in the zero state with maximum speed S0m

is:
xr2 = L−

(
v2max

2a+
+

v2max

2a−

)
(35)

As the purpose is to find the fuel consumption used during the
travel through the sequence of n traffic lights for the periodic orbit
1T , then the Equation (32) is multiplied by the number of stretches
n− 1.

Then, the total fuel consumption throughout the travel is given
by:

CT ≈ (n− 1)

(
mv2max

2a+
+ Frxr +

mv2max

2

)
(36)

5.2 Fuel Consumption for a Periodic Orbit 2T

The graphic representation of the periodic orbit 2T is observed in
Figure 9.
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Figure 9: Periodic Orbit 2T Analysis Source: The authors.

To calculate the fuel consumption of the vehicle using the periodic
orbit 2TS+SomS−S+SomS−S0 , it will be made again through the states.
For this case, it is necessary to calculate the consumption in each state
and add it. In this way, an approximation of the fuel consumption
between three consecutive traffic lights would be obtained. Seven
changes of states of the vehicle occur for the periodic orbit 2T , the
terms explained for the periodic orbit 1T will be used to calculate the
fuel consumption in each state.

As the objective is to find an expression that represents the fuel
consumption throughout the travel through the sequence of n traffic
lights for the periodic orbit 2T , it should be considered that a car
completes a stretch when it has passed three consecutive traffic lights,
and this makes that the general expression of fuel consumption for this
periodic orbit 2T depends on whether the number n of traffic lights
is even or odd.

When the number of traffic lights is odd, i.e., n = 2k+1 where k is
the number of stretches, then the total fuel consumption is expressed
as:
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CT (impar) ≈ k

(
mv2max

2
+ Frxr1 + Frxr2 +mv2max −mv2min + Frxr4 + Frxr5

)
(37)

Now, n can be expressed in the following way is even: n = (2k +
1) + 1 where k is the number of stretches, then the total fuel con-
sumption is expressed as:

CT (par) ≈ k

(
mv2max

2
+ Frxr1 + Frxr2 +mv2max −mv2min + Frxr4 + Frxr5

)

+

(
mv2max

2
+ Frxr1 + Frxr2 +mv2max −mv2min

)
(38)

5.3 Fuel consumption for the green wave

The graphic representation of the green wave is observed in Figure
10.

Figure 10: Green Wave Analysis. The dotted line refers to the normalized
position and the solid dark line refers to the normalized speed. Source: The
authors.

To calculate the fuel consumption of the vehicle when the green
wave phenomenon occurs, it is necessary to consider that the driver
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stops once during the travel and achieves to pass all the traffic lights
during the rest of the travel with the maximum permissible speed.

See in Figure 10 that the vehicle begins its path, but it is forced
to stop in the following traffic light given that this is red, as indicated
by the sine function, due to it is in its negative semi cycle, see also
Figure 4. Then, the driver waits until the green light appears and
thus, he/she can continue with his/her path through the road. For
this case, it is necessary to calculate the fuel consumption used until
beginning again its travel and add the consumption used in the rest
of the sequence of traffic lights.

For the first part, the fuel consumption used is calculated between
the first two traffic lights, which is similar to the calculated for the
periodic orbit 1T , Equation (32).

Hence, the fuel consumption used between the first two traffic
lights is determined by:

C1 ≈ mv2max + Frxr (39)

For the rest of the path, it is important to observe in Figure 10,
that the automobile only shows two states S0 and S+. Then, the fuel
consumption C2 is determined by the equation (40).

C2 ≈ mv2max

2
+ Fr (n− 2)L (40)

Thus, the total fuel consumption for the green wave can be ex-
pressed as:

Ct ≈ C1 + C2 (41)

Equations such as the shown (34),(35) and (38) can be formulated
through modeling, simulation and dynamic analysis tools and use of
maps; which will allow the scenario evaluation and analysis in future
works facilitating the comprehension of emerging behaviors like those
studied in this work.
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6 Conclusions

A modeling diagram and a piecewise smooth system for a traffic sys-
tem have been presented. To simulate this system, it is necessary to
know the equations that describe its flow in each state and the condi-
tions in the transition limits between the dynamic states. With this
information and the bifurcation diagrams, it is possible to simulate a
wide range of phenomena shown by this type of systems.

In the first stage, some numerical routines were illustrated in this
document to simulate the hard-dynamic system. Periodic solutions,
hard and soft bifurcations, fractals and chaos, just to mention some
of the phenomena made evident, were obtained with these numerical
simulations.

In the second stage, a stability analysis for two types of periodic
orbits, which resulted being extremely stable was carried out. The
fact that the periodic orbits 1T and 2T are extremely stable, they
indicate that the system solutions do not differ under small modi-
fications in the initial conditions. It is important to highlight the
difference between a stable orbit and an extremely stable orbit with
respect to the rate of convergence. The book Exploring Chaos: The-
ory and Experiment [15], establishes that a stable orbit has a linear
rate of convergence and an extremely stable orbit has a quadratic rate
of convergence.

Finally, an approximation of the fuel consumption was carried
out through the use of a set of tools from the classical mechanics.
This calculation was made for the following three types of solutions:
periodic orbits 1T and 2T and the green wave. And with this, it was
evidenced that the number of stops of a car through a road increases
when the fuel consumption also increases. For this reason, configuring
the traffic lights to obtain a green wave brings great benefits for the
driver such as the reduction of travel time and fuel consumption, given
that the number of stops is minimal.
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