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STOPPING DOMAINS

MYRIAM MUNOZ DE OzZAK(¥)

Resumen. Se estudian algunos conceptos basicos y resultados no-estandar
sobre dominios, lineas y puntos de parada en andlisis estocastico con dos para-
metros.

Abstract. When we are working in a two parameter stochastic analysis, we do
not have only stopping points. We state some basic nonstandard concepts and
results about stopping domains, stopping lines and stopping points.
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1. Introduction

For a good introduction of nonstandard analysis we refer to [1]. The main
features that we need in our work are the following.

We assume the existence of a set *R D R, called the set of nonstandard real
numbers and a mapping * : V(R) — V(*R), (where Vi (S) = S, V,,;1(S) =
Vo (S) UB(VL(S)) and V(S) = UpenVin(S)) with three basic properties. To
state the properties we give the following notions.

An elementary statement is a statement ® built up from * =", * € 7,
relations: u = v, u € v, the connectives “and”,“or”, “not” and “implies”,
bounded quantifiers (Vu € v), (3u € v). An internal object A is an element of
V(*R) such that A = *S, S € V(R). A set in V(*R) which is not internal is
called external.

(*)Texto recibido 1/11/97, revisado 20/7/98. Myriam Mufioz, Departamento de Matematicas
y Estadistica, Universidad Nacional-Sede Bogota. e-mail:mymunoz@matematicas.unal.edu.co.
The author acknowledges the support from CINDEC (Universidad Nacional de Colombia).
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(1) Extension Principle. *R is a proper extension of R and * : V(R) —
V(*R) is an embedding such that *r = r for all r € R.

(2) Saturation Property. Let {R, : n € N} be a sequence of internal objects
and {S,, : m € N} be a sequence of internal sets. If for each m € N there
is an N, € N such that for all n > N,, R, € Sp,, then {R,, : n € N}
can be extended to an internal sequence {R, : 7 € *N} such that
R, € Ny Sy, for every n € *"N—N.

(2) General Saturation Principle: Let & be an infinite cardinal. A non-
standard extension is called «-saturated if for every family {X}icy,
card(I) < k, with the infinite intersection property, the intersection
M;crXi is nonempty, i.e. this intersection contains some internal ob-
ject.

(3) Transfer Principle: Let ®(X,,---,Xm, %1, -+ ,Zs) be an elementary
statement im V(R). Then, for any A;,---, A, CRandr),--- ,r, €R,
&(Ay,- ,Am, 71, ,7r) is true in V(R) if and only if ®(*4,,---,
*Am, *r1,- -+, *ry) is true in V(*R).

(*R, *+,*-,* <) extends R as an ordered field. In general we will omit the *
for the operations and the order relation.

In *R we can distinguish three kinds of numbers:

(a) z € *Ris infinitesimal, if |z| < r for each r € R*.

(b) r € *R is a finite number, if there is a real number r € R* such that

jx| <.

(c) z € *Ris infinite number, if |z| > r for each r € RY.
For each finite number x € *R we can associate a unique real r := st(z) := °r,
such that x = r + ¢, where € is infinitesimal. We say that z is infinitely close
to y, denoted by r = y if and only if x — y is infinitesimal.

In general we use capital letters H, F, X, etc. for internal functions and
processes, while h, f, x, etc. are used for standard ones. For stopping times we

will always use capital letters, and specify whether standard or nonstandard is
meant.

For a given set A, * A stands for the elementary extension of A, and ns(*A)
denotes the nearstandard points in *A. If s is an element in ns(*A), the
standard part of s is written as st(s), or °s. For a given function f, *f means
the elementary extension of f.

We say that the set T is S-dense if {°t : t € 1,°t < 0o} = [0, 00), and we
define ns(T) := {t € T : °t < oo}. With T we denote an internal S-dense
subset of *[0,0c). The elements of T, or more generally, of *[0, o0), are denoted
with s, {, u, etc... . The real numbers in [0, oc) are denoted by s, ¢, u, etc...
We will work with different sets T, so we will always specifv the definition of
such T.
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With N we denote the set of nonzero natural numbers {1,2,3,---}, and
N, = NU {0}. Elements of N, are denoted with n, m, I, etc...while elements in
*N — N will be denoted with 7, N, etc... .

