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ON STRONGLY LAWSON AND /-LAWSON MONADS

T. RADUL(¥)

ABSTRACT. We introduce classes of strongly Lawson monads and I-Lawson
monads and show that these monads have functional representation. We

investigate the connection of these classes of monads whith the class of

Lawson monads introduced in [1].
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0. Introduction

The algebraic aspect of the theory of functors in categories of topological
spaces and continuous maps was investigated in the 60’s. It is based, mainly,
on the existence of a monad (or triple) structure in the sense of S.Eilenberg
and J.Moore [2].

Many classical constructions lead to monads: hyperspaces, spaces of proba-
bility measures, superextensions etc. There were many investigations of mon-
ads in categories of topological spaces and continuous maps(see for example
the survey [3]). But it seems that the main difficulty to obtain general results
in the theory of monads is the different nature of specific functors.

Some functional representations of the hyperspace functor were found in [4]
and [5]. There was introduced a class of Lawson monads in [1] which contains
sufficiently wide class of monads. Lawson monads have a functional representa-
tion, i.e., their functorial part FX can be naturally imbedded in REX. In this
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paper we investigate two other approaches to the problem of functional repre-
sentation of monads. We introduce the classes of strongly Lawson monads and
I-Lawson monads and compare them with the class of Lawson monads.

The paper is arranged in the following manner. In 1 we construct the monads
Vs and V; which will play in our paper the role of universal monads. In 2 we
introduce the notions of strongly Lawson monad and I-Lawson monad and show
that each strongly Lawson (I-Lawson) monad is isomorphic to some submonad
of V, (V) and in 3 we compare introduced classes with the class of Lawson
monads.

1. Universal monads

By Comp we denote the category of compact Haussdorff spaces (compacta)
and continuous maps.

We denote by I the segment [0,1]. Let X € Comp. We denote by CX the
Banach space of all continuous functions ¢ : X — R with the usual sup-norm:
llell = sup{|e(z)| | z € X} and by C(X,I) we denote the subspace of C(X)
consisting of all functions with codomain I. In what follows, all spaces and
maps are assumed to be in Comp except for R and maps in sets CX with X
compact Hausdorff.

We need some definitions concerning monads and algebras. A monad T =
(T,n, 1) in a category & consists of an endofunctor T : £ — £ and natural
transformations 7 : Idg — T (unity), u : 7?2 — T (multiplication) satisfying
the relations poTn = ponT =17 and po uT = poTp.

A natural transformation ¢ : T — T’ is called a morphism from a monad
T = (T,n, ) into amonad TV = (T", 7/, ') if pon = 1’ and Yopu = p onT’ oT.
If all the components of ¥ are monomorphisms then the monad T is called a
submonad of T/ and % is called a monad embedding.

Let T = (T,n, 1) be a monad in a category £. The pair (X,¢) is called
a T-algebra if  onX = idx and o pX = EoTE. Let (X, &), (Y,¢') be two
~ T-algebras. Amap f: X — Y is called a T-algebras morphism if 0T f = fo€.
. The following fact is well-known [6].

Lemma 1. Let F = (F, 7, 1) be a monad in a category S and X is an object of
S. Let f,g: (FX,u) — (Y,€) be F-algebras morphism with fonX = gonX =
h. Then f =g =£&o Fh.

By V;X we denote the power I(X:0). For a map ¢ € C(X,I) we denote
by m, or m(p) the corresponding projection 7, : V;X — I. Then any map
f+Z — ViX in Comp is uniquely determined by its projections f, = 7,0 f
in C(Z,I) for every ¢ € (X,I). For each map f: X — Y we define the map
Vif: ViX — ViY by the formula 7, o V; f = 70y for ¢ € C(Y,I). One can
check that V; is a covariant functor in the category Comp.
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For ¢ € CX, by max¢ (miny) we denote maxzex ¢(z) (mingex ¢(x)).
By VX we denote the product Hwec x [min ¢, max ], i.e. the set of all maps
(not necessarily continuous) v : CX — R which satisfy the condition min¢ <
v(p) < maxp for each p € CX.

For a map ¢ € CX we denote by 7, or m(y) the corresponding projection
n, : VX — R. Then any map f : Z — VX in Comp is uniquely determined
by its projections f, = 7, o f in CZ for every ¢ € C'X provided only that
[min f,, max f,] C [min ¢, max ¢] for all ¢.

