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RECURSION IN SECOND ORDER BOUNDED ARITHMETIC

RODRIGO DE CASTRO(*)

Resumen. Se muestra que algunos esquemas recursivos pueden ser ejecutados
en las teorías U2 (i ~ 1) de aritmética acotada de segundo orden introducidas

por S. Buss. En particular, se demuestra que la clase de las funciones ¿;: ,b_

definibles en Uz es cerrada bajo recursión acotada, o, equivalentemente, que U:í
puede ¿;~,b-definir [2, la segunda clase Grzegorczyk.

Abstract. Jt is shown that some recursion schemes can be carried out in the
secotul order theories of Bounded Arithmetic Uz (i ~ 1) introduced by S. Buss
in f2}. In particular, we pro ve that the class of ¿;i,b -definable functions in Uz
is closed under bounded recursion, or, equivalently, that U~ can ¿;; ,b -define the
functions in the second class of Grzegorczyk, [2.

Keywords. Bounded Arithmetic, second order lheories, bounded recursion, Grze-
gorczyk classes.

1. Preliminaries

The first order language of Bounded Arithmetic introduced by S. Buss in [2]
contains al! the usual logical symbols 1\, V, ,:J, =, ::3, \/, parentheses,
the non logical function symbols S, 0, +,', Ixl, l~x J, and ~ and the non logical
predicate symbol ~. The intended meaning of the non Iogical symbols is as
fol!ows: S, 0, +, . and ~ are the successor function, the zero constant, addition,
multiplication, and the less-than-or-equal-to relation. Ixl denotes the length of
the binary representation of x, l~x J denotes the greatest integer less than or
equal to x /2, and x~y is defined to be 2lxllyl.

(*)Texto recibido 26/9/98, revisado 21/5/99. Rodrigo De Castro, Departamento
de Matemáticas y Estadística, Universidad Nacional, Bogotá, Colombia. e-mail:
rdcastro@matematicas.unal.edu.co The author received partial support from CINDEC
(Universidad Nacional de Colombia), project # 803072.
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Buss also considered second order theories by allowing second order pred-
icate and function variables; quantification over these variables is restricted.
The function symbols are intended to range over the set of functions having
polynomial growth rateo

Definition 1.1. The language of second order Bounded Arithmetic consists
of all symbols of iitst order Bounded Arithmetic mentioned above plus the
following second order variables and quentitiers:

(1) Free and bound second order variables for predicates. For all i, j E N,
ai is a free j-ary second order predicate symbol and 4>{ is a bound
j-ary second order predicate symbol. We shall use a, (3, 1,'" and
4>, x, 'ljJ, ... as metavariables for free and bound predicate variables,
respectively.

(2) Free and bound second order variables for functions with polynomial
growth rateo For every term t of iiret. order Bounded Arithmetic and for
all i, j E N, (L is a free second order j-ary function variable and >'L is
a bound second order j-ary function variable. We use (t, 7Jt, ()t , . .. and
>.t, ¡.tt, vt, ... as metavariables for free and bound second order function
variables, respectively (in informal arguments, for both). When t is
understood or immaterial, it is omitted. These symbols range over
functions f such that f is bounded by t; i.e., for all i! E N1, f(i!) :::::
t(X).

(3) Second order queniiiiers are of the form (\/4», (:34», (\/>.t) and (:3>.t).

Definition 1.2. A first arder formula is one having no second order queutiiiets.
Second order free variables may appear in a iiret order formula. A second order
formula is baunded ii it contains no unbounded, ñrst. order qusniiiiers.

Second order formulae can be classified in a hierarchy of sets, ~;,b, rr;,b as
follows: ~6,b = rr6,b = 6.6,b is the set of formulae which contain no second
order quantifiers and no unbounded quantifiers (i. e., the set of bounded, first
order formulae). ~;,b and rr;,b are defined by counting alternations of second
order quantifiers ignoring first order bounded quantifiers, in a manner similar
to the formation of the well known first order arithmetical hierarchy.

Definition 1.3. Let <Pbe a set of formulae. The <p-PIND axioms are

A(O) 1\ (\/x)(A(l~xJ):::l A(x)) :::l (\/x)A(x),

where A is any formula in <P.
The <P-comprehension axioms, <p-CA, are given by the axiom scheme
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where A is in <I>.
The <I>-function-comprehensionaxioms, <I>-FCA,are given by the following

axiom scheme

where A is in <I>and t is any term of first order Bounded Arithmetic.

