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STOPPING DOMAINS

~IYRIAM Muxoz DE OZAK(*)

Resumen. Se estudian algunos concept.os básicos y resultados no-estándar
sobre dominios, líneas y puntos de parada en análisis estocástico con dos pará-
metros.

Abstraet. .Vhen we are working in a two parameter stochastic analysis. we do
not have only stopping points. n'e state some basic nonstandard concepts and
resulte about stopping domains. stopping lines and stopping points.
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1. Introduction

For a good introduction of nonstandard analysis we refer to [1]. The main
features that we need in our work are the following.

We assume the existence of a set *R :2 IR, called the set of nonstandard real
numbers and a mapping * : VeR) - V(*R), (where Vi (S) = S, Vn+l (S) =
"~(S) U ~("~(S)) and VeS) = UTlEN"~,(S)) with three basic properties. To
state the properties we give the following notions.

An elementary statement is a statement cP built up from " = ", .. E ",
relations: u =c v, u E v, the connectives "and"; "or"; "not" and "implies",
bounded quantifiers (\fu E v), (3u E v). An internal object A is an element of
V(*lR) such that A = "S, S E V(IR). A set in V(*R) which is not internal is
called external,

(*)Texto recibido 1/11/97, revisado 20/7/98. Myriam Muñoz, Departamento de Matemáticas
y Estadística, Universidad Nacional-Sede Bogotá. e-mail:mymunoz@matematicas.unaJ.edu.co.
The author acknowledges the support from CINDEC (Universidad Nacional de Colombia).
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(1) Extension Principie. 'IR is a proper extension of R and * : V(:IR) ---->

V('IR) is an embedding such that 'r = r for all r E IR..
(2) Saturation Property: Let {Rn : n E N} be a sequence of internal objects

and {Sm : m E N} be a sequence of internal sets, If for each m E N there
is an Nm E N such that for all n ~ Nm, R¿ E S,«, then {Rn : n E N}
can be extended to an internal sequence {R,¡ : r¡ E *N} such that
R,¡ E nmSm for every r¡E 'N - N.

(2') General Saturation Principie: Let K be an infinite cardinal. A non-
standard extension is called x-saturated if for every family {Xdi El,

card(I) < K, with the infinite intersection property, the intersection
niE1Xi is nonempty, i.e. this intersection contains sorne internal oh-
ject.

(3) Transfer Principle: Let <P(XI,'" ,Xm,XI,'" ,xn) be an elementary
statement im VeR). Then, for any Al,'" ,Am ~ lR. and rl,'" ,rn E lR.,
<P(AI,· .. ,Am, rI,'" ,rn) is true in V(lR.) if and only if <P(' Al, ... ,
'Am, 'rl,' .. ,*rn) is true in V(*lR.).

('IR, '+, ", * :s:) extends lR. as an ordered field. In general we will omit the *
for the operations and the order relation.

In 'lR. we can distinguish three kinds of numbers:
(a) x E 'IR is infinitesimal, if Ixl < r for each r E IR+.
(b) x E 'lR. is a finite number, if there is a real number r E lR.+ such that

[z] < r.
(e) x E *lR. is infinite number, if Ixl > r for each r E IR+.

For each finite number x E 'IR we can associate a unique real r:= st(x) := °x,
such that x = r + E, where E is infinitesimal. We say that x is infinitely close
to y, denoted by x ~ y if and only if x - y is infinitesimal.

In general we use capital letters H, F, X, etc. for internal functions and
processes, while h, f, x, etc. are used for standard ones. For stopping times we
will always use capitalletters, and specify whether standard or nonstandard is
meant.

For a given set A, *A stands for the elementary extension of A, and ns(' A)
denotes the nearstandard points in 'A. If s is an element in ns(*A), the
standard part of s is written as st(s), or os. For a given function t, 'f means
the elementary extension of f.

