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ABSTRACT
This article is devoted to develop a numerical approximation called Taylor 
minimization method for initial and boundary value fractional Pantograph 
equations, which governs the modelling of  the train system, with neutral and 
multi-term delays. Taylor optimization technique is basically composed of  
truncated Taylor series approximation of  unknown function while employment of  
procedure is accompanied by an optimization strategy that is simulated annealing 
for carrying out the learning phase of  unknown Taylor series coefficients. The 
proposed technique is implemented on various models of  Pantograph equations 
to study the applicability and effectiveness of  the planned scheme while error 
analysis and comparison with previous methods are performed to validate the 
results. To measure the capability of  convergence the data for 100 numbers of  
independent runs is demonstrated in the form of  pictorial presentation.

KEYWORDS
Taylor series, Fractional Pantograph equation, Simulated annealing, Proportional 
delays.
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1. INTRODUCTION
Several physical phenomena in diverse research areas are modeled in the form 
of  fractional order differential or integro differential equations. For instance, to 
describe the viscid interactions in human cancellous bone by using Biot’s theory 
(Sebaa, et al., 2006), study of  cardiac tissue by using electrode interface (Magin 
& Ovadia, 2008), for comprehensive study of  vestibule-ocular reflex model 
(Robinson, 1981), modeling of  phenomena in fluid mechanics (Kulish & Lage, 
2002) and introducing fractional order impedance in electric circuits (LeMahute 
& Crepy, 1983; Kaplan, Gray & Liu, 1987). Due to the diverse applications of  
fractional calculus in real life phenomena, numerous numerical techniques have 
been developed to solve the fractional order differential and integral equations 
(Arikoglu & Ozkol, 2007; Diethelm, Ford & Freed, 2002; Bai & Lü, 2005; 
Agarwal, Lakshmikantham & Nieto, 2010).

In this effort, we are developing Taylor minimization method (TMM) based on 
Taylor series. Taylor series is a useful tool for attaining the approximate solution 
of  differential equations on a continuous domain. Various methods have been 
developed to investigate the solution of  differential equations (DEs) by Taylor series. 
A computational scheme for converting Partial differential equations (PDEs) into 
algebraic equations based on Taylor series expansion was developed in (Groza & 
Razzaghi, 2013). Singular boundary value problems with exponential nonlinearity 
were solved effectively by using the Taylor series method (Chang, 2014). Some other 
notable methods of  obtaining the solution of  delay systems by employing Taylor 
series can be seen in (Marzban & Razzaghi, 2006; Razzaghi & Razzaghi, 1989). 
But here we are using optimization strategy i.e. simulated annealing (SA) to solve 
the minimization problem formed by Taylor series approximation of  fractional 
differential equations (FDEs). Simulated annealing is a meta heuristic algorithm 
inspired by the cooling schedule of  metals. Advantage of  using this method is its 
strong ability of  escaping from local minima and acquiring global minima with 
efficiency (Kirkpatrick, Gelatt & Vecchi, 1983). To demonstrate the applicability 
and efficiency of  method simulation is carried out for fractional pantograph 
equation in (Rahimkhani, Ordokhani & Babolian, 2018).
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Dα f (t) = f (t)+ fn(t)D
αn f (qnt)

n=1

l

∑ ,        m−1<α ≤ m,  m ∈Ν, t ∈ 0,h⎡⎣ ⎤⎦  
    

(1)

subject to the initial conditions.

f i( ) 0( ) = βi ,      i = 0,1,...,m−1

It is a functional differential equation with proportional delays. Due to its vast 
applications in science and engineering it took the attention of  many researchers 
to propose numerous schemes for the simulation of  Pantograph equation 
(Rahimkhani, et al., 2018; Iqbal, Saeed & Mohyud-Din, 2015; Raja, 2014; 
Bharawy, Al-Zahrani, Alhamed & Baleanu, 2014; Saadatmandi & Dehghan, 
2009; Isah, Phang & Phang, 2017; Syam & Jaradat, 2017).

In the proposed scheme, the unknown function is approximated in terms of  
Taylor series which will be transformed into a trial solution by imposing initial and 
boundary conditions. The same procedure will be adopted for delay terms. Later 
required derivatives of  trial solution, delay trial solution and a trial solution will be 
substituted in the differential equation to calculate MSE or fitness function with 
the help of  trial points. The substitution will give rise to a minimization problem 
that was solved by simulated annealing for unknown Taylor series coefficients. 
Later the coefficients will be utilized to find the Taylor series of  unknown function 
at the domain 0,h⎡⎣ ⎤⎦ . To demonstrate the efficiency of  employed scheme various 
numerical experiments of  fractional pantograph equations have been discussed 
for error analysis and numerical simulation.

