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I. Introduction

A user identification process attempts to determine who an individual 
is based on the information provided, and the verification process 

involves confirming the claimed identity of an individual. All existing 
security access methodologies consider one or more of the following 
three basic factors: Knowledge (e.g. password), Possessions (e.g. ATM 
card), and biological traits (e.g. fingerprint, voice, and retina) [1].

These methodologies are subject to be lost, theft or forgery; 
Electroencephalogram (EEG) signals are relatively new biological 
traits which are recently explored for user identification and 
verification processes due to its robustness against forgery and theft 
unlike traditional biometrics [2], [3].

There have been various proposed approaches for EEG based 
user recognition system, Palaniappan in [4] and [5] proposed to use 
EEG signals for user identification and verification, respectively. The 
authors proposed features of  Autoregressive (AR) coefficients, channel 
spectral powers, inter-hemispheric channel spectral power differences, 
linear and the non-linear complexity of inter-hemispheric channel from 
6 channels, Linear Discriminant Classifier (LDC) was used to achieve 
best identification  result (i.e., 100%) with features combined from 
Rotation, Math., Letter, Baseline tasks, whereas for verification mode 
the author proposed a two stage authentication approach with same 
features in [4] and used Manhattan distance. The best achieved result 

was obtained with False Accepted Rate (FAR) and False Rejected Rate 
(FRR) equal to zero using 6 channels belong to single task, testing 
five subjects from CSU dataset [4]. The author used multiple feature 
types, more than one channel and mental tasks to identify the subject 
or verify the input identity.  In this paper, for each proposed system one 
type of features is used, two channels and one mental task are used for 
identification and verification purposes.

Altahat et al. [4] discussed the reduction of required EEG channels 
of the EEG based verification system. Signal Power Spectral Density 
(PSD) was considered as features; the best achieved HETR was 
(14.69%) using 8 channels when the system was tested on (106) 
subjects from MMI dataset. In this paper, the energy density of DFT or 
DCT power spectra are proposed as features from two channels only.

Bajwa and Dantu [5] suggested features for EEG authentication 
system using statistical information of Daubechies (db8) wavelet 
transform sub-bands after applying the Fast Fourier Transform (FFT) 
on the EEG signal. Two types of classifiers were tested: Support Vector 
Machine (SVM) and Bayesian network; and they achieved the best 
accuracy rate (100%) when the system was tested on 7 subjects from 
CSU dataset. In this study, Daubechies (db4) with some statistical 
moments are considered as features, and the energy distribution of DFT 
spectra is considered as another feature set.

For identification mode, Yang et al. (2012) [6] proposed the use 
of wavelet transform for extracting features from raw EEG signals 
by calculating the mean and standard deviation of 5 sub-bands for 8 
channels generating a feature vector with 80 features. In this paper, 
seven types of statistical moments are calculated for six sub-bands and 
for two channels generating a feature pool that contains 84 features. 
They proposed two classifiers Support Vector Machine (SVM), 
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and k-nearest neighbor classifier to recognize the individuals. A 
comparison of two kinds of tasks was conducted: motor movement and 
motor imagery. Their study indicated that imagery tasks show better 
performance than motor movement tasks. The system was tested on 18 
subjects from the Motor/Movement Imagery dataset, the best achieved 
recognition rate when using SVM classifier was 97.4%.

Daria La Rocca et al. [7] produced an approach based on the fusion 
of spectral coherence-based connectivity; they fused features from two 
channels for a single task. They proposed Power Spectral Density (PSD) 
and Spectral Coherence Connectivity as features; they used a Mahalanobis 
distance-based classifier to classify (108) subjects from Motor Movement 
/Imagery dataset, the best achieved accuracy was (100%). 

Kumari and Vaish [8] discussed in their paper the fusion of features 
that were extracted from different mental tasks using canonical 
correlation analysis from two mental tasks and 6 channels. They 
proposed to use Empirical Mode Decomposition (EMD), Information 
Theoretic Measure (ITM) and statistical measurement to extract 
features. They classified 7 subjects of CSU dataset using Learning 
Vector Quantization Neural Network (LVQNN) and its extension 
(LVQ2); they achieved an accuracy of (96.05%). One type of features 
from two channels and single task are fused in this study to generate 
the feature vector. 