We say that the set T is S-dense if {01 : 1 El, °1 < oo} = [0,(0), and we
define ns(T) := {! E T : °1 < oo}. With T we denote an internal S-dense
subset of '[0,(0). The elements of T, or more generally, of * [0,(0), are denoted
with ~, 1, :g, etc .... The real numbers in [O,(0) are denoted by s, t.; u, etc ...
\Ve will work with different sets T, so we will always specify the definition of
such T.
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With N we denote t.he set of nonzero natural numbers {l, 2, 3,···}, and
No = Nu {O}. Elements of No are denoted with n, m, l. etc ...while elements in
*N- N will be denoted with 7], N, etc ....

If (n, 2l, 11)is an internal measure space, the corresponding Loeb space isn=
(n, L(21), L(I1), and L(I1) will be the unique measure extending 011 to the a-
algebra 0"(21) generated by 2l. L(21) will stand for the L(I1.) completion of 0"(21).

When we say that F : A -> B is an internal function, we mean that the
domain, the range and the graph of the function are internal concepts.

In order to simplify the notation and sorne of the proofs, in this paper we
will consider stochastic processes defined on [0,1]2 with values in IRinstead of
processes defined on [0,00)2 with values on IRd. In general we should consider
nearstandard points on * [0,00)2. If T is an S-dense set on [0,00), then an
internal stochastic process X : T2 x n -> *Rd should have a property if and
only if each of its components has. Therefore we may reduce the proofs to the
one dimensional case.

The set [O,1f is equipped with the partia! orders:

(SI,tr)::; (S2,t2) {:} SI::; S2 and tI::; tz,

(sl,td.6(S2, t2) {:} SI ::; S2 and tI ::::t2;
we will use the notation (SI, tr) < (S2, t2) to express that (SI, tr) ::; (S2, t2) and
S] < S2 or tI < t2, whereas (SI, tr) /\ (S2, t2) will mean (SI, tr).6(S2, t2) and
S] < 82 or tI > t2 and (SI, ir) « (S2, tz) means that SI < S2 and h < t2·

Let (n.~,P) a measure space. A standard filtration in two parameters is a
Iilt r.: ion that satisfies the following conditions:

11 - For (s,t), (s',t') in [0,1]2 such that s::; s', t::; t', then ~(S,t) ~

~(s',t') .
F2 - ~(o.O) is P- complete.
F3 - For each (s, t), ~(s.t) = n(s',t'»>(s.t)~(s'.t').

Additionally we say that the filtration satisfies F4, or Cairoli-Walsh condition,
ir for (s, t) and (s', t') such that S ::; s' and t :::: t' then ~(s.t) and ~(s'.t')
are conditionally independent. For conditional independence we will use the
equiva!ent condition: if (s, t) and (s', t') are such that S ::; s' and t ::::t' and X
is an ~(S'.t) - measurable random variable, then E(XI~(s.t) = E(XI~(s.t')'

Condition F4 is equivalent to each one of the following:
(a) If (s, t).6(s', ti) and X is a random variable, then

E(E(XI~(s.t))I~(s'.t')) = E(E(XI~(s',t,)I~(s,t)) = E(XI~(s.t')'

(b) If [s, t).6(s', t') and X is an ~(S'.t,)-measurable random variable, then

E(XI~(s.t) = E(XI~(s.t').
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Given an internal probability space (n, '13, P), (n, L(':B), P) denotes the corre-
sponding Loeb space; that is, L('B) is the external complete a-algebra generated
by '13 and Pis the unique rr-aditive extension of st(P) to L('B).

1. Definition.
(i) Let LE *N - N, N = L!, 8t = l/N. The hyperfínite line is

y = {O,8t, 2&, ... , (N - 1)8t, 1}.
(ii) Let n = {-1, l} T

2
= {U' : y2 ---> {-1, 1}1U' is internal }. The internal

hyperfinite cardinality of n is 2(N+l)2.