If (2, 2, 1) is an internal measure space, the corresponding Loeb space is {2 =
(2, L(2), L(p)), and L(u) will be the unique measure extending °u to the o-
algebra o (2) generated by 2. L(2) will stand for the L{1) completion of o(2).

When we say that FF : A — B is an internal function, we mean that the
domain, the range and the graph of the function are internal concepts.

In order to simplify the notation and some of the proofs, in this paper we
will consider stochastic processes defined on [0, 1] with values in R instead of
processes defined on [0,00)? with values on R?. In general we should consider
nearstandard points on *[0,00)%. If T is an S-dense set on [0,00), then an
internal stochastic process X : T? x @ — *R? should have a property if and
only if each of its components has. Therefore we may reduce the proofs to the
one dimensional case.

The set [0, 1]? is equipped with the partial orders:
(s1,11) < (s2,t2) < sy < sand t; < iy,
(81,t1)A(82,t2) < 81 < sz and t; > ty;
we will use the notation (s;,%;) < (s2,%2) to express that (s;,t;) < (s2,t2) and
$1 < 82 or t; < ta, whereas (s1,t,) A (s2,t2) will mean (s1,%;)A(S2,t2) and
$1 < sgorty >ty and (s1,t) << (s2,f2) means that s; < sz and t; < ta.
Let {Q, 3, P) a measure space. A standard filtration in two parameters is a
filtrs ion that satisfies the following conditions:
b1 - For (s,t), (s',t') in [0,1]* such that s < s, t < t/, then F+ C
3(_91’“).
F2 - F0.0) is P- complete.
F3 - For each (S, t), 3(3‘1) = n(sl’tl)>>(8‘t)3(sl.t¢).
Additionally we say that the filtration satisfies F'4, or Cairoli-Walsh condition,
if for (s,t) and (s',t’) such that s < s’ and t > t' then J(,s) and F(r4)
are conditionally independent. For conditional independence we will use the
equivalent condition: if (s,t) and (s,t’) are such that s < s’ and t > ' and X
is an § (5 1) - measurable random variable, then E(X|[F(s.1)) = E(X[F(s21))-
Condition F4 is equivalent to each one of the following:
(a) If (s, t)A(s, ') and X is a random variable, then

E(E(X|36.0)18(s.01) = E(E(X[3s,10) B s.0) = E(X|F(s1)-
(b) If (s,t)A(s’,t') and X is an F (s ¢)-measurable random variable, then

E(X|3.0) = E(X|(s.1)-
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Given an internal probability space (2, ‘B, P), (€. L(*B), P) denotes the corre-
sponding Loeb space; that is, L(B) is the external corr_lplete o-algebra generated
by ‘B and P is the unique o-aditive extension of st(P) to L(‘B).
1. Definition.
(i) Let Le *N~—N, N = L!, 6t = 1/N. The hyperfinite line is
T = {0, ét, 26t, ..., (N — 1)6t, 1}.
(ii) Let @ = {-1, l}Tz = {w: T? — {—1,1}| w is internal }. The internal
hyperfinite cardinality of € is 20V +1)7,
(iii) Given (s,t) € T?, we define on Q the equivalence relation:

w Ry w' e w(s t) =w'(s',t)

for all (s',t') < (s,t), (8'.t') € T?, where w,w' € Q. We denote
by [w](ﬂ) the equivalence class of w with respect to this equivalence
relation.

(iv) Using the last equivalence relation we define for (s,t) € T?,

Bst) = {A C QA s internal and closed under =~ }.

This is an internal *o-algebra.

(v) An internal two parameter filtration is an internal family {B;,)) :
(8,t) € T?} of internal *sub-o-algebras of B that satisfy property F1
(that is, the corresponding property F1 in the nonstandard sense).

The filtration is P-complete if B g ) is complete.

2. Definition. Let (2,2, P) denote an internal probability space and let
(.3, P) = (@, L(2), L(P)).

As we have seen in (v) of the above definition, an internal filtration on T2 is
a collection of *sub-o-algebras of A: {B,,) : (s,t) € T?} such that, whenever
(8,8) < (g/,1), then Bygy) C By o1

The standard part of {8, } is the filtration {F(,,) : (s,t) € [0,1]?} defined
by

Sty =  o(Buw) |V

°(8,t)>>(s,t)
(8,t)€T?

where M is the class of P-null sets of F.
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3. Proposition. The standard filtration {§s+)}(s.t)cf0.1)2 satisfles properties
F1to F4.