Kumari and Vaish [9] focused in their study on the comparison 
between the motor movement task and the imagery task. They proposed 
different methods of Daubechies wavelet transform and different 
energy methods as features, and then they used Artificial Neural 
Network (ANN) to classify 5 subjects from Motor Movement/ Imagery 
dataset, achieving True Accepted Rate (TAR) of (95%). In this paper, 
the Daubechies (db4) wavelet transform was considered with some of 
the statistical moments as features from two channels belonging to a 
single task, the statistical moments are applied on each sub-band, and 
the statistical distance measure was adopted for matching stage. 

Yang et al. [10] discussed the sensitivity of EEG-based recognition 
system to the type of mental tasks; they proposed Daubechies (db4) 
packet decomposition and calculated the standard deviation of each 
sub-band as features. Features from different tasks and electrodes (9 
electrodes) were fused to generate the final features vector, then they 
fed to Linear Discriminant Analysis (LDA) classifier to classify (108) 
subjects from MMI dataset. The best achieved CRR was (99%) for 
identification mode whereas they achieved a best verification result 
with Equal Error Rate (EER=4.5).  

However, to make EEG-based user identification and verification 
system applicable, fast, and accurate, the system must go through few 
and uncomplicated stages. Also, the acquisition process should be easy 
and simple so as not to disturb the user. Therefore, the least number 
of electrodes (or channels) must be attached to the user's scalp, and a 
minimum number of mental tasks must be asked to be performed by the 
user. These main problems are discussed in this study in which simple, 
fast, and different methods are proposed using only two EEG channels 
when the user is performing one mental task, in order to reduce system 
complexity while maintaining high system accuracy.

In previous work, [11], [12] and [13] the approach of extracting 
features from single EEG channels when the user is performing certain 
mental task was discussed, to keep the complexity of the recognition 
system as less as possible; competitive results were achieved. In this 
work, the approach of extracting features from two simultaneous EEG 
channels when the user is performing one task is discussed, to increase 
the discrimination ratio of the classes and enhance the performance of 
the recognition system, using the same feature types proposed in the 
above mentioned previous works. 

This paper is organized as follows: Section II presents the description 
of used datasets and the proposed methods, Section III discusses the 

experiments result, Section VI discusses previous works related to this 
paper, and Section V presents conclusions.

II. Methodology

In this study, The EEG-based identification and verification system 
is based on the approach of combined features from two simultaneous 
EGG channels through the following main stages: (i) Feature 
extraction stage which in turn comprises three steps; the first step is 
aimed to transfer the input EEG signal to either frequency domain or 
scale-shift domain, whereas the second one is aimed to extract the main 
features from the transformed signal. The third step is feature analysis 
and combination stage which is aimed to select and combine the more 
related and discriminated features from two EEG channels belong to 
the same task to prepare the final feature vector to be the input to the 
matching stage to make the final decision.

The main problem facing the automatic EEG identification and 
verification system is the suitable selection of discriminative features 
from the EEG signal. Extraction of EEG features is conducted in 
different domains such as the time domain or the frequency domain. 
The most used feature extraction methods for EEG biometric systems 
are AR modeling, Power Spectral Density (PSD), the energy of EEG 
channels and wavelet packet decomposition (WPD) [3].

A. Datasets 
Two public and free datasets which are used and described in [11] 

and [13] are also tested in this study. The first one is the Colorado 
State University dataset which is a small dataset that consists of the 
recordings of 7 healthy volunteers, collected by Keirn and Aunon [14], 
whereas the second one is Motor Movement/Imagery dataset which 
is a relatively large dataset that consists of EEG recordings of 109 
healthy volunteers; it was described in [15]. The number of samples 
in each class in CSU dataset is shown in Table I (Note: class 4 has 9 
samples for the letter-composing task because of the error occurred in 
the dataset and mentioned in [8], [14]), whereas in MMI datasets each 
class consists of 3 samples.

TABLE I. The Number of Samples for Each Class in CSU Dataset

Class No. No. of Samples Class No. No. of Samples
1 10 5 15
2 5 6 10
3 10 7 5

4 10 (only 9 for 
composing task)

B. Proposed System
The proposed methods in [12], [11], and [13] which worked under 

the approach (using a single channel and a single task) are tested in 
this study under the second approach (combining features from two 
channels belonging to the same task).

1) Proposed Features
Two separate sets of features were used for the identification and 

verification system in previous studies; these are the energy distribution 
features and statistical moments features:

a) Energy Distribution Features
This proposed set of features includes the use of transforms: (1) 

DFT which is defined by (1), or (2) DCT which is defined by (2); they 
are used to transform the input signal to the frequency domain, and 
their output is used to calculate the energy distribution. Equation (3) is 
used to calculate the energy distribution to the sliced power spectra (i.e. 
AC components) [16], [3], and [17]. 
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 (1)

 (2)

 

Where C(u) and F(u) are the uth AC coefficient of the DCT and DFT, 
respectively, and s() is the input EEG signal.