(iii) Given (~,!)E T2, we define on n the equivalence relation:

for all (~',t') ::; (~,!), (~',!') E y2, where U',w' E n. \Ve denote
by [wh~,!) the equivalence class of w with respect to this equivalence
relation.

(iv) Using the last equivalence relation we define for (§.,1) E T2,

'B(~,!) = {A ~ nlA is internal and closed under (;:::;(,'!,!)}.

This is an internal *a-algebra.
(y) An internal two parameter filtration is an internal family {'B(,'!,!)) :

(~, 1) E T2} of internal "sub-rr-algebras of '13 that satisfy property Fl
(that is, the corresponding property Fl in the nonstandard sense).

The filtration is P-complete if '13(0,0) is complete.

2. Definition. Let (n, 21.,P) denote an internal probability space and Jet

(n, 3', P) = (n, L(n), L(P)).

As we have seen in (y) of the aboye definition, an internal fiJtration on y2 is
a collection of "sub-o: -algebras of 21.: {'B (~,!): (~,1) E y2} such that, whenever
(~,O ::; (~',!'),then 'B(~,t) ~ 'B(~/,t/)'

The standard part of {'B(~,t)} is the filtration {3'(8,t) : (s, t) E [O,lj2} defined
by

where'J1 is the class of P-null sets of 3'.
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3. Proposition. The standard filtration {~(s,t) hs,tlE!O.lj2 satisfies properties
Fl to F.:J.

Proo]. From the definition Fl and F2 are obvious, and the proof of F4 ean be
found in Dalang [4]. Let us show F3, i.e., that ~(s,t) = n(S',t'l»(s,t) ~(s',t').

By Fl, ~(8,t) ~ ~(8',t') for all (s', t') » (s, t). Then, ~(8,t) ~ n(s',t'l»(8.t)

~(s',t').

On the other hand, if A E n(S'.t'l»(s,tl ~(S',t')' it follows that A = B ne,
where

BE n
O(,!' ,t'» >(s' ,t')

and C E 'J1 for all «~',t') » (s,t). Then B E a('B('!',t') for aH O(§.',t') »
(s', t'), provided (s', t') » (s, t). Then B E a('BC.!',t'» for aH °(§.', t') » (s, t)
whieh implies that

BE n
O(,!' ,1.') >>(8,t)

(§.',t') E T2• Finally A = BnC E ~(S,t), and thus we have F3.

4. Definition. A function x : [O, 1]2 --. lR is a larc in [O, 1F, if for eaeh
(so. to) E [0,1]"2 the quadrantal limits exist and satisfy:

lim x(s, t) = x(so, t;;),
8---1'8:

t--t;;
lim_x(s, t) = x(s;;, to),
s-so
t---tt;;

lim_x(s, t) = x(s;;, t;;).
8--So
t __ t;;

\Ve denote with D2 the set of aH lares in [O, 1f.
Note: the points in [0,1]2 will be denoted in general by [s, t), (Sl, td, ...

and the points in *[0,1]2 by (§.,Ü, (§.¡,h), ....

For eaeh point (§., {) E * [O, 1]2 let us consider the foHowing sets:

Q(,!,!) = {(,!!,y.) E *[0,1]2:,!!;::: §. and y.;::: t},

Q&..!l = {(,!!,z) E *[0,1]2 : ,!!< §. and y.;::: 0,
Q~,!,!)= ((,!!,y.) E *[0,1]2:,!! < §. and y. < 0,
Q(~,!) = {(,!!,y.) E *[O,1]2 : ,!!;:::§. and y. < n.
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5. Definition. Let FE' D2 be sueh that F(§., t) E ns(*IR), for (s. t) E •[O,1]2.