Proof. From the definition F1 and F2 are obvious, and the proof of F4 can be
found in Dalang [4]. Let us show F3. i.e., that F(5,1) = V51 11)5 5 (s.0) S(s'.t)-
By F1, §(s.t) C S(or,er) for all (s, ') >> (s,t). Then, §,) C Nistt1>> (2.0
3(5'1’)'
On the other hand, if A € (, 4)55(s.) S(st1)- it follows that A= BNC,
where

Be N o (B, (&t)eT?
°(_.§’,§’)>>(s’.t’)

and C € N for all (s',t') >> (s,t). Then B € 0(By ) for all °(s'.t') >>
(s',t"), provided (s',t') >> (s,t). Then B € 0(B 4 ¢)) for all °(s',t') >> (s,1)
which implies that
Be [  o(Buw),
°(8',t')>>(s.t)
(s,t") € T? Finally A= BNC € 3(s,t)» and thus we have F3.

4. Definition. A function r : [0,1]> — R is a larc in [0, 1]?, if for each
(So-to) € 0,1)2 the quadrantal limits exist and satisfy:

lim z(s,t) = x(s,, t,), lim x(s,t) = z(s,, ),
8—»3: 3-—-»82‘
t—t) t—t
lim xz(s,t) = (s, , t,), Hm z(s,t) = z(s;,t; ).
s—s, 8—s8,
tt} t—t,

We denote with D? the set of all larcs in [0, 1]2.

Note: the points in [0, 1) will be denoted in general by (s,t), (s1,t1), ---
and the points in *[0,1)% by (s, 1), (s;,8,), ---.

For each point (s,t) € *[0, 1]? let us consider the following sets:

Qlsy = {(wv) €*[0,1°:u> s and v > 1t},
Q= {wv)€*0,1*:u<sand 22t}
Q= {wv)€*0,1?:u<sand v <t},
Q&,Q ={(u,v) € *[0,1]?: x> sand v < t}
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5. Definition. Let F' € * D? be such that F(s,t) € ns(*R), for (s,t) € *[0,1]%.

(a) F is of class SD? if for each (s,t) € [0,1]? there are points (s,,t,) ~
(82,23) = (83,t3) = (84,14) = (s,1) such that:
(1) If (u;,2) = (5,0, (w,4,) € Q(lgl,h): then F(y,,v,) = F(3,,t,).
(ii) If (ug,22) = (5,1), (U2, 2) € Q) then F(ug,v,) = F(sz,1p).
(iif) If (us, 25) ~ (s, 1), (us, 23) € @, , )> then F(ug,v5) ~ F(s3,t3).
(iv) If (s, 24) = (5,8), (g, 24) € Q) then Fluy,v,) ~ Fsy, 15)-
(b) F is of class SD?J, or a larc lift, if (a) holds with (s;,t;) = (85,3) =
(83,t3) = (84,L4) and F(s,1) = F(0,0) for all (5,2) ~ (0,0) in *[0, 1]%.
(c¢) F is S-continuous (SC) if F(s,t) ~ F(u,v) whenever (s,1) ~ (u,2);

(s,1), (w,v) € T? where T = {kbét : 6t = #,N € *‘N-N,k =
0,1,--- ,N!}.

A function F : T? — *R is of class SD? (SD2J,SC) in T? if it is the
restriction to 72 of an SD? (SD?J, SC) function F on *[0, 1]2.

6. Definition. The standard part of an SD? function F on T? is the function
st(F) defined by:

st(F)(s,t) = lim °F(s,t), s,t) € T2
(A= lim CFb, (D

We say that X is a lifting of X if st(X) = X a.s.

2. Stopping Domains

We first recall the definitions from Cairoli and Walsh [3].
7. Definition.

A set A C [0,1]? x Q is adapted with respect to F, s if A is measurable and
for each (s,t) € [0, 1]2 the set A, ) = {w: (s,1,w) € A} is F(s,r)-measurable.

A process z : [0,1]2 x @ — R is adapted if z(s, t,-) is §(,.)-measurable for
each (s,t) € [0,1)2.