 (3)
Where T(i) represents the F(u) or C(u) coefficients array; �𝑒𝑛(𝑗) is 

the energy average of jth band; L is the number of coefficients belonging 
to each band; j=0…(N-1)/L which is the total number of bands. The 
array en() is considered the feature vector.

b) Statistical Moments Features
The second set of features is the statistical moments of Discrete 

Wavelet Transforms sub bands. Three types of DWT were proposed 
to use in previous works: Haar Wavelet Transform which is described 
by (4) and (5) [18]. Daubechies Wavelet Transform (db4) which is 
described by (6) and (7) [19], and Bi-orthogonal (Tap9/7) Transform 
which is described by (8-13) [20]: 

 (4)

 (5)
Where i=0…N/2; N is the length of the input signal; L () is the 

approximation coefficients; h () is the detailed coefficient.

 (6)

 (7)
Where, i∈{0,..,(N/2)-1}, j∈{0,..,N-3}, and k∈{0,..,3}. The scale 

values (α) and wavelets (β) are given below:
α1= (1+√3)/ (4√2),  α2= (3+√3)/ (4√2)
α3= (3-√3)/ (4√2), α4= (1-√3)/ (4√2)
β1= α4,    β2= - α3

β3= α2,    β4= - α1

The bi-orthogonal (Tap9/7) wavelet transform is applied through 
three consecutive phases: (i) split phase (ii) lifting phase which is 
described by (8-11) (iii) scaling phase which is described by (12) and 
(13) [20]:

Y(2n+1)= s(2n+1)+a[s(2n)+s(2n+1)] (8)

Y(2n)= s(2n)+b[s(2n-1)+s(2n+1)] (9)

Y(2n+1)= Y(2n+1)+c[Y(2n)+Y(2n+2)] (10)

Y(2n)= Y(2n)+d[Y(2n-1)+Y(2n+1)] (11)

Y(2n)= Y(2n) / k (12)

Y(2n+1)= -k x Y(2n) (13)

Where a= -1.586134342, b= -0.052980118, c=0.8829110762, 
d=0.4435068522, and k=1.230174105

Following equations describe the two sets of statistical moment 
which are proposed to be applied on the extracted sub-bands. 

The 1st Statistical Moments Set is described by (14) whereas a 2nd 

set is described by (16):

 (14)
Where S(i) is the ith coefficient of the sub-band, k is the sub-band 

length, and  is the mean which is determined as:

 (15)

 (16)
Where ΔS(i)=S(i)-S(i+1) for (i=0,…, p-2), and  is the average of  

ΔS(i) as described by (15), and the power n is taken (0.5, 0.75, 1, 2, 
and 3).

2) Two Simultaneous EEG Channels Feature Analysis and 
Combination 

In this stage the features from two simultaneous EEG channels when 
the user is performing a certain task are combined to make one feature 
pool, then  the pool size is reduced by applying feature analysis and 
combination by selecting the most related and discriminated features 
with lowest within distance and highest between variations to make 
a final feature vector which led to best recognition and verification 
accuracy  [21] [17].

3) Matching Stage
In this stage, the normalized Euclidean distance measure (nMSD) 

is proposed to calculate the distance between the input pattern and the 
stored templates(s) to make the final decision which either to identify 
the user identity in identification mode or to verify the claimed identity 
based on similarity distance threshold in verification mode. nMSD is 
given by (17) [22]:

 (17)
Where Si is the samples belonging to the ith class, Tj is the template 

feature vector of the jth class, and σj is the standard deviation vector of 
the jth template.

III.  Experimental Results

The experimental study of the second approach (combined features 
from two EEG channels) was conducted on both considered datasets, 
and the accuracy of verification and identification system with all 
proposed features was tested. The second adopted approach enhanced 
the performance of all suggested features for the identification mode, 
whereas, for the verification mode, the performance of some methods 
with the first approach (using one EEG channel) is better than with the 
second approach. 

A. Identification and Verification Experimental Results
Correct Recognition Rate (CRR); that is given by (18); is used to 
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check the identification system accuracy [17]. The system was partially 
trained with 67.66% of total samples of each class for CSU dataset, 
whereas for MMI dataset each class has three samples; so two samples 
are used for training in which each one is considered as a template, and 
one sample is used to test the system. 