2. PRELIMINARIES
In the following section we are introducing some basic definitions regarding 
fractional calculus and Taylor series.
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2.1. DEFINITION No1

If  a function ϕ  is defined on interval α ,β⎡⎣ ⎤⎦  and holds the following conditions 

•	 (ϕ (k−1) ) is continuous on α ,β⎡⎣ ⎤⎦  

•	 ϕ k exist on α ,β⎤⎦ ⎡⎣

and x ∈ α , β⎡⎣ ⎤⎦  then from (Malik & Arora, 1992)

ϕ x( ) = ϕ µ( ) α( ) x −α( ) µ( )

µ  !µ=0

k−1

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+
x −α( ) k( ) 1−θ( )k− p
p k −1( )!⎡⎣ ⎤⎦

ϕ k( ) c( )
           

(2)

where 0 <θ <1, p > 0  and α < c < x . For α = 0  and truncated to k th term 
Eq. (2) can be expressed as 

ϕ x( ) = ϕ µ( ) 0( )  x( ) µ( )

µ  !µ=0

k−1

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

           
(3)

with Lagrange’s form of  the remainder after k  terms as

Rn =
x( )k
k  !

ϕ k( ) θ  x( )
           

(4)

2.2. DEFINITION No 2
Fractional derivative in sense of  Caputo for the order κ ≥ 0  can be described as 
in (Heydari, et al., 2015)

Dκ f t( ) = 1
Γ m−κ( ) t − s( )m−κ −1

f n( ) s( )  ds,   
0

t

∫ m−1<κ < m,  m ∈Ν.

with the fulfillment of  following properties

•	 Dκ Iκ f t( ) = f t( ) ,

•	
IκDκ f t( ) = f t( ) − f j( ) 0( ) x

j

j !j=0

m−1

∑ ,

•	 Dκc = 0 , where c is a constant
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•	 Dκ tβ( ) =
0,                                   κ ∈Ν0 ,  β <κ

Γ β +1( )
Γ β +1−κ( ) t

β−κ ,         otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

3. TAYLOR MINIMIZATION METHOD

3.1. TAYLOR SERIES APPROXIMATION

The Taylor series expansion of  an analytic function f (t)  about t = 0  upto η  
terms can be given as:

f t( ) = d k f t( )
dtkk=0

η

∑
t=0

t k

k  !           (2)

f t( ) = f 0( ) + t ′f 0( ) + t
2

2 !
 ′′f 0( )+ d k f t( )

dtkk=3

η

∑
t=0

t k

k  !           (3)

while Taylor series expansion of  an analytical function with delay can be 
expressed as:

f (qt) =
d k f qt( )
dtkk=0

η

∑
t=0

t k

k  !           (4)
 

f qt( ) = f 0( ) + qt ′f 0( ) + q
2t2

2 !
 ′′f 0( )+ d k f t( )

dtkk=3

η

∑
t=0

qkt k

k  !           (5)
	 		

				           
the generalized fractional pantograph equation can be written as:

Dα f (t) = f (t)+ fn(t)D
αn f (qnt)

n=1

l

∑ ,        m−1<α ≤ m,  m ∈Ν, t ∈ 0,h⎡⎣ ⎤⎦  
  
(6)

Subject to the initial conditions and boundary conditions:

f i( ) 0( ) = βi ,      i = 0,1,...,m−1           (7)

f i( ) α( ) = α i ,      i = 0,1,...,m−1          (8)
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Now generate the trial solution by substituting values from Eq. (7) and Eq. (8) in 
Eq. (3) and Eq. (5). For 0i = in Eq. (3) and 1i = in Eq.(5):

f t( ) = β0 + t ′f 0( )  + t
2

2 !
 ′′f 0( )+ d k f t( )

dtkk=3

η

∑
t=0

t k

k  !           (9)

for introducing boundary conditions put t = α  in Eq.(9):

f α( ) = β0 +α  ′f 0( ) + α 2

2 !
 ′′f 0( )+ d k f t( )

dtkk=3

η

∑
t=0

α k

k  !           (10)

substituting values from Eq.(8) we get:

α1 = β0 +α  ′f 0( ) + α 2

2 !
 ′′f 0( )+ d k f t( )

dtkk=3

η

∑
t=0

α k

k  !           (11)

solve Eq. (11)
 

′f 0( )  and substitute it in Eq. (9) we get:

f t( ) = β0 +
t
α

 α1 − β0 −
α 2

2 !
 ′′f 0( )− d k f t( )

dtkk=3

η

∑
t=0

α k

k  !