A process {X(s,4); (8,t) € R2} is progressive (or progressively measurable) if,
for all (s,t) € R2, the map ({,w) — Xc(w)c< (o)} is B X F(s,1)-measurable,
where B is the Borel o-algebra in R% and {8(s,0)} is the filtration in Q.

Let A:w — A(w) be a mapping from Q to PB(R? ). A is a random set if, for
all (s,t) € R2, I 4(s,t) is a random variable. A random set A is adapted (resp.
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progressive) if the process {I4(s,t), (s,t) € R%} is adapted (resp. progressive).
If A is progressive, {w : A(w) N Rss) # 0} € F(s,1), Where R, ;) denotes the
rectangle [(0,0), (s, t)].

8. Definition. A random variable Z : @ — R% U {o0} is a stopping point if,
for all (s,t) € R%, the set {Z < (s,1)} € F(s,0)-
9. Definition. C is a stopping domain if:

(1) C is a progressive random set
(2) Z € C for {C # 0}, where Z = inf C
(3) If (s,t) € C, then [Z,(s,t)] C C.

If C is a stopping domain, define the set int(C) by
int(C) = {(s,t) : 3(s',t') € C with (s,t) << (s',t')},

and the set L by
L =C —nt(C).
L is the stopping line associated with C'.
10. Definition. Let Z be a stopping point. We say that C is a stopying
neighborhood of Z, if:

(1) C is a stopping domain and Z = inf C
(2) C = int(C); that is, C is the closure of int(C).

11. Proposition. Let C be a random set. Take Z = inf C' and suppose that:
(1) int(C) is dense in C
(i) Ze Con {C#0}
(iil) If (s, 1), (s',t") € C and (s,t) < (s',t'), then [(s,1), (s, )] C C
(iv) For all (s,t) e R%, {(s,t) € C} € F(s,0)-
Chen, C is a stopping neighborhood of Z.
The proof is in [3].
For an internal set A we caun transfer all the above definitions, so that we

can speak about an internal random set or about a nonanticipanting random
set, where nonanticipanting is the internal version of adapted.

We mention without proof the following result in [7], Theorem 2.11.

12. Theorem. (Keisler) A stochastic process x is progressively measurable if
and only if it hes a lifting X which is nonanticipanting.

Remark 1. If A is nonanticipanting with respect to the internal filtration
{B(s.t)} we have that {w : A(w) N R,z # 0} € B(y- In fact, A is nonantic-

ipanting means that I4(,)(8.1) = J4(w)(8,1), when w =, 4 w' which means
that

{w:(s,1) € A(w)} = [wlen) € Bst)-
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If A(-w) N R(g.g) 5é 0, let (-_S_I,f) < A(w) N R(ﬁ-i)’ Then [A(w)(_s_’,f) = =
Ta(wn(8/,t"), where w =y 4y W', which implies that {w:A(w)N R,y # 0} is
a hyperfinite union of equivalent classes [w](s' ;) and therefore, an element of
'B(Q’é)'

13. Definition. Let C : w — C(w) be an internal map from Q into the
internal subsets of T2. An internal two parameter stopping domain C is an
internal, random, nonanticipanting subset of T2, such that:

(i) ¥Z =inf C, then Z € C
(i) ¥ (s,1) €C, [Z,(s,)INT2 C C.
Let A C T2 and int(A) = {(s,£) € T?: 3(s',t') € A, (s,) << (s,1)}. Let
L = (' —int(C) be the stopping line associated with (. L and C are said to
be bounded if there exists a (s,t) € R such that C C "R, as.

14. Definition. An internal random variable Z : @ — T2 is an internal
stopping point if when (s,t) € T, {Z < (5, 1)} € B(s.p-

Note that if Z = inf C then {Z < (s,t)} = {CNR(s) # 0} € By, so that
Z is an internal stopping point.

15. Definition. Let Z be an internal stopping point. We say that C is an
internal stopping neighborhood of Z if C is an internal stopping domain and
Z =inf C.