 (18)
The Receiver Operating Characteristic (ROC) Curve is the most 

used statistical tool for describing the verification system behavior 
by plotting the False Accepted Rate (FAR)which is given by (19) and 
measures the average of accepted imposter patterns, against the False 
Rejected Rate (FRR) which is given by (20) and measures the average 
of  rejected genuine patterns, at various threshold settings to obtain the 
intersection point between FRR and FAR so the Half Total Error Rate 
(HTER) can be calculated using (20) to evaluate the performance of the 
verification system [23], [24]:

 (19)

 (20)

 (21)
So the accuracy of the verification system can be calculated using 

(22):

 (22)
Where P refers to the genuine patterns; and N refers to the imposter 

patterns [24].

1) Experimental Results of Energy Features of DFT Bands  
The result of combining the features of DFT energy distribution 

extracted from two EEG channels; are shown in this section. Tables 
II and III show some of the identification results when the method is 
applied to CSU and MMI datasets, respectively. Tables IV and V show 
some of the verification results of the both datasets. 

TABLE II. CRR of Some Tested Feature Sets Using the Energy of DFT 
Bands, CSU Dataset

# Feat. Set Full training Partial training

1 C4-P3-base 100% 98.46%

2 P3-O1-rot 100% 98.46%

3 P4-O2-rot 100% 98.46%

4 P4-O1-rot 100% 98.46%

5 C3-O1-Math 100% 98.46%

6 P3-O2-Math 100% 98.46%

7 C4-O2-base 100% 98.46%

8 C3-P4-rot 100% 98.46%

9 C3-P4-base 100% 98.46%

10 P3-C4-base 100% 98.46%

TABLE III. CRR of Some Tested Feature Sets Using the Energy of DFT 
Bands, MMI Dataset

# Feat. Set Full Training Partial Training
1 Cz-O1-Task1 100% 100%
2 Fc1-O1-Task1 100% 100%

3 Cp2-Af4-Task4 100% 100%
4 F4-P6-Task4 100% 100%
5 Fcz-O2-Task1 100% 99.69%
6 P7-Oz-Task1 100% 99.69%
7 Fc2-Iz-Task1 100% 99.69%
8 F1-P5-Task1 100% 99.69%
9 Fz-Po3-Task1 100% 99.69%
10 Fc1-Fpz-Task1 100% 99.69%

TABLE IV.  FRR, FAR, Accuracy, and HTER of Some Tested Feature 
Sets Using the Energy of DFT Bands, CSU Dataset

Feat. Set Thr. FRR FAR Acc. HTER
C4-P3-base 11.1 1.43 1.56 98.46% 1.49
P3-O1-rot 10.1 1.43 1.58 98.46% 1.51
P4-O2-rot 9.7 2.38 2.47 97.58% 2.42
P4-O1-rot 7.5 2.86 2.39 97.58% 2.62
C3-O1-Math 10.3 2.86 3.84 96.48% 3.35

TABLE V. FRR, FAR, Accuracy, and HTER Of Some Tested Feature Sets 
Using the Energy of DFT Bands, MMI Dataset

Feat. Set Thr. FRR FAR Accuracy HTER
Af4-O2-Task4 21.3 0.31 0.21 99.79% 0.26
P7-Oz-Task1 20.3 0.31 0.27 99.73% 0.29
C2-T9-Task1 24.1 0.31 0.30 99.70% 0.30
Af3-Oz-Task4 20.6 0.31 0.34 99.66% 0.32
Cz-O1-Task1 24.4 0.31 0.35 99.65% 0.33
F1-P5-Task1 22.8 0.31 0.38 99.62% 0.34
Fz-Po3-Task1 22.4 0.31 0.39 99.62% 0.35
Fc2-Iz-Task1 22.7 0.31 0.39 99.61% 0.35
Fpz-P3-Task4 21.2 0.31 0.42 99.58% 0.36
Fc1-O1-Task1 25.1 0.31 0.44 99.56% 0.38

2) Experimental Results of Energy Features of DCT Bands  
Tables VI and VII show some of the achieved identification results 

for the DCT bands energy distribution features when the proposed 
system is applied on both datasets, whereas Tables VIII and IX show 
some the achieved verification results. 