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ t

2

2 !
′′f 0( )  + d k f t( )

dtkk=3

η

∑
t=0

t k

k  !      (12)

Eq. (9) will be trial solution for initial value problem while Eq. (12) will be trial 
solution for boundary value problem. For obtaining delay trial solution same 
procedure will be adopted for Eq. (5). Substitute the values of  trial solution, delay 
trial solution and their required derivatives by definition No 2 in Eq.(6) and MSE 
as:

MSE = Dα f (t j )− f (t j )− fn(t j )D
αn f (qnt j )

n=1

l

∑⎛
⎝⎜

⎞
⎠⎟j=0

γ

∑
2

,m−1<α ≤ m,  m ∈Ν, t ∈ 0,h⎡⎣ ⎤⎦        (13)

After discretizing the domain the differential equation has been transformed into 
a minimization problem that can be solved by simulated annealing to obtain the 
values of  unknown f

i( ) 0( )  that can be substituted in Eq. (1) to get the required 
solution. The procedure can be further analyzed through Figure 1.

3.2.  SIMULATED ANNEALING

Process of  Simulated annealing is a generic probabilistic meta-algorithm that is 
an advancement of  Genetic algorithms to improve the convergence of  procedure 
and to avoid local optima with simple applicability. Here the objective function 
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is the MSE of  fractional Pantograph delay differential equation. Following 
parameters are marked noteworthy in the implication of  procedure.

TK  represents the value of  temperature at the end of  each iteration 
while T0 = 1 . At the end of  each iteration value of  T  will be 
changed by the following way TK = χ  TK−1, χ ∈ 0.8,0.99⎡⎣ ⎤⎦ ,k > 0

Pa = e
−ρ∇δ
T ,                            ∇δ >1

1 ,                                    ∇δ <1

⎧
⎨
⎪

⎩⎪
, represents the

probability of  acceptance.

∇δ  is the difference between solution errors of  consecutive 
perturbations.

ρ = 1
kb
,
 
where kb  is the Boltzman constant. Boltzman constant is

commonly replaced by 1 from the probability of  acceptance when 
there is no need to cope with different materials.

Simulated annealing algorithm is initiated by a random solution guess and a high 
temperature usually 1. The energy of  the system is calculated at random guess 
and then again at random neighboring solution. The neighbouring solution is 
accepted using the probability returned by the above formula by comparing it 
with a random number ranged between 0 and 1. The temperature is declined each 
time, as described above, after processing a certain number of  iterations at each 
temperature value. This is repeated until the system freezes into a steady state. 
With a declining temperature value of  the system, the probability of  accepting a 
worse move is also reduced. Procedure is performed here by  Mathematica 11 with 
default options provided by the software. 
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Figure 1. Flow chart of the algorithm.

4. RESIDUAL ERROR
For FDEs the exact solution is generally not known so to demonstrate the 
efficiency of  the proposed technique here we are analyzing the error of  
numerical experiments by the following procedure. Since the approximated 
solution of  fractional pantograph equation can be given by Eq. (3) substituting 
the obtained values of  f i( ) 0( ) , f t( ) ,Dα f (t) and Dαk f (t) for k = 1,2,3,...,l  in 
generalized fractional pantograph equation the obtained result at t ∈ 0,h⎡⎣ ⎤⎦  will 
be approximately equal to zero that can be represented by:
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Er t( ) = Dα f (t)− f (t)− fn(t)D
αn f (qnt)

n=1

l

∑ ≅ 0        (14)

While f t( )  is the obtained approximated continuous solution by TMM.

	
Er ti( )→ 0  as the value of  MSE obtained by TMM  is sufficiently small enough.

The error analysis for each numerical experiment will be performed by the above 
equation. The convergence of  TMM is completely dependent on the convergence 
of  simulated annealing. If  MSE→ 0  as j→γ  the Eq. (2) will converge.