Now, for each map f : X — Y define a map V,f : V,X — V.Y by the
formula 7, o V, f = 7,05 for ¢ € CY. Since [minw(p o f),max7n(p o f)] =
[ming o f,max¢ o f] C [min ¢, max |, the map V, f is well defined. One can
check that V; is a covariant functor on the category Comp.

Now we shall build the natural transformations h; : Idcomp — Vi, hs :
Idgomp — Vs and my : ViV — Vi, m, : ViV — V; of units and multiplications
which complete the functors V; and V; to the monads V; = (V;, hy,m;) and
V, = (Vs, hs, ms) correspondingly.

For a compactum X we define components ~; X and m; X (h;X and m;X)

by 7,0 h1 X = ¢ and m, om; X = w(m,) for all p € C(X,I) (mpoh X =¢ .
and m,om,X = m(m,) for all p € CX). The map m,X is well defined because

[min 7(p), max 7(p)] = [min ¢, max ¢].

Proposition 1. The triples V; = (V;, hy,m;) and V; = (V;, hs,m;) form

monads in the category Comp.

Proof. We will prove the proposition only for V;. For V; the proof is analogous.

Let us check the naturality of hy and m;. Let f : X — Y be a map. Then we |

have m,oh Y of = pof = myoroh X = m,0V;(f)oh; X and myom YoV, Vi f =
n(my) o ViVif = m(my o Vif) = M(Tpos) = Mpog omiX =m0 Vif omX for
each ¢ € C(X,I). Hence h; and m; are natural transformation.

The equality m;X o h;V; X = m;X o Vih; X = idy, x follows from the next
two equalities: 7, om;X o hiViX = mw(m,) 0 hiVi X = m, = 7, oidy, x and
mpomyX o Vi X = m(m,) o Vihi X = m(m, 0 hy X) = 7, = m, oidy, x.

The equality m;X o Vim;X = m;X o m;V; X follows from the equality
mpomiX o VimiX = m(my) o VimiX = w(m, om;X) = n(m(my)) = m(m,) o
miViX = m, ompX om;ViX for each ¢ € C(X,I). The proposition is
proved. 0

2. Classes of monads with functional representations
We introduce classes of I-Lawson and strongly Lawson monads in this section
and prove that the monads V; and V;, are universal in corresponding classes.

Definition 1. A monad F = (F,n, ) is an I-Lawson monad if there exists
amap { : FI — I such that the pair (I,£) is an F-algebra and for each
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X € Comp there exists a point-separating family of F-algebras morphisms
{fa : (FX,uX) — (1,§) | « € A}. (Let us recall that a family of maps
{fa: X — I| a € A} is called point-separating if for each pair of distinct
points 1, z2 € X there exists a € A such that f.(z1) # fa(22).)

Definition 2. A monad F = (F,n, u) is a strongly Lawson monad if for each
t1,t2 € R with t; < t; there exists a map &, 1) : Flt1,t2] — [t1,t2] such
that the pair ([t1,22], &}, ,e,)) is an F-algebra, for each ¢4, t2, t3, t4 € R with
t; <ty < t3 < t4 the natural embedding j : [t2,t3] — [t1,t4] is an F-algebras
morphism and for each X € Comp there exists a point-separating family of
F-algebras morphisms {fo : (FX, pX) — ([t1(a), t2(@)], &t (a),t2(a)) | @ € A}

Theorem 1. Let F = (F,n, 1) be a monad. Then there exists a monad em-
bedding [ : F — V; iff F is I-Lawson.

Proof. Sufficiency. Fix a map £ : F(I) — I from the definition of I-Lawson
monad. For X € Comp define amap [X : FX — V; X by the formula 7,0lX =
o Fo, for p € C(X,I).

Let us show that | = {I{X} : F — V; is a natural transformation. Let
f:+X — Y be a map. Then for each ¥ € C(Y,I) we have 7y, o VifolX =
Tyof OlX = EoF(Yof)=EoFyPoFf=nyolYoFf. Hence VifolX =Y oFf
and [ is a natural transformation.

Now we have to show that ! is a monad morphism. The equality [ on = h;
follows from the equalities 7y 0l X onX = £oFponX = fonloyp = ¢ = myoh; X
for every X € Comp and ¢ € C(X, I).

For every X € Comp and ¢ € C(X,I) we also have m,om; X olVXoFIX =
m(Tp)olVXoFIX = EoF (n(p)oFIX = EircF(m(p)olX) = EoF(Eo0F(p)) = £o
FEoFFp = EouloFFyp = {oFpouX =rn,0lXouX. Hence myolVioFl = lop
and ! is a monad morphism.