The comprehension axioms can be presented as inference rules (<I>-compre-
hension and <I>-function-comprehension rules) and can be included in a natural
deduction system for second order Bounded Arithmetic (see [2]).

Definition 1.4. A hierarchy of the second order formulae, ~f (a, () and
IIf (a, (), containing no second order quantifiers, can be defined in a com-
pletely analogous way to the definition of ~f and IIf. The only difference is
that free second order variables may appear without restriction in the formulae.
The sets ~f (a) and IIf (a) contain those formulae of ~f (a, () and m (a, (),
respecti vely, which have no second order function variables.

Definition 1.5. 5~(a, () is the second order theory with second order function
and predica te variables and the following axioms:

(1) BASIC axioms (that is, a finite set of true open formulae of arithmetic
which are sufflcient to define the simple properties relating the function
and predicate symbols of Bounded Arithmetic; for specifics see (2J).

(2) For each function variable (j, the axiom ('v'x)((f(X) ::;t(x)).
(3) The ~f(a, ()-PIND axioms.

52 (a, () is the theory Ui 5~(a, ().

Definition 1.6. Ui is the second order theory of Bounded Arithmetic which
has second order predicate variables and function variables and which has the
following axioms:

(1) All axioms of 52(a, o.
(2) ~¿,b-comprehension axioms, (~¿,b_CA and ~¿,b - FCA).
(3) ~¡,b-PIND axioms.

Definition 1.7. Let A( x, y) be a formula whose only free first order variables
are x and y. We say that A defines a function in U~ if there is a term t(X) of
first order Bounded Arithmetic such that

(a) U~ f- ('v'X)(:Jy::; t(x)) A(x, y).

(b) U~ f- ('v'x)('v'y)('v'z)(A(x,y) 1\ A(x,z) ::) y = z).

Ji A is a ~¡,b-formula, we say that A ~¡,b-defines a function in U~.
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Jf f is a number theoretic function, we say that f is definable in U2 by the
formula A if(a), (b) aboye hold and N F \Ix A(x, f(x)). Jf A is a ~;,b-formula,
we say that f is ~¡,b -definable in U~.

One of the main results on second order Bounded Arithmetic proved by
Buss in [2] relates the ~~,b -definable functions in ui with the complexity class
PSPACE. In computer science literature PSPACE and the remaining central
complexity classes, are taken to be sets of predicates. In the current context,
however, they are defined as sets of functions.

By a polynomial we always mean a polynomial with nonnegative integer
coefficients, and a function f : Nk --+ N is said to have polynomial growth
rate iff there is a polynomial p(Xl,"" Xk) such that for al! x, If(x)1 :::;p(lxl)
holds.

Definition 1.8. PSPACE is the set of number-theoretical functions f which
can be computed by a Turing machine Mi such that there is a polynomial p(ií)
so that the total number of tape squares used by Mi on input x is always less
than p(lxl).

According to this definition a function f in PSPACE has polynomial growth
rate because the output f(x) occupies less than p(lxl) computation squares on
input X. Note also that if f is ~¡,b-definable in U~, then f has polynomial
growth as wel! because f(x) :::; t(x) (where t is the term of definition 1.7) and
any term of first order Bounded Arithmetic is bounded aboye by 2p(lxll for
sorne appropriate polynomial p.

Theorem 1.9. (S. Buss). A number-theoretical function f is in PSPACE if
and only if f is ~~,b -dennable in Ui.
Proof. See [2].

2. Bounded recursion

Definition 2.1. Let b, 9 and h be number-theoretic functions. The function
f given by

f(O, iJ) = min{g(iJ), b(O, iJ)},
f(x + 1, iJ) = min{h(x + 1, iJ, f(x, iJ)), b(x + 1, iJ)},

is said to be obtained from b, 9 and h by bounded recursion.