16. Proposition. U : © — [0,1)% is an 3(s.t)-stopping point if and only if
U =°V as. for some B, )~ stopping point V.
Proof. =>) Let z: [0,1]% x 2 — {0, 1} be defined by
1 t) > U(
= { b G2V
0, otherwise.
Then z(s, t) is §(s¢)-adapted. In fact,
{w: 2(s,t)(w) =1} = {w: U(w) < (s,t)} € Fist)
and has sample paths in D2. Then, by Theorem 2.2.6 in [9], there exists an
SD?J lifting .
Z:(T') xQ—{0,1}
such that 7" = {kA't : k € *N,kA’t < 1} U {1} for some A't € T, A't ~ 0,
and for a_ll (5,1) € (T')?, Z(gy) is ‘B(ivA:t,gVA/t)-nonant_.i_cipanting. Let A(w) =
{(s,t) : Z(s,t,w) = 1}; A is nonanticipanting. Since Z is SD2J, there exists
V'(w) = inf{(s,£) : Z(s,t,w) = 1} (inf @ = (1,1)), and
{V' <(s,t)} = {w:inf{(s,8) : Z(s,t,w) = 1} < (5, 1)}
= {w s A(-w) N R(gl,y) # 0}
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Since A(w) is nonanticipanting, then {w : A(w) N Ry 1) # 0} € Bsvaretvarn-
We also have °V” = U7 a.s., so that V = V'V A’t is the desired *stopping point.

<) If U = °V" as. for some internal B, ;) stopping point V'. Then U is an
§(s.0)-stopping point for (s,t) ~ (s.t), (s,t) € [0,1]%. In fact:

0

{w: V() <°s,0} = (J{w: V() < (1) + (1/n,1/n)}

n=1

o
€ () o(Bap+/mi/m) = Fe(an)

n=1

17. Proposition. Suppose that X : T? x Q@ — *R is an internal SD*J
stochastic process, x = st(X) a.s. and U : Q — [0. 1)? is §-measurable. Then,
there is an internal A-measurable map V : Q — (T")? and a P-null set N such
that, if w ¢ N, then °V(w) = U(w), and if (s,t) = U(w) and (s,t) > V(w),
then °X(s,t,w) = x(U(w),w). IfU is an 5 ) -stopping point, V may be
chosen to be an internal B, ;) — *stopping point, and if U is a constant, then
V' may be chosen to be a constant.

Proof. Extend X to *[0,1]? x by setting
X(wv,w) = X(s,t,w), (,2) € [(3,1), (s + At,t + At)), (5,8) € T*.

Then z(U(w),w)) is §-measurable, so that there are a lifting Y, of x(U), and
U':Q — (T")?, a lifting of U. We have that °Y = st(X)(°U’) a.s., so that we

may choose a sequence {€,}ncn and n, € N such that n+1n <%, <1/n and

P( sup °lY — X(U' + (¢, €))| > 1/n> <1/n.

0<ee<e,

Let h =n,+ n and

_ 1 1
D={ke'N:P{ sup Y—X(U'+(——,—————>!21/n <1l/n}.
{ (oq-hyn TR EER

Then D D N, so that by the Overflow there exists an infinitesimal §,, € T such
that

?( sup |Y—X(U’+(e,€))|21/n)<1/n.

§,5€elen

We can extend the sequence {§,, : n € N} to *N, and we can find v € *N—-N
such that § = maxn<, 8, ~0, and § € T, such that

I—’{w: sup |Y — X(U' + (¢,€))] >0}z0,
8<e<e,
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Therefore,
P{w: sup |z(U) —°X (U + (,¢€))| > 0} =0.
8<e<en

Then N; = {w : sups<.<., °|1X (U + (¢,€)) — Y| > 0} is a P-null set.
Let V =U'+ (6,6). Then V : Q — (T")? is the desired lifting. In fact,

N=NU{w:°V#UV°Y #z(U)}
is a null set. Let w ¢ N, (s,t) =~ U(w) and (s,t) > V(w). Then

l=(U) - °X (s, )] = °|Y — X (s, 1)|

< sup |°Y — X(U' + (e,€))| =0as
8<ex0

If U is a stopping point, from Proposition 16 U’ may be chosen to be an
internal *stopping point. Therefore, V' = U’ + (6,6) is a B (44545)-"stopping
point. Similarly, if U is constant, V may be chosen to be a constant mapping.