(a) F is of class SD2 if for each (s, t) E [0,1]2 there are points (§.1,1d ~
(§.2,h) ~ (§.a,ta) ~ (~,Lt) ~ (s,t) such that:

(i) If (!h':~:'.l) ~ (s, t), Üh,Y.l) E Q(Jl.P!.l)' then F(1!l,1Ll) ~ F(§.l,h)·
(ii) If (1!2,1L2) ~ (s, t), (1!2,1L2) E QfJl.2'!2)' then F(1!2,1L2) ~ F(§.2,h)·
(iii) If (1!a,!:'.3) ~ (s, t), (1!a,!:'.3) E Q~Jl.3,.b)' then F(1!a,!:'.3) ~ F(§i ,ti)·
(iv) If (l!4,!4) ~ (s, t), (l!4,!4) E Q'l(s t ), then F(l!4,!4) ~ F(~,t4).

"-""4
(b) F is of class SD2J, or a larc lijt, if (a) holds with ül,h) = (§.2,h) =

(§.a,ta) = (~,Lt) and F(§.,t) ~ F(O,O) for all (§.,:Ü ~ (0,0) in '[0,1]2.
(e) F is S-eontinuous (SC) if F(§.,:Ü ~ F(1!,1L) whenever (§.,:ü ~ (1!,1L);

(§.,1),(1!,1L) E 7"2, where T = {kót : ót = J¡"N E 'N - N,k =

0,1,'" ,N!}.

A function F : 7"2 ---+ 'IR is of class SD2 (SD2J, SC) in T2 if it is the
restriction to 7"2 of an SD2 (SD2J,SC) function F on '[0,1]2.

6. Definition. The standard part of an SD2 function F on T2 is the funetion
st( F) defined by:

We say that X is a lifting of X if st(X) = X a.s,

2. Stopping Domains

We first recall the definitions from Cairoli and Walsh [3].

7. Definition.
A set A ~ [0,1]2 x n is adapted with respect to J(s,t) if A is measurable and

for eaeh (s, t) E [0,1]2 the set A(s,t) = {w : (s, t, w) E A} is J(s,n-measurable.

A proeess x : [0,1]2 x n ~ IR is adapted if x(s,t,·) is J( e ,Wmeasurable for
each (s, t) E [0,1]2.

A proeess {X(s,t); (s, t) E :IR!} is progressive (or progressively measurable) if,
for all (s, t) E IR!, the map «,w) ~ X«w)I{«(s,t)} is'B x J(s,n-measurable,
where'B is the Borel o-algebra in IR! and {.J(s,t)} is the filtration in n.

Let A : w ~ A(w) be a mapping from n to s.p(IR!). A is a random set if, for
all (s, t) E IR!, lA (s, t) is a random variable. A random set A is adapted (resp,
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progressive) ifthe process {lA (s, t), (s, t) E lR~} is adapted (resp. progressive).
If A is progressive, {w : A(w) n R(s,t) -=1 0} E 3'(s,t), where R(s,t) denotes the
rectangle [(O, O), (s, t)].

8. Definition. A randorn variable Z : n ---+ lR~ U {oo}is a stopping point if,
for all (s,t) E lR~, the set {Z < (s, t)} E 3'(s,t).

9. Definition. e is a stopping domain if:
(1) e is a progressive randorn set
(2) Z E e for {e -=l0}, where Z = inf C'
(3) If (s, t) E e, then [Z, (s, t)] ~ e.

If C is a stopping domain, define the set int( e) by

int(e) = {(s, t) : 3(S', ti) E C with (s, t) « (Si, t')},

and the set L by
L = e - int(e).

L is the stopping line associ ated with c.
10. Definition. Let Z be a stopping point. We say that e is a stopping
neighborhood of Z, if:

(1) C is a stopping dornain and Z = inf C
(2) e = int(C); that is, C is the closure of int(C).

11. Proposition. Let C bea random seto Take Z = inf C and suppose that:
(i) i.nt(C) is dense in C
(ii) Z E e on {C -=l0}
(iii) If (s, t), (Si, ti) E e and (s, t) < (Si, ti), then [(s, t), (Si, t')J ~ C
(iv) For all (s, t) E lR~, {(s, t) E C} E 3'(8,t).

fhen, C is a stopping neighborhood oEZ.