The following theorem shows that the class of ~i,b -definable functions in
ui is closed under bounded recursion. We wil! infer that ui can ~: ,b -define
an important class of primitive recursive functions, namely, the second class of
Grzegorczyk, [2.
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Theorem 2.2. lf the functions b, g and h are ~i,b-definable in Ud, then the
function f obtained by bounded recursion from b, g and h, that is, the function
f such that

'ViJf(O, iJ) = min {g(iJ), b(O, iJ)},

('Vx)('ViJ) f(x + 1, iJ) = min{h(x + 1, iJ, f(x, iJ)), b(x + 1, iJ)}

is ~~,b -definable in Ud.
Proo], We wil! present two different proofs of this resulto The first, a relatively
simple one, uses Buss Main Theorem (Theorem 1.9), the second one is a direct
proof in the theory ud.
First Proo]. The idea of this proof is, of course, to show that on input x, iJ the
aboye recursion can be performed by a Turing machine within space p(lxl, liJl)
where p is a polynomial. On input x (we treat iJ as parameters) this recursion
scheme has depth x + 1; however, we will see that it can be implemented in
polynomial space in the length of x by freeing (i. e. writing over) previously
used space.

By Theorem 1.9, there are PSPACE Turing machines Mg, Mb and Mh com-
puting g, b and h (respectively) with working space delimited by polynomials
qg, qb and qh (respectively).

On input x, iJ, assume that f(u, iJ), with u < x, has been computed and
its value entered on an auxiliary output tape T. This value occupies less than
qb(lul, liJl) squares because of the bound b imposed on f. In order to compute
f(u + 1, iJ) we run machines M¿ and Mh in a tape (or tapes) other than T.
Less than

qh(lu + 11, liJl, qb(lul, liJl)) + 2qb(lu + 11, liJl)
squares are needed. We then place this output on the special tape T (writing
over the existing data). To continue this iteration up to x we only need the in-
formation stored on tape T, al! of the remaining squares on all of the additional
tapes can be reused for the next step calculation.

It can be seen in this way that on input x, iJ, the computation of f(x, iJ)
requires at most

computation space.

Second Proo]. Suppose that b is ~~,b-definable by the formula B(x, iJ, z). Then
there is a term, t(x, iJ), of first order Bounded Arithmetic (involving only the
original function symbols), such that

ui f-- ('Vx)('ViJ)(:3!z < t(x, iJ)) B(x, iJ, z),

ui f-- ('Vx) ('ViJ) b(x, iJ) < t(x, iJ).
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The defining axiom for b is b(x, fj) = Z t-+ B(x, fj, z). Let x, fj be fixed (but
arbitrary) and let C('\, x, fj, a, k, l) be the formula

(Vi:::: x)(i ::::k :) '\(i, fj) = min{a, t(i, fj)} 1\

k:::: i < l :) '\(i + 1, fj) = min{h(i + 1, fj, '\(i, fj)), b(i + 1, fj)}),

and let D(x, fj, u) be the formula

(Va:::: t(x,fj))(Vk:::: x)(Vl:::: x)(O:::: k:::: l:::: xl\l -i-: u » (3,\t)C(,\t,x,fj,a,k,l)).

We shall show that

ui f-- D(x, fj, O).

ui f-- D{x, fj, u) :) D(x, fj, 2u).

ui f-- D(x, fj, u) :) D(x, fj, 2u + 1).

(2.1 )

(2.2)

(2.3)

Since D(x, fj, u) is a E~,b-formula, (2.1)-(2.3) will allow us to use E~,b-PIND
to establish the existence condition for f.

For (2.1), observe that

ui f-- D(x, fj, O) t-+

(Va:::: t(x, fj))(Vk:::: x)(3,\t)(Vi:::: x)(i:::: k : ,\t(i, fj) = min{a, t(i, fj)}).

Therefore, (2.1) follows by an application of ~~,b-comprehension.

To see (2.2), assume D(x, fj, u) and let a, k, l be such that

a ::::t(x, fj), k:::: x, l < x, O < k < l < x, l .; k < 2u.

If k + u > x then k + u > x ~ l whence l ~ k < u. So, by hypothesis
D(x, fj, u) holds and (a fortiori) D(x, fj, 2u) holds. If k + u ::::x then by
induction hypothesis,

ui f-- 3,\t C(,\t, x, g, a, k, k + u).