5. NUMERICAL EXPERIMENTS:
Experiment No 1

Consider the following linear fractional Pantograph equation with delay,

Dλ f t( ) = 3
4
f t( ) + f 1

2
t

⎛
⎝⎜

⎞
⎠⎟
− t2 + 2,        1< λ ≤ 2,

       f 0( ) = 0,    ′f 0( ) = 0

By applying the TMM on the above linear pantograph fractional differential 
model, for λ =  2 and  k = 3, unknown coefficients are found to be 
2 and 3.95×10−17. By substituting these values in trial solution the required 
solution is found to be f t( ) = t2 + 0.67 ×10−16 t3  which is approximately equal 
to the true solution f t( ) = t2 . Figure 2 is exhibiting solution of  experiment No 
1 for λ =  1.7,1.8,1.9,2  and exact solution for λ =  2 . Final values of  Taylor 
coefficients can be visualized in pictorial form for different fractional order 
derivatives in Figure 3 while residual error according to section 4 and MSE 
for different fractional values of  derivatives on the domain of  [0,10] can be 
grasped through Table 1. For ascertaining the efficacy and power of  offered 
scheme, data of  100 numbers of  independent runs of  the algorithm by altering 
the perturbation scale can be envisioned through Figure 4. 
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Figure 2. Solution of Example 1 at different values of λ .

Figure 3. Final values of Unknown Taylor coefficients, for example, No 1 for k = 15 .
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Figure 4. Data of 100 number of Independent runs of example No 1 for λ = 2 .

Table 1. Residual error for example No 1.

t
Residual 

error 
Residual 

error 
Residual 

error 

λ = 1.9 λ = 1.8 λ = 1.7
1 1.4885×10-5 3.6715×10-5 1.1074×10-4

2 7.4028×10-5 1.9065×10-4 4.3967×10-4

3 2.9014×10-5 7.4914×10-5 2.0889×10-4

4 2.0656×10-5 5.3673×10-5 1.5509×10-4

5 2.1182×10-5 5.9538×10-5 1.5409×10-4

6 2.4591×10-5 6.8656×10-5 1.5993×10-4

7 2.5200×10-5 7.2173×10-5 1.5883×10-4

8 2.0192×10-5 5.8111×10-5 1.3101×10-4

9 2.2069×10-5 6.8332×10-5 1.2009×10-4

10 7.3279×10-7 2.3416×10-5 3.7734×10-6

MSE 1.9065×10-10 1.4138×10-9 6.6420×10-9

Experiment No 2

Consider the following nonlinear fractional pantograph equation with delay:

Dλ f t( ) = 1− 2 f 2 1
2
t

⎛
⎝⎜

⎞
⎠⎟

,        1< λ ≤ 2,
                  

f 0( ) = 1,    ′f 0( ) = 0.
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Simulation of  above nonlinear Pantograph equation by TMM with 
λ =  2 and  k = 12  gives the following series solution. 

f t( ) = 1− 0.500004t2 − 0.00001851t3 + 0.042t4 − 0.00006t5 − 0.001t6 +…
while the true solution of  the above equation is given by cos t( ) .Figure 5 
demonstrates the graphical comparison of  true and TMM solution for λ =  2  
at [0,6] Furthermore, solution at fractional values of  λ  can also be visualized 
in Figure 5. Table 2 is displaying the comparison of  the proposed scheme with 
some recent studies of  Bernoulli and Laquerre wavelets methods while Table 3 is 
demonstrating the residual error that has been described through Eq. 10, for the 
above differential equation. Last row of  Table 3 is reserved to represent the final 
values of  MSE obtained after the learning process of  unknown Taylor coefficients 
however corresponding to the MSE final values of  unknown taylor coefficients 
can be envisioned in Figure 6. Data for 100 numbers of  independent runs of  
algorithm for above delay differential equation can be visualized in Figure 7.

Figure 5. Solution of Example 2 at different values of λ .
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Figure 6. Final values of Unknown Taylor coefficients for example No 2 for  k = 12 .

Figure 7. Data of 100 number of Independent runs of example No 2 for λ = 2 .

Table 2. Comparison of absolute error for example No 2.

t
Absolute error Absolute error Absolute error 

λ = 2 λ = 1.9 λ = 1.8
0.1 2.2880×10-8    - 2.1000×10-8
0.2 5.7153×10-8 5.78×10-11 2.0900×10-8
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t
Absolute error Absolute error Absolute error 

λ = 2 λ = 1.9 λ = 1.8
0.3 8.4235×10-8     - 2.0900×10-8
0.4 1.0627×10-7 6.25×10-11 2.0800×10-8
0.5 1.3043×10-7     - 2.0600×10-8
0.6 1.6246×10-7 3.01×10-11 2.0400×10-8
0.7 2.0511×10-7     - 2.0300×10-8
0.8 2.5853×10-8 2.62×10-7 2.0000×10-8
0.9 3.2171×10-7    - 1.9900×10-8
1.0 3.9421×10-7 3.46×10-7 1.9700×10-8