The proof is in [3J.
For an internal set A we can transfer all the aboye definitions, so that we

can speak about an internal randorn set or about a nonanticipanting random
set, where nonanticipanting is the internal version of adapted.

We rnention without proof the following result in [7], Theorern 2.11.

12. Theorem. (Keisler) A stochastic process x is progressively measurable iE
and only jf it hps a lifting X which is nonanticipanting.

Remark 1. If A is nonanticipanting with respect to the internal filtration
{íB(~,tl} we have that {w: A(w) n R(s,tl -=l0} E íB(,t). In fact, A is nonantic-
ipanting rneans that IA(w)(~,t) = lA(w/)(~,t), when w ::::::(~,ü '11/ which rneans
that

{w: (~,t) E A(w)} = [wb,ü E íB(~-.O·
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If A(w)nR(!'A.l i- 0, let (Q.',t') E A(w)nR(§.,!:J, Then I.4(w)(§..',t') = 1 =
I.4.(w,)(§..',t'), where w ~(§.',!') ui', which implies that {w: A(w) nR(§.,!) i- 0} is
a hyperfinite union of equivalent classes [wb,,!') and therefore, an element of
'13(§.,!).

13. Definition. Let e : w --. C(lO) be an internal map from n into the
internal subsets of T2. An internal two parameter stopping domain e is an
internal, random, nonanticipanting subset of T2, such that:

(i) If Z = infC, then Z E C
(ii) If (§..,1) E e, [Z, (§.., 1)J nT2 ~ C.

Let A ~ 7"2 and int(A) = {(§..,~) E T2: 3(§..',t') E A, (§.,1) «(§.',()}. Let
L = e - int(e) be the stopping line associated with e, L and e are said to
be bounded if there exists a (s, t) ERt such that e ~ * R(S,I) a.s.

14. Definition. An internal random variable Z- : n --.T2 is an internal
stopping point if when (§.,1) E T2, {Z- ::::;(§.,t)} E 'B(!l.,O'

Note that if Z = inf e then {Z ::::;(§.,~)} = {e nR(§.,!J i- 0} E '13(ht)' so that
Z is an internal stopping point.

15. Definition. Let Z- be an internal stopping point. We say that e is an
internal stopping neighborhood of Z- ir e is an internal stopping domain and
Z- = inf C.

16. Proposition. U : n --. [0,lJ2 is an ~(s,wstopping point jf and only if
F ,= °V a.s. for sorne '13(§.,Ü- stopping point V.

Proo]. =» Let z: [0,1]2 X n--.{O, l} be defined by

{
1,

z(s,t,w)=
O,

(s, t) 2: U(w),
otherwise.

Then z(s, t) is ~(s,o-adapted. In fact,

{w: z(s, t)(w) = 1} = {w : U(w) ::::;(s, t)} E ~(8,t)

and has sample paths in D2• Then, by Theorem 2.2.6 in [9J, there exists an
SD2 J lifting

Z : (T')2 x n__{O, l}
such that T' = {k~'t : k E *N, k~'t ::::;1} U {l} for some ~'t E T, ~'t ~ O,
and for all (§..,1)E (T')2, Z(§.,ü is '13(§.Vd't,!Vd't)-nonanticipanting. Let A(w) =

{(§.,t) : Zú.,~,w) = 1}; A is nonanticipanting. Since Z is S D2 J, there exists
V'(w) = inf{(§.,t) : Z(§.,~,w) = l} (inf0 = (1,1)), and

{V' < (§..',f)} = {w: inf{(§...t): Z(§..,i,w) = l} < (§..',~')}

= {w: A(w) nR(§.,,!') i- 0}.
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Since A(u') is nonanticipanting, then {u': A(u') n R(!!.,!) i 0} E \B(,~\f~/t,tv~'t).