Remark 2. Let C be an internal stopping neighborhood and Z = inf C. Then,
from the properties of internal sets and the Propositions above, we obtain that:
(1) C is a random nonanticipanting set and st(C) is a closed random pro-
gressive set
(2) Z =inf st(C) = st(inf C) € st(C)
(3) If (u,v) € st(C), [Z, (u,v)| C 5t(D)
(4) int(st(C)) = {(s,t) € st(C) : I(u,v) € st(C), (s,t) << (u,v)}, st(C) i
closed and int(st(C)) = st(C). Then it follows that st(C) is a stopping
neighborhood.

18. Proposition. A mapping U : w — U(w) C [0,1}? is a stopping neighbor-
hood of Z if and only if U = st(C) a.s. for some internal B, ) *neighborhood
C of Z, an internal *stopping point, where st(Z) = Z.

Proof. =) Define y: [0,1)2 x 2 — {0.1} by

1, (s,t) e Ulw),

LS { 0, (s1)¢ Uw).

Then y(s,t,w) = Iye)(w) = Iuw)(8,t) is a progressive and measurable pro-
cess with paths in D?, so that it has a nonanticipanting lifting

Y (T')? xQ —{0,1}.
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Let C'(w) = {(s.t) : Y(s,t,w) = 1}. Then
Icisy(w) = Icrw)(s,t) =Y (s, t,w),

so that C’ is nonanticipanting. Define Z(w) = inf C’(w).
Let
Clw) = UW{{Z, (s )INT?: (5,2) € C'(w)}-
Then:_Z_ € C and [Z, (s,1)] C C for all (s,t) € C. Since C' is nonanticipanting
then Z is a stopping point, and therefore C is an internal stopping neighbor-
hood, and °C = U.
<) Is obvious from the Remark 2.

19. Proposition. Let X : T? x Q@ — *R be a 2S-integrable internal A't-
martingale or an internal bounded variation stochastic process of class SD?,
z = st(X) a.s. and U : w — U(w) be a random set. Then, there is an internal
random set V : w — V(w) C (T")? and a P-null set N such that ifw ¢ N
then °V{(w) = U(w). If, in addition, (s,t) =~ (s,t) € U(w), {s,t) > (s,t), and
(s,1) € V(w), then °X((s,t,w) = x(s,t,w). If U is a stopping neighborhood,
V' may be chosen to be an internal stopping neighborhood. If U is a constant
set, V may be chosen to be an internal constant set.

Proof. Extend X to *[0,1]2 x Q by setting
X(u.v.w) = X(s,t,0), (x,2) € [(s.1). (s+ At,t + At)), (s, 1) € T

Define h(s,t,w) = Iyw)(s,t). Then h is a stochastic process. Let H be a
lifting of h. Then

°H(s,t,w) = h(°s,°t,w), L(T? x Q) a.s.,

by the Fubini Theorem (Keisler Theorem 1.14 (b) (i) in [7]). 1f (s,2) € T' C T2,
T’ with measure 1, then H(s,t,-) is Loeb measurable in Q and °H(s,t,w) =
h(°s,°t,w) L(f)-as.

Define U'(w) = {(s,t) € T' : H(s,t,w) = 1}. Then °U’(w) = U(w) for
almost all w. In fact, if (s,t) € U'(w), °H(s,1,w) = h(°s.°t.w) = 1. so that
(°s, °t) € U(w). Then, so °U'(w) = U(w) a.s.

Let Y be a lifting of x-h. We may choose as in Proposition 17, § ~ 0. § € T",
such that

Ny = {w: sup0°|Y — (X - H)((s,1) + (e,€))| > 0]}

§<ex
isa P-null set. Let V" = U’ + (8,6). Then
N=NMU{w:°V{w) #U(uw)V°Y #x-h}
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is a P-null set. Let w & N and (s,f) = (s,t) € U(w), (s.1) € V(w). Then

lz(s, ) = °X(s. )} = |x - h(s.t) = (°X - H)(s, )| = °|¥ (s, 2) — (X - H)(s. 1)

< sup °|Y(s,t) — (X - H)((s,0) + (6,€))| = 0.
8<ex0

Thus V" is the required set.

If U is a stopping neighborhood, then by the Proposition 18, U’ may be

chosen to be a B, ;)-*stopping neighborhood. Then V' = U’ + (§,8) also is a
B (4,¢)- “stopping neighborhood (7" is closed under addition). If U is a constant
set, V may be chosen to be an internal constant set.
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