Let d = ,\i (k + u, fj). Then we have

d = '\i(k + u, fj) ::::b(k + u, fj) ::::t(k + u, fj) ::::t(x, fj),

because t involves only the original function symbols of first order Bounded
Arithmetic and k + u:::: x. By applying the induction hypothesis again we get

ui f-- 3'\~C('\~, x, fj, d, k + u, l).
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Now we use ~6,b-comprehension to put 'xi and ,X~together:

That C(,Xt, x, iJ, a, k, l) holds is ensured by the following. For i ::; x,

i::; k ::) ,Xt(i, iJ) = 'xi (i, iJ) = min{a, t(i, iJ)},
k::; i < k+u ::) ,Xt(i + 1, iJ) = -:« + 1, iJ)

= min{ h(i + 1, iJ, ,Xt(i, iJ)), b(i + 1, iJ)},

,Xt(k+u+ 1, iJ) = 'x~(k+u+ 1, iJ) = min{ h(k+u+ 1, iJ, 'x~(k+u, iJ)), b(k+u+ 1, iJ)},

but 'x~(k+u, iJ) = min{.xi(k+u, iJ), t(k+u, iJ)} = 'xi(k+u, iJ) = ,Xt(k+u, iJ).

k + u + 1 ::; i < l ::) ,xt (i + 1, iJ) = ,X~(i + 1, iJ)
= min{ h(i + 1, iJ, 'x~(i, iJ)), b(i + 1, iJ)}
= min{ h(i + 1, iJ, ,Xt(i, iJ)), b(i + 1, iJ)}.

This shows that Ui f- j,Xt C(,Xt, x, iJ, a, k, l), from which (2.2) follows.

To prove (2.3) we just need sorne minor modifications in the previous ar-
gument: assume again D(x, iJ, u) and let a, k, l, u be such that a ::; t(x, iJ),
k < x, l::; x, O::; k < l < x, l .; k < 2u + 1, and k + u ::; x.

By induction hypothesis, ui proves that

j'xi C('xi, x, iJ, a, k, k + u),
t t - •j'x2 C('x2' x, y, d, k + u, l - 1),
t t - •j'x3 C('x3' x, y, e, l - 1, l),

where d = 'xi (k + u, iJ) and e = 'x~(l ~ 1, iJ). Now we use ~6,b-comprehension
again to define ,x:

ui f- (j,Xt)(\fi::; x)(i::; k + u ::) ,Xt(i) = 'xi(i) A

(k + u + 1 ::; i ::; l ~ 1 ::) ,Xt(i) = 'x~(i)) A ,Xt(l) = 'x~(l)).

From this, (j,Xt) C(,Xt, x, iJ, a, k, l) will hold as before and (2.3) is proved. (Al-
ternatively, we can get (2.3) by using (2.2) and showing that Ui f- D(x, iJ, u) ::)
D(x, iJ, u + 1). The proof of the latter is similar to that of (2.2)).
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By ~~,b-PIND it follows from (2.1)-(2.3) that ui f-- VuD(x, jJ, u), whence
Ui f-- D(x, jJ, x) because x is free for u in D(x, jJ, u). Since x, jJ are free
variables we have ui f-- (Vx)(VjJ) D(x, jJ, x) by v-introduction, i.e.,

ud f-- (Vx)(VjJ)(Va:S: t(x,jJ))(Vk:S: x)(Vl:S: x)(O:S: k:S: l:S: x 1\ l ~ k:S: x
=> (3,\t) C(,\t, x, jJ, a, k, l)).

If we set a = min{g(jJ), b(O, jJ)}, l = x, and k = Owe will get

ud f-- (Vx) (VjJ)(3,\t)C(,\t, x, jJ, min{g(jJ), b(O, jJ)}, o, x). (2.4)

That is to say,

ud f--- (Vx)(VjJ)(3,\t)(Vi:S: x)(i = O => ,\t(i, jJ) = min{g(jJ), b(O, jJ)}
(2.5)

1\ O:S: i < x => ,\t(i + 1, jJ) = min{h(i + 1, jJ, ,\t(i, jJ)), b(i + 1, jJ)}).

This takes care of the existence part of the proof. We also need to prove that
,\t is unique, that is, we need to prove that

ud f--- C((t, x, jJ, min{g(jJ), b(O, jJ)}, o, x) 1\ (2.6)

CW, x, jJ, min{g(jJ), b(O, jJ)}, O, x) => (Vi:S: x)((t(i, jJ) = (}t(i, jJ)).