TABLE VI. CRR of Some Tested Feature Sets Using the Energy of DCT 
Bands, CSU Dataset

# Feat. Set Full training Partial training

1 C3-P4-Rot 100% 100%

2 C4-O2-Base 100% 98.46%

3 P3-O1-Math 100% 98.46%

4 P3-O2-Math 100% 98.46%

5 P4-O2-Lett 100% 98.44%

6 C4-O2-Rot 100% 98.44%

7 P3-P4-Rot 100% 98.44%

8 P3-O1-Rot 100% 98.44%

9 P3-O2-Rot 100% 98.44%

10 P4-O2-Rot 100% 98.44%



- 58 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 5

TABLE VII. CRR of Some Tested Feature Sets Using the Energy of DCT 
Bands, MMI Dataset

# Feat. Set Full training Partial training
1 Afz-P7-Task4 100% 100%
2 F7-O2-Task4 100% 100%
3 Fc6-P4-Task4 100% 100%
4 F7-P6-Task4 100% 100%
5 Fp2-P6-Task4 100% 100%
6 Cp1-Iz-Task4 100% 100%
7 Cpz-Oz-Task4 100% 100%
8 Fcz-F6-Task4 100% 99.69%
9 C1-Af3-Task4 100% 99.69%
10 Cz-Fp1-Task4 100% 99.69%

TABLE VIII. FRR, FAR, Accuracy, and HTER Using the Energy of DCT 
Bands, CSU Dataset

Feat. Set Thr. FRR FAR Accuracy HTER
P3-O2-Math 9.6 0.95 1.12 98.90 1.03
C3-P4-Rot 17.0 2.38 2.39 97.58 2.39
P4-O2-Lett 17.1 2.38 2.39 97.58 2.39
C4-O2-Base 9.7 2.86 2.63 97.36 2.74
P3-O1-Math 9.3 2.38 2.73 97.36 2.55

TABLE IX. FRR, FAR, Accuracy, and HTER of the Energy of Sliced 
DCT Spectra Features, MMI Dataset

Feat. Set Thr. FRR FAR Accuracy HTER

Cp1-Iz-Task4 19.6 0.31 0.22 99.78% 0.26
Fp2-T9-Task4 19.3 0.31 0.25 99.75% 0.28
Cpz-Oz-Task4 18.8 0.31 0.25 99.74% 0.28
T7-O2-Task1 19.2 0.31 0.28 99.72% 0.29
Fz-Po7-Task1 20.0 0.31 0.30 99.70% 0.30
Fp1-Pz-Task4 20.1 0.31 0.31 99.69% 0.31
Po4-Iz-Task1 19.2 0.31 0.31 99.69% 0.31
Cpz-Iz-Task1 19.8 0.31 0.31 99.69% 0.31
F7-O2-Task4 20.3 0.31 0.36 99.64% 0.33
Af3-O2-Task1 20.1 0.31 0.36 99.64% 0.33

3) Experimental Results of Statistical Moments Features of 
Haar Wavelet Transform

Tables X and XI present the results of some conducted tests of the 
introduced identification system using Haar wavelet transform with the 
2nd set of statistical moments that is applied to CSU and MMI datasets, 
respectively. Tables XII and XIII show some conducted verification 
results on both datasets.

TABLE X. CRR of Some Tested Feature Sets Using the Statistical 
Moments of HWT Bands, CSU Dataset

# Feat. Set Full training Partial training
1 C3-O1-Rot 100% 100%
2 C4-O1-Rot 100% 100%
3 C4-O2-Rot 100% 100%
4 P3-O2-Rot 100% 100%
5 C3-O1-Base 100% 98.46%
6 C3-O2-Base 100% 98.46%
7 C4-O1-Base 100% 98.46%
8 P4-O2-Rot 100% 98.46%
9 P4-O2-Math 100% 98.46%
10 C3-O2-Rot 100% 98.46%

TABLE XI. CRR of Some Tested Feature Sets Using the 2nd Statistical 
Moments Set of HWT Bands, MMI Dataset

# Feat. Set Full training Partial training
1 F7- O1 -Task4 100% 99.39%
2 Fz-Po4 -Task4 100% 99.08%
3 F6-Oz -Task4 100% 99.08%
4 Fc2-F8-Task4 100% 99.39%
5 F4-Po4-Task4 100% 99.08%
6 Cz-Af4-Task4 100% 98.78%
7 Afz-O1-Task4 100% 98.78%
8 Fp2-Po8-Task4 100% 98.47%
9 Fp1-Oz-Task4 100% 98.78%
10 Cp1-F8-Task4 100% 98.47%