\Ve also have o~" = [T a.s., so that V = V' V !).'t is the desired "stopping point.
=) If [T = 0\' a.s. for sorne internal 1J3(!!...1.) stopping point l'. Then [T is an

~(s.t)-stopping point for (s, t) ::::;(~)O, (s, t) E [0,1]2. In fact:

n=l
00

E n a(IJ3(!i,!)+(l/n,l/n») = ~O(!i,.o'
n=l

17. Proposition. Suppose that X : T2 x n --+ ':IR is an internal SD2 J
stoehastie ptocess, x = st(X) a.s, and U : n --+ [0.1]2 is ~-measurable. Tben,
there is an internal2J.-measurable map V :n --+ (T')2 and a P-null set N sueh
that, iEw ti. N, then o~'(w) = U(w), and iE (~,O ::::;U(w) and (~,t) ~ \/('111),
then °X(~,t,w) = x(U(w),w). lE U is an ~(s,wstopping point, l;' may be
ehosen to be an ínternallJ3(!i,!) - *stopping point, and iEU is a eonstant, then
V may be ehosen to be a eonstant.

Proof. Extend X to '[0,1]2 x n by setting

X(~,~,w) =X(~,t,w), (~,~) E [(~,O,(~+!).t,t+!).t)), (~,O ET2.

Then x(U(w), '111)) is ~-measurable, so that there are a lifting Y, of x(U), and
[T' : n --+ (T')2, a lifting of U. We have that °Y = st(X)(OU') a.s., so that we
may choose a sequen ce {En}nEN and no E N such that n;n

o
< °En < l/n and

Let h = no + n and

Then D 2 N, so that by the Overflow there exists an infinitesimal §.n E T such
that

p (~~~~'nIY - X(U' + (E,E))I ~ l/n) < l/n.

We can extend the sequence {§.n : n E N} to *N, and we can find 1/ E *N - N
such that §. = maxn:<:;:v§.n::::;O, and §. E T, such that

Pl sup IY - X(U' + (e, E))I > O} ::::;O.
~:<:;:,:<:;:'v
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Therefore,

P {W: sup Ix(U) - °X(U' + (lO, (0»)1 > O} = O.
~~'~'v

Then NI = {W : supó«<, °IX(U + (e, lO) - YI > O} is a P-null seto__ v

Let V = U' + (8,8). Then V :n -+ (T')2 is the desired lifting. In fact,

N = NI U {w : -v i- U V °Y i- x(U)}

is a null set. Let w fI. N, (§.,!) ~ U(w) and (§.,Ü 2: ~T(W). Then

Ix(U) - °X(§.,!)I = °IY - X(§.,ül

:::; sup IOY - X(U' + (lO, f»1 = O a.s
ó~<~o

If U is a stopping point, from Proposition 16 U' may be chosen to be an
internal "stopping point. Therefore, V = U' + (8,8) is a 'E(HÓ,!H)-*stopping
point. Similarly, if U is constant, V may be chosen to be a constant mapping.

Remark 2. Let C be an internal stopping neighborhood and Z-. = inf C. Then,
from the properties of internal sets and the Propositions above, we obtain that:

(1) C is a random nonanticipanting set and st(C) is a closed random pro-
gressive set

(2) Z = inf st(C) = st(infC) E' st(C)
(3) If (u,v) E st(C), [Z, (u,v)j ~ st(D)
(4) int(st(C» = {(s, t) E st(C) : 3(u, v) E st(C), (s, t) « (u, v)}, st(C) is

closed and int(st(C» = st(C). Then it follows that st(C) is a stopping
neighborhood.

18. Proposition. A rnapping U: w -+ U(w) ~ [O, 1J2 is a stopping neigbbor-
hood oEZ if and only iEU = st( C) a.s. Eor sorne interna1 'E(,!,!) *n eighborhood
C oEZ, an internal "sioppuig point, where st(Z) = Z.