For that purpose, let E(x, jJ, (t, (}t) be the ~b,b-formula

cW, x, jJ, min{g(jJ), b(O, jJ)}, O, x) 1\ ci«, x, jJ, min{g(jJ), b(O, jJ)}, O, x),

and let F(u, x, jJ, (t, (}t) be the ~b,b-formula (Vi :s: u)(i :s: x => (}t(i, jJ) =
(t (i, jJ)). It is clear that

ud f--- E(x, jJ, (t, (}t) => F(O, x, jJ, e, (}t ),

ud f--- E(x, y, e, (}t) 1\ F(u,x,jJ,(t,{}t) => F(u+1,x,jJ,(t, (}t).

Since Ui f-- ~b,b-IND, we have ui f--- E(x, jJ, (t, (}t) => VuF(u, x,jJ, (t, (}t),
whence Ui f--- E(x, jJ, (t, (}t) => F(x, x, jJ, (t, (}t), which is precisely state-
ment (2.6).

If A(x, jJ, z) denotes the~~,b-formula

3,\t (C(,\t, x, jJ, min{g(jJ), b(O, jJ)}, O, x) 1\ z = ,\t(x, jJ)),
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then (2.4) and (2.6) show that ui 1- (\lx)(\ly')(3!z::; t(x, y')) A(x, y', z).
Hence, according to definition 1.7, A(x, y',z) I;~,b-defines a function in ui,
and we can introduce a new function symbol f and the defining axiom

f(x, y') = z <-+ A(x, y', z).

We can convince ourselves that

ui 1- \ly' f(O, y') = min{g(y'), b(O, y')}. (2.7)

ui 1- (\lx)(\ly')f(x + 1, y') = min{ h(x + 1, y',f(x, y')), b(x + 1,y')}. (2.8)

Statement (2.7) follows immediately from

ui 1- f(O, y') = z <-+ A(O, y', z)
<-+ ::L\t (C(,\t, 1, y', min{g(y'), b(O, y')}, 0, O) 1\ z = ,\t(O, y'))
<-+ 3,\t (,\t(O, y') = min{g(y'), b(O, y')} 1\ z = ,\t(O, y')).

Statement (2.8) is easily obtained by using (2.7) and ~6,b-IND on x in the
formula

f (x + 1, y') = min {h (x + 1, y', f (x, y)), b(x + 1, y)}.

Recall that ~6,b -IND can be applied freely to ~6,b -formulas containing I;~,b_
defined function symbols.

From the second proof of the previous theorem we can also conclude the
following.

Proposition 2.3. Let b, 9 and h be I;~,b-definable functions in Ui, and let t
be a term offirst order Bounded Arithmetic such that ui 1- b(x, y) ::; t(x, y).
If E('\, x, y') is the formula

(\li::; x)(i = ° ::::J ,\t(i, y) = min{g(y), b(O, y')} 1\

1\ O::;i<x::::J ,\t(i+1,y')=min{h(i+1,y',,\t(i,y')),b(i+1,y')}),

then ui proves

where t is a term of first arder Baunded Arithmetic such that

ui 1- (\lx)(\ly)(b(x, y') ::; t(x, y')).

Proo]. This is precisely the contents of statements (2.5) and (2.6) in the proof
of Theorem 2.2.
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Definition 2.4. Tbe second class of Grzegorczyk, E2, is tbe smallest class of
number-tbeoretic functions containing +, " ihe constant functions and closed
under substitution and bounded recursion.

Corollary 2.5. ui can E~,b-deiine all E2 functions.

Proof. This is immediate from Theorem 2.2.

Corollary 2.6. E2 ~ PSPACE.

Proo]. This follows from Corollary 2.5 and Theorem 1.9.

Corollary 2.7. Tbe c1ass of functions E~,b-deiiueble in Ui is closed under
bounded minimum, bounded maximum and bounded summation. Tbat is to
say, if g(x, if) is E~,b -deiineble in Ui, tben tbe following functions are E~,b_
deiinebte in ui:

(i) ¡(x, if) = ming(i, if)·,:<:;x
(ii) ¡(x, if) = maxg(i, if)·,:<:;x

(iii) ¡(x, if) =L g( i, if)·
i:<:;x

Proof. We can E~,b-define these functions by using composition and bounded
primitive recursion schemes as follows:

(i) ¡(O, if) = g(O, if),
¡(x + 1, if) = min{f(x, if), g(x + 1, if)}.

(ii) First, observe that the function

h(x, if) = min [i· min( 1.; (g(j, if) ~ g(i, if)))]
,:<:;x J:<:;X

is E~,b-definable. Note that h(x, if) is the smallest i ::; x such that ('tIj ::;
x)(g(i, if) ;:::g(j, if))· So, ¡(x, if) can be E~,b-defined by ¡(x, if) = g(h(x, if)).