Table 3. Residual error for example No 2.

t
Residual 

error 
Residual 

error 
Residual 

error 
Residual 

error 

λ = 2 λ = 1.9 λ = 1.8 λ = 1.7
1 5.1393×10-7 1.4006×10-3 3.1913×10-3 1.8266×10-2
2 1.3659×10-7 3.8499×10-4 1.2004×10-3 1.1830×10-2
3 2.4985×10-7 2.1263×10-4 3.0410×10-4 8.0982×10-3
4 3.1538×10-7 5.4257×10-4 1.2117×10-3 5.7085×10-3
5 6.3298×10-8 5.3086×10-4 1.3318×10-3 6.7070×10-3
6 4.0145×10-8 7.5912×10-4 1.7963×10-3 1.1744×10-2

MSE 1.0563×10-13 1.1642×10-6 6.9963×10-6 2.3044×10-4

Experiment No 3

Consider the following nonlinear fractional pantograph differential equation 
with multiple proportional delays.

Dλ f t( ) = − f t( )- Dλ f t
3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

3

+ f t
2

⎛
⎝⎜

⎞
⎠⎟
+ 2t + 3

4
t2 + 8

7
t3,    0 < λ ≤1,

f 0( ) = 0
By applying the TMM on above nonlinear pantograph fractional differential model, 
with fractional delay for λ =  1 and  k = 3 ,  unknown coefficients are found to be 
1.97151×10−15,  2 and 4.79185×10-16 . By substituting these values in Eq. 2 the 
required solution is found to be f t( ) = 1.97151×10−15t + t2 + 7.98642×10−17 t3  
which is approximately equal to the true solution f t( ) = t2 . For the fractional 
values of  λ  the obtained MSE for the above example are found to be 
2.64798×10−7 , 2.3042×10-6 and 1.24327 ×10-6

 for λ =  0.9, 0.8 and 0..7  
respectively. Figure 8 is demonstrating the solution at different values of  λ  by 
proposed method with an exact solution at λ =  1 while Figures 9 and 10 are 
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representing the final values of  Taylor coefficients and data of  100 number of  
independent runs respectively. Error analysis at different values of  λ  on domain 
t ∈ 0,h⎡⎣ ⎤⎦  can be observed in Figure 11.

Figure 8. Solution of Example 3 at different values of λ .

Figure 9. Final values of Unknown Taylor coefficients, for example, No 3 for k = 15 .
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Figure 10.  Data of 100 number of Independent runs of example No 3 for λ = 2 .

Figure 11. Residual error for fractional values λ , for example, No 3.



3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

340

Experiment No 4

Consider the following nonlinear boundary value fractional pantograph 
differential equation with multiple proportional delays.

Dλ f t( ) = f (t)2 + f (t)
3( ) f (t / 2),    1< λ ≤ 2,

f 0( ) = 1 and  f (1) = 1
2

By applying the TMM on above nonlinear boundary value pantograph fractional 
differential model, with fractional delay for λ =  2 and  k = 15 , results can be 
visualized in Figure 12. The true solution for λ = 1 is given by f t( ) = 1

1+ t
. For 

the fractional values of  λ  the obtained MSE for the above example are found to be 
3.16567 ×10−6 , 1.45514×10-5 and 4.14856×10-5

 for λ =  0.9, 0.8 and 0..7   
respectively. Table 4 exhibits the comparison at different fractional values. Figure 
12 is demonstrating the solution at different values of  λ  by proposed method 
with an exact solution at λ =  2  while Figures 13 and 14 are representing the 
final values of  Taylor coefficients and data of  100 number of  independent runs 
respectively. 
Table 4. Absolute Error Comparison for experiment 4.

t
Absolute error Absolute error 

λ = 2 λ = 1.9
0.1 8.0504×10-6 1.38×10-4
0.2 5.0102×10-6 2.17×10-4
0.3 5.3252×10-6 2.44×10-4
0.4 3.5795×10-6 2.50×10-4
0.5 1.1812×10-6 2.34×10-4
0.6 7.5917×10-7 2.11×10-4
0.7 1.5928×10-6 1.77×10-5
0.8 1.2997×10-6 1.39×10-5
0.9 1.0732×10-7 9.53×10-5
1.0 0 0
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Figure 12. The solution of Example 4 at different values of λ .