TABLE XII. FRR, FAR, Accuracy and HTER Using the 2nd Statistical 
Moments Set of HWT Bands, CSU Dataset

Feat. Set Thr. FRR FAR Accuracy HTER
C3-O1-Rot 10.2 1.4 1.3 98.7 1.4
C4-O1-Rot 12.1 1.4 1.6 98.5 1.5
C4-O2-Rot 10.0 1.4 1.6 98.5 1.5
P3-O2-Rot 10.0 2.9 2.9 97.4 2.9

C3-O1-Base 11.2 2.4 2.4 97.6 2.4

TABLE XIII. FRR, FAR, Accuracy and HTER Using the 2nd Statistical 
Moments Set of HWT Bands, MMI Dataset

Feat. Set Thr. FRR FAR Accuracy HTER
F6-Poz-Task4 19.8 0.31 0.41 99.59% 0.36
F7-O1 -Task4 15.4 0.31 0.45 99.55% 0.38
Fp1-Iz-Task4 22.3 0.31 0.50 99.51% 0.40
Fp1-Oz-Task4 18.6 0.61 0.49 99.51% 0.55
Fp2-Po8-Task4 17.4 0.61 0.51 99.49% 0.56
Fz-Po4-Task4 20.8 0.61 0.53 99.47% 0.57
Afz-O1-Task4 18.1 0.61 0.65 99.35% 0.63
Cp1-F8-Task4 19.6 0.61 0.66 99.34% 0.63
F6-P2-Task4 19.6 0.61 0.66 99.34% 0.63
Fc2-Iz-Task4 20.5 0.61 0.77 99.23% 0.69

4) Experimental Results of Statistical Moments Features of 
Daubechies (db4) Wavelet transform

Tables XIV and XV show some of the conducted tests results of 
the identification system based on Daubechies wavelet transform (db4) 
with the 2nd set of statistical moments on CSU dataset and 1st statistical 
moments on MMI dataset. Tables XVI and XVII show some conducted 
verification results on both datasets.

TABLE XIV. CRR of Some Tested Feature Sets Using the Statistical 
Moments of db4 Bands, CSU Dataset

# Feat. Set Full training Partial training
1 C4-O1-Rot 100% 100%
2 C4-O2-Rot 100% 100%
3 P3-P4-Rot 100% 100%
4 P4-O1-Rot 100% 100%
5 P4-O2-Rot 100% 100%
6 C3-O2-Lett 100% 98.44%
7 C3-O1-Base 100% 98.46%
8 P4-O2-Base 100% 98.46%
9 C3-O1-Rot 100% 98.46%
10 P3-O1-Rot 100% 98.46%
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TABLE XV. CRR of Some Tested Feature Sets Using the Statistical 
Moments of db4 Bands, MMI Dataset

# Feat. Set Full training Partial training
1 Af8-P3-Task4 100% 100%
2 Af8-Poz-Task4 100% 100%
3 Fp1-Po4-Task4 100% 99.69%
4 Fpz-Po4-Task4 100% 99.69%
5 Af8C56-Task4 100% 99.69%
6 T10-C48-Task4 100% 99.69%
7 Af8-Po4-Task4 100% 99.69%
8 Af8-Iz-Task4 100% 99.69%
9 Fc3-O1-Task4 100% 99.39%
10 Fcz-Po4-Task4 100% 99.39%

TABLE XVI. FRR, FAR, Accuracy and HTER Using the 2nd Statistical 
Moments Set of db4 Bands, CSU Dataset

Feat. Set Thr. FRR FAR Accuracy HTER
C3-O2-Lett 6.9 0.95 1.04 98.88 1.00
C4-O2-Rot 8.0 1.43 1.04 0.99 1.23
C4-O1-Rot 10.6 1.43 1.32 98.68 1.38
P4-O2-Rot 10.3 1.43 1.35 98.68 1.39

C3-O1-Base 11.5 1.43 1.58 98.46 1.51

TABLE XVII. FRR, FAR, Accuracy and HTER Using the 2nd Statistical 
Moments Set of db4 Bands, CSU Dataset

Feat. Set Thr. FRR FAR Accuracy HTER
Af8-Poz-Task4 23.1 0.31 0.31 99.69% 0.31
Af8-Po4-Task4 18 0.31 0.38 99.62% 0.34
Fp2-P8-Task4 19.4 0.31 0.38 99.62% 0.34
F2-Iz-Task1 24.6 0.31 0.37 99.63% 0.34