(iii) ¡(O, if) = g(O, if),
¡(x + 1, if) = min{ ¡(x, if) + g(x + 1, if), (x + 2) max g(i, if) }.,:<:;x+l

Here the functions h and b of Theorem 2.2 are h(x, if, v) = g(x, if) + v and
b(x, if) = (x + 1) maxi:<:;x g(i, if).

Ui can also handle bounded recursion with cases as the next corollary shows.
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Corollary 2.8. JI b, g, h1 and liz are E~,b -definable in U~ and A(x, iJ) is ~~,b
with respect to U~, then the Iunction f such that

(ViJ) f(O, iJ) = min{g(iJ), b(O, iJ)},

{
min{h1(x + 1,iJ, f(x,iJ)), b(x + 1,iJ)},

(Vx ) (ViJ)f(x + 1, iJ) =
min {h2 (x + 1, iJ, f (x, iJ)), b(x + 1, iJ)} ,

if A(x + 1, iJ)
if -,A(x + 1, iJ)

is E~,b -deiineble in U~.

Proof. It is not difficult to see that XA(X, iJ) and X~A(X, iJ) are E~,b-definable
in U~, so the result follows immediately from Theorem 2.2 by making

h(x, iJ, z) = XA(X, iJ)h1(x, iJ, z) + X~A(X, iJ)h2(x, iJ, z).

The next proposition provides another type of recursion which can be carried
out in U~. On input x this recursion clearly has depth Ixl which makes the
proof very simple. As a matter of fact, proposition 2.10 below shows that in
most instances this recursion can be performed via bounded recursion.

Proposition 2.9. JI b, g and h are E~,b -deiuieble in U~, then the Iunction f
such that

(ViJ) f(O, iJ) = min{g(iJ), b(O, iJ)},

(Vx)(ViJ) (x -1= ° :J f(x, iJ) = min{h(x, iJ, f(l~xJ, iJ)), b(x, iJ)}

is E~,b -definable in U~.

Proof. We can give a direct proof in the theory U~ similar to that of The-
orem 2.2. However, this time we will be satisfied with presenting only the
easiest argumento By Theorem 1.9 there are polynomials qg, qb, qh; and qg'
qb, qh-SPACE bounded Turing machines computing g, b, h (respectively). To
compute f(x, iJ) we apply the defining recursive scheme [z] times. The result
of each iteration is smaller than b(x, iJ); therefore, for each u < x the value
f(u, iJ) occupies less than qb(lul, iJ) computation squares.Hence on input x, iJ
the total computation space needed is at most

Proposition 2.10. JI b, g and h are E~,b -definable in U~, then the Iunction f
such that

ViJ f(O, iJ) = min{g(iJ), b(O, iJ)},

(Vx)(ViJ) (x -1= ° :J f(x, iJ) = min{h(iJ, f(l~xJ, iJ)),b(2Ix1, iJ)}
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can be defined in ui by using bounded recursion.
Proo]. Let b* the function defined by

b*(x, y) = Z f-4 A(x, y, z)
where A(x, y, z) is the formula

(:3u ::; x)(x = lul + 1 1\ z = b(2· 21ul, y)) V (-du::; x)(x = lul + 1 1\ z = O).

Jt is clear that A(x, y, z) is a I;~,b-formula and that the existence and unique-
ness conditions are satisfied; therefore b* is I;~,b-definable. By Theorem 2.2 the
function 1* such that

1*(0, y) = min{g(Y), b*(O, y)},
j*(u + 1, y) = min{h(y, 1* (u, y)), b(u + 1, y)}

is I;~,b-definable in ui. Now f can be defined by

f(O, y) = min{g(y), b(O, y)},
x -1- O :) f(x, y) = j*(lxl, y).

Note that

u -1- O :) f(2u, y) = f(2u + 1, y) = j*(lul + 1, y)
= min{h(y, j*(lul, y)), b*(lul + 1, y)}

= min{h(y, f(u, y)), b(2· 21ul, y)}.

Therefore, x -1- O :) f(x, y) = min{h(Y, f(l~xJ, y)),b(2Ixl, y)}.
In [4] we capitalize on the aboye results by showing that ui is strong enough

to simulate relatively powerful combinatorial arguments.
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