Finally we have to show that the map (X is injective. Let o, ay € FX and
ay # az. Since [ is an I-Lawson monad, there exists an F-algebras morphism
fi(FX,pX) — (1,§) for some t > 0 with f(a;) # f(az). Since f is an F-
algebras morphism, we have f =( by Lemma 1 )= £oF(fonX) = n(fonX)olX.
Hence 7(fonX)olX(a1) = f(ou) # f(az) = m(fonX)olX (az).The sufficiency
is proved.

Necessity. Let [ : F — V; be a monad embedding. Define amap ¢ : FI — I
by the formula § = w(id;) o {I. Then we have £ onl = nw(id;)oll onl =
m(id;) o hI = id; and € o uI = 7w(id;) ol o ul = w(id;) omyl oIVl o FII =
m(mw(id;)) olViI o FII = w(id; om(idf)) olViI o FII = m(id;) o Vi(mw(id;)) oIV o
FlI = w(id;) o il o F(w(id) o II) = € o F¢. Hence (I,€) is an F-algebra.

Finally one can check that for each X € Comp the family {(r, o lX) | ¢ €
CX} is a point separating family of F-algebras morphisms. The theorem is
proved. O

The proof of the following theorem is analogous to the previous one.
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Theorem 2. Let F = (F,n, 1) be a monad. Then there exists a monad em-
bedding ! : F — V, iff F is strongly Lawson.

3. Connections between the introduced classes of monads

In this section we discuse some connections between the classes of strongly
Lawson, I-Lawson and Lawson monads. We need the definition of Lawson
monad and the construction of monad V which is universal for the class of
Lawson monads. For any real ¢ > 0,we denote by I, the segment [—¢,¢]. By VX
we denote the product ] pecx el i-e. the set of all mappings (not necessarily
continuous) ¥ : CX — R which satisfy the condition —||¢|| < v(p) < [|¢]| for
each p € CX.

Now, for each map f: X — Y defineamap Vf: VX — VY by the formula
oo Vf=myz for pe CY.

For a compactum X we define components hX and mX of natural transfor-
mations h : IgomptoV and m : VV — V by m,0hX = ¢ and 7, omX = w(m,)
for all ¢ € C(X). It is proved in [1] that the triple V = (V,h,m) forms a
monad.

If ¢, to are real numbers with 0 < ¢; < ¢s, by Jff we denote the natural
embedding j;? : I, — I,.

A monad F = (F,n, p) is called Lawson if for each ¢ > 0 there exists a map
& : FI; — I such that the pair (I,&;) is an F-algebra, for each ¢;, t € R
with 0 < ¢; < t2 the embedding Jff is an F-algebras morphism and for each
X € Comp there exists a point-separating family of F-algebras morphisms
{fa: (FX,pX) = (Iya), &1(a)) | @ € A}M1].

It is proved in [1] that there exists a monad embedding [ : F — V iff F is
Lawson.

It is evidently that each strongly Lawson monad is a Lawson monad. Since
the functor V' does not preserve one-point spaces, V can not be represented as
a submonad of V. Hence V is not a strongly Lawson monad.

Now we are going to prove that V is not an I-Lawson monad. For ¢t > 0
define the map &; : VI, — I, by the formula & = n(idy,).

Lemma 2. The pair (I}, &;) is a V-algebra such that 7y, = & o V(¢) for each
X € Comp and ¢ € C(X, I).

Proof. Evidently that & o nl; = id;,. We also have & o V(&) = =(idy,) o
V(n(idy,)) = m(w(ids,)) = #(idy,) o ply = & o pl;. Hence the pair (I, &) is a
V-algebra.

Let X € Comp and ¢ € C(X, I;). It follows from Lemma 1 that it is enough
to prove that my : (VX, pX) — (I, &) is an V-algebras morphism. The next
equalities finish the proof of the lemma: &0V (my) = w(idz, ) oV (my) = 7(my) =
Ty o uX. O
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Lemma 3. Each V-algebra (I, ¢) is isomorphic to (I, &;) for some ¢ > 0.

Proof. Let us consider the set M = {f:I - I, |t>0and f:(I,§) — (I,&)
is a V-algebras morphism }. Assume that f(0) = f(1) for all f € M. Let us
consider two subsets A1, Ay C C(VI) defined as follows: A; = {ny | ¢ € CI}
and Ay = {po | € CI}.