F7-Po4-Task4 19.1 0.31 0.44 99.56% 0.37
Fp1-Po4-Task4 22.5 0.31 0.49 99.51% 0.4
Af8-Iz-Task4 19.6 0.31 0.49 99.51% 0.4

Fcz-Po4-Task4 19.8 0.31 0.54 99.46% 0.42
Af3-Po3-Task4 22 0.61 0.47 99.53% 0.54
Fpz-Po4-Task4 22 0.61 0.48 99.52% 0.55

5) Experimental Results of Statistical Moments Features of TAP 
9/7 Wavelet Transform

The best identification results of the system based on Statistical 
Moments of Tap9/7 Sub-bands are in Tables XVIII and XIX, whereas 
for verification system in Tables XX and XXI; for both datasets.

TABLE XVIII. CRR of Some Tested Feature Sets Using the Statistical 
Moments of Tap9/7 Bands, CSU Dataset

# Feat. Set Full training Partial training

1 P4-O2-Rot 100% 100%

2 P3-O2-Rot 100% 100%

3 C3-O2-Base 100% 100%

4 C3-O2-Rot 100% 100%

5 P3-O1-Rot 100% 100%

6 C4-O1-Rot 100% 98.46%

7 P4-O1-Rot 100% 98.46%

8 P4-O1-Math 100% 98.46%

9 C3-O2-Math 100% 98.46%

10 C3-P4-Rot 100% 98.46%

TABLE XIX. CRR of Some Tested Feature Sets Using the Statistical 
Moments of Tap9/7 Bands, MMI Dataset

# Feat. Set Full training Partial training
1 T10-P4-Task4 100% 100%
2 Fc1-Af8-Task4 100% 100%
3 Fp1-O2-Task4 100% 99.69%
4 Fpz-Po8-Task4 100% 99.69%
5 Fc3-P8-Task4 100% 99.69%
6 Fcz-O1-Task4 100% 99.69%
7 Fc2-Po7-Task4 100% 99.69%
8 C6-Po8-Task4 100% 99.69%
9 Cp3-Af8-Task4 100% 99.69%
10 Cp6-Af4-Task4 100% 99.69%

TABLE XX. FRR, FAR, Accuracy and HTER Using the 2nd Statistical 
Moments Set of Tap9/7 Bands, CSU Dataset

Feat. Set Thr. FRR FAR Accuracy HTER
C4-O1-Rot 15.8 0.95 0.81 99.12 0.88
P4-O1-Rot 8.2 0.95 1.30 98.68 1.13
P4-O2-Rot 12.4 1.43 1.23 98.68 1.33
P3-O2-Rot 10.2 1.43 1.30 98.68 1.37

P4-O1-Math 8.1 1.43 1.52 98.46 1.47

TABLE XXI. FRR, FAR, Accuracy and HTER Using the 2nd Statistical 
Moments Set of Tap9/7 Bands, MMI Dataset

Feat. Set Thr. FRR FAR Accuracy HTER
F6-Oz-Task4 22.2 0.31 0.24 99.76% 0.27

Fpz-Po8-Task4 17.9 0.31 0.30 99.70% 0.3
Cp3-Af8-Task4 19.5 0.31 0.31 99.69% 0.31
Fp1-O2-Task4 17.7 0.31 0.36 99.64% 0.33
Po4-Iz-Task1 22.4 0.31 0.37 99.63% 0.34
C6-Po8-Task4 18.8 0.31 0.38 99.62% 0.34
Af8-Po8-Task4 19.2 0.31 0.39 99.61% 0.35
Fcz-O1-Task4 20.3 0.31 0.40 99.60% 0.35
Fc2-Po7-Task4 18.3 0.31 0.42 99.58% 0.36
Af8-Poz-Task4 20.1 0.31 0.46 99.55% 0.38

B. Execution Time
The specification of the computer lap top that was used in the 

conducted tests is Intel® Core ™ i5-2450M CPU with (4GB) RAM, 
the operating system is windows7 (64bit), and the development 
programming language is Microsoft Visual C#. Table XXII shows 
the average elapsed time, (in milliseconds) of the proposed methods 
on both datasets for one signal only. Taking into consideration the 
recording time for each sample of CSU dataset is (10 sec) with the 
sampling rate (250 Hz), and the recoding time for MMI dataset is (1 
minute) with the sampling rate (160 Hz).