Proo], =» Define y: [0,1]2 x n -+ {O.l} by

{
l.

y(s, t, w) = O,
(s, t) E U(w),
(s, t) fI. U(w).

Then y(s, t, w) = IU(s,t)(w) = Iu(w)(s, t) is a progressive and measurable pro-
cess with paths in D2, so that it has a nonanticipanting lifting

( , 2 }Y: T) x n ---.{O, 1 .
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Let e'(w) = {(§.,Ü: Y(§.,f,w) = 1}. Then

Ic'(!.,O(w) = Ic'(w)(§.,Ü = Y(§.,t,w),

so that e' is nonanticipanting. Define Z(w) = inf C'(w).
Let

C(w) = U{[Z, (§.,f)] nT2: (§.,t) E e'(w)}.

Then Z E C and [Z, (§., t)] ~ e for all (§., f) E e. Since e' is nonanticipanting
then Z is a stopping point, and therefore e is an internal stopping neighbor-
hood, and oc = U.

.;:=) Is obvious from the Remark 2.

19. Proposition. Let X : T2 x fl ~ *lR be a 2S-integrable internal l:l't-
martingale or an internal bounded variation stochastic process oE class S D2,

X = st(X) a.s. and U: w ~ U(w) be a random seto Then, there is an internal
random set V : w ~ V(w) ~ (T')2 and a P-null set N such that iEw fI. N
then °V(w) = U(w). lE, in addition, (§.,t):::::: (s,t) E U(w), (§.,f) ~ (s,t), and
(§., O E V (w), then °X ((§., t.w) = x( s, t, w). If U is a stopping neighborhood,
\1 may be chosen to be an internal stopping neighborhood. If U is a constant
set, V may be chosen to be an internal constant seto

Proo]. Extend X to *[0,1]2 x fl by setting

Define h(s,t,w) = Iu(w)(s,t). Then h is a stochastic process. Let H be a
lifting of h. Then

°H(§.,f,w) = h(o§.,°f,w), L(T2 x fl) a.s.,

by the Fubini Theorem (Keisler Theorem 1.14 (b) (i) in [7]). If (§., O E T' ~ T2,

T' with measure 1, then H(§.,t,·) is Loeb measnrable in fl and °H(§.,!,w) =
h(O §., O!, w) L(fl)-a.s.

Define U'(w) = ((§.,t) E T' : H(§.,!, w) = 1}. Then °U'(w) = U(w) for
almost all W. In fact, if (§., t) E U'(w), °H(§., t, w) = h(o§..Oto w) = 1. so thar
(o§.,0t) E U(w). Then, so °U'(w) = U(w) a.s.

Let Y be a lifting of z- h. \Ve may choose as in Proposition 17, §. ::::::O.§. E T',
such thar

NI = {ti': sup °IY - (X· H)((§., Ü + (e E»I > 01}
t:«~o

is a P-null set. Let \" = U' + (§.,§.). Then

N = IVI U {w: °F(w) =1 U(w) voy =1 x· h}
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is a P-null seto Let w r¡.N and (~, t) ~ (s, t) E U(w), (s,O E F(w). Then

!x(s, t) - oX(~, t.)! = !x· hes, t) - (OX . H)(~, O! = O!Y(~, t.) - (X· H)C~,t)!
~ sup O!Y(~,t.) - (X· H)«~,t) + (E,E))! = O.

§:'5,,~O

Thus l' is the required set.

If U is a stopping neighborhood, then by the Proposition 18, U' rnay be
chosen to be a '1.\(~,Ü-'stopping neighborhood. Then V' = U' + (Q, Q) also is a
'1.\(~,t)-·stopping neighborhood (T' is closed under addition). If U is a constant
set, V' rnay be chosen to be an internal constant seto
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