Consider any ¢ € A; N A;. Then we have that my = ® = ¢ o ¢ for some
¥, ¢ € CI. Using the previous equality for the points from hI(I), we obtain
that ¢ = 1. We have m, = ¢ 0§ or, by Lemma 2, & o V(¢) = ¢ 0 £. Hence
¢ € M and we obtain that Ay N Ay = {7, |p € M} ={po&| ¢ € M}. Then
we have by our assumption that ®(hI(0)) = ®(hI(1)) for each ® € A; N A,
and we can define W € VVTI such that 7(my)(W) = my(hI(0)) = ¥(0) and
(Y o &)(W) = ¢ 0 £(RI(1)) = (1) for each ¥y € C'I. We obtain £(hI(0)) =
EomI(W) = £oVE(W) = &(hI(1)). This is a contradiction with the properties
of the map ¢ and our assumption is false. Hence there exists a V-algebras
morphism g : (I,£) — (I;,&:) with g(0) # g(1). We can suppose that ¢t = ||g]|.
Let us show that g is a homeomorphism.

Let a € I;. Consider v € VI such that m,(v) = a. Then we have a =
74(v) = n(idy, 0g)(v) = 7(idz,) 0 Vg(v) = & 0 Vg(v) = g o £(v). Hence g is a
surjective map.

Consider b, ¢ € I with b # c¢. For each t € I consider v, € VI defined by
vy = (1 —t)hI(0) + thI(1). We have that £(vp) = 0 and £(1) = 1. There exist
l1, la € I with &(vy,) = b and £(v;,) = c. Then we have g(b) = go&(v,) =
§ o V() = &((1 — L)hI(9(0)) + LI (g(1))) = (1 - L)g(0) + Lig(1) #
(since Iy # Iy and g(0) # 9(1)) # (1 — )g(0) + bg(1) = &((1 — L)AL (g(0)) +
lahIi(g(1))) = & o Vg(v,) = go&(v,) = g(b). Hence g is a homeomorphism
and the lemma is proved. O

Theorem 3. The monad V is not /-Lawson.

Proof. Assume the contrary. Let £ : VI — I be a map from the defini-
tion of I-Lawson monad. By Lemma 3 there exists a V-algebra isomorphism
9:(I,8) — (I, &) for some t > 0.

Consider any a1, ag € VI such that oy # ap but 7y () = Ty (az) for each
¥ € CI with ||9|| < t. There exists a V-algebras morphism f : (VI, uI) — (I,¢€)
such that f(a;) # f(az2). Then we have that go f : (VI,ul) — (I,&) is a
V-algebras morphism with g o f(ay) # go f(az). Put ¥y = go f o hI. By
Lemma 1 we have go f = {0V and & o Vip(ay) # & o Vip(asz). On the other
hand it follows from Lemma 3 that & o V(o) = my(a1) = (since ||¢| < t)
= my(a2) = & o Vii(az). Hence we obtain a contradiction and the theorem is
proved. O

Now we are going to prove that V; is not a Lawson monad, thus the classes
of Lawson and I-Lawson monads are incomparable.
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Define the map & : V;I — I by the formula £, = 7(id;). The proofs of two
following lemmas are similar to the proofs of Lemmas 2 and 3 correspondly.

Lemma 4. The pair (I, &) is a V;-algebra such that 7y = & o V;(¢) for each
X € Comp and ¢ € C(X,I).

Lemma 5. Each V;-algebra (I,€) is isomorphic to (I,&p).

Lemma 6. Let (X,¢) be a V;-algebra and f : (X, &) — (1, &) be a morphism.
Then f is a surjective map.

Proof. Consider any t € I. Choose v € VX such that 7s(v) = t. Then we
have foé(v) = & o Vf(v) = n(idf) o Vf(v) = ms(v) = t. The lemma is
proved. O

Theorem 4. The monad V; is not Lawson.

Proof. Assume the contrary. Consider a family (I3, ;) of V-algebras satisfying
the definition of a Lawson monad. Choose any ty,ty > 0 with ¢; < t3. The
algebra (Iy,,&:,) is isomorphic to (I,&) by Lemma 6. Since the inclusion
jttf : I, — I, is a V-algebras morphism, there exists a morphism from (I;,, &z, )
to (I, &) which is not onto. We obtain a contradiction with Lemma 6 and the
theorem is proved. O

The author is thankful to T.Banakh for stimulating discussions.
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