TABLE XXII. The Average Processing Time Results (in msec) for CSU 
and MMI Datasets

CSU dataset MMI dataset

Proposed 
Method

Feature 
Extraction 

Time 

Proposed 
Method

Feature 
Extraction 

Time 
DFT 13.359 DFT 217.364

DCT 22.0991 DCT 323.864

HWT 1.7495 HWT 3.559

Daub4 0.95797 Daub4 3.389

Tap9/7 1.007 Tap9/7 3.719
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IV.  Comparison With Related Works

In this section, the comparison between the two adopted approaches 
(using two EEG channels and using one EEG channel) and the 
comparison with the other recent related works are shown. Tables 
XXIII and XXIV show the comparisons of the results of the adopted (as 
2nd) approach in this paper with the (1st) adopted approach in previously 
proposed work. The second approach combines the features from two 
channels belonging to the same task, so this approach also keep the 
complexity of the system low because the user is asked to perform only 
one mental task in the acquisition stage.

The comparison of the findings of this work and other related works 
for identification and verification modes are shown in Tables XXV and 
XXVI.

TABLE XXIII. The Results of the Proposed Methods Under the Two 
Approaches, Identification Mode

Proposed 
Method

First approach Second approach
Full 

training
Partial 
training

Full 
training

Partial 
training

CSU dataset
DFT 100% 100% 100% 98.46
DCT 100% 100% 100% 100%
HWT 100% 98.46% 100% 100%
Db4 100% 100% 100% 100%

Tap9/7 100% 98.46% 100% 100%
MMI dataset

DFT 100% 99.08% 100% 100%
DCT 100% 99.08% 100% 100%
HWT 100% 97.25% 100% 99.39%
Db4 100% 97.55% 100% 100%

Tap9/7 100% 98.78% 100% 100%

TABLE XXIV. The Results of the Proposed Methods Under the Two 
Approaches, Verification Mode

Proposed 
Method

First approach Second approach
Accuracy HTER Accuracy HTER

CSU dataset
DFT 99.56% 0.26 98.46% 1.49
DCT 99.34% 0.4 98.90% 1.03
HWT 98.64% 0.95 98.70% 1.4
Db4 97.58% 2.39 98.88% 1

Tap9/7 99.34% 0.39 99.12% 0.88
MMI dataset

DFT 99.69% 0.16 99.79% 0.26
DCT 99.61% 0.35 99.78% 0.26
HWT 99.37% 0.62 99.59% 0.36
Db4 99.33% 0.64 99.69% 0.31

Tap9/7 99.40% 0.61 99.76% 0.27

V. Conclusions And Future Work

In this paper an extended approach to extract features from user 
EEG signal is adopted, The features which are proposed in previously 
conducted studies are tested in this study to check the discriminative 
degree of this features when they are combined from two simulated  
EEG channels to generate one feature pool. This approach has improved 
the performance of the identification system, but for the verification 
system the performance of the first approach for most types of features 
is better than the second approach. 

This approach also keeps the computational complexity low, and the 
user performs a single task to take his EEG features. After completing 
this study, the findings showed that one or two EEG channels are 
enough to extract discriminate features and recognize the individuals 
when the proposed methods were tested on the available datasets.  

Wider Daubechies wavelet methods such as (db8, db10, ..) and a 
new type of statistical moments are recommended as new features for 
EEG based user identification and verification system.

TABLE XXV. Comparisons with Other Published Works on CSU Dataset and MMI Dataset Based on the Number of Subjects, the Number of used 
Channels and Tasks, Identification

CSU dataset

Author #subject #Ch. #Task # Features Accuracy (%)

[25] 5 6 4 4 CRR=100%

[8] 7 6 2 3 CRR=96.05%

Proposed DFT 7 2 1 1 CRR=100%

Proposed DCT 7 2 1 1 CRR=100%

Proposed HWT 7 2 1 1 CRR=100%

Proposed Daub4 7 2 1 1 CRR=100%

Proposed Tap9/7 7 2 1 1 CRR=100%

Motor Movement/Imagery dataset

[6] 18 8 1 2 CRR=97.4%

[7] 108 2 1 1 CRR=100%

[9] 5 1 1 for train 1for test 4 TAR=95%

[10] 108 9 4 1 CRR=99%

Proposed DFT 109 2 1 1 CRR=100%

Proposed DCT 109 2 1 1 CRR=100%

Proposed HWT 109 2 1 1 CRR=100%

Proposed Db4 109 2 1 1 CRR=100%

Proposed Tap9/7 109 2 1 1 CRR=100%
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