Figure 13. Final values of Unknown Taylor coefficients, for example, No 4 for k = 15 .
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Figure 14. Data of 100 number of Independent runs of example No 4 for λ = 2 .

6. DISCUSSION
The effort, that is performed above is mainly dealt with the effective 
implementation of  TMM on initial and boundary value fractional Pantograph 
differential equations with multiple proportional delays. To validate the strength 
of  employed methodology some linear and nonlinear test experiments have been 
efficaciously simulated through TMM. Absolute and residual errors have been 
calculated to compare the effectiveness of  TMM with other methods. Different 
type of  data, related to Taylor coefficients and multiple runs of  the procedure, 
has also been demonstrated above to make the procedure well comprehensible. 

Considering the results of  test experiment 1, that is a linear initial value fractional 
Pantograph differential equation with single proportional delay, it is obvious that 
TMM has provided an excellent solution with k = 3  and λ = 2  that can be 
visualised through Figure 2 with overlapping lines of  exact and TMM solution 
at λ = 2 . Values of  residual error, which has been calculated according to the 
explained procedure in section 4 of  this paper, is demonstrating prominent values 
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ranged between 10−4  to 10-5  that, can be witnessed from Table 1. Final values 
of  unknown Taylor coefficients after learning through thermal minimization 
algorithm can be seen in Figure 3 while Figure 4 is establishing the results of  
multiple runs of  an algorithm for fitness function, a number of  iterations and 
elapsed time in seconds. It can be envisioned through Figure 4 that fitness function 
for experiment No 1 ranged between 10−26 −10−36 , number of  iterations during 
learning procedure by SA ranged between 100− 400  iterations while elapsed 
time in seconds is less than 0.3 seconds with Core i 5 processor and 2 GB RAM.

Problem took for experiment No 2 is a nonlinear initial value fractional 
Pantograph differential equation with single proportional delay term. Solution 
by TMM simulation for experiment number 2 can be seen in Figure 5 at different 
values of  λ  from which strength of  proposed methodology can be observed. 
Comparison with a similar type of  methods has been demonstrated in Table 2 
that is witnessing method more powerful but here benefit of  TMM is an effortless 
mechanism with the larger domain of  implementation and less time consumption. 
Table 4 is depicting the values of  residual error and MSE for fractional values of  
λ  that is demonstrating the ability of  TMM to handle the nonlinear problems 
smoothly. Final values of  unknown Taylor coefficients have been displayed in 
Figure 6 for the ease of  reader moreover elapsed time for the above nonlinear 
problem is less than 8 seconds for all while for most of  the time it is less than 3 
seconds that can be witnessed through Figure 7. A number of  iterations and 
fitness function are ranged 800− 2000  and 10−6 −10−13  respectively.

Experiment number 3 is showing a similar trend like the other two examples 
but this problem is a nonlinear fractional differential equation with multiple 
delays. TMM showed a promising solution for this experimental case that can be 
envisioned through Figure 8. Residual error for different fractional values of  λ
has been presented in Figure 11 that is exhibiting the successful implementation 
of  TMM. Time elapsed for this problem is under 0.9 seconds which is giving 
advantage to TMM over other methods to present effortless scheme with less 
time consumption. Other results are following the above trends.
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Experiment number 4 is a boundary value problem with nonlinear and delay 
terms. Solution provided by TMM can be seen in Figure12 that is showing the 
efficacy of  the proposed scheme. Comparison of  the proposed scheme with 
a meta heuristic method can be seen in Table 4 but the author proposed the 
solution only for λ = 2  while the current method has also simulated the problem 
for fractional values of  λ . Elapsed time in seconds for this experiment is under 
five seconds with similar processor conditions as described for above problems 
that can be observed in Figure 14. Number of  iterations during the learning 
process is varied between 500− 650 .

7. CONCLUSION
In this effort, we studied the fractional pantograph equation via TMM. The accuracy 
and strength of  the proposed method are ascertained by observing the error analysis 
for diverse numerical experiments. The obtained results show that linear and nonlinear 
neutral fractional Pantograph equations with proportional delays type differential 
equations can be cracked by this scheme with less effort and more accuracy. Results 
obtained from the above numerical experiments can be concluded as:

•	 For integer value of  derivative TMM exhibits exceptionally excellent results 
that can be visualized in Figures 2, 5, 8 and 12.

•	 TMM converts the differential equations into a minimization problem 
so the accuracy of  the method is merely dependent on obtained MSE or 
fitness function by implementation of  SA and advancements in SA for better 
minimization can further develop the TMM for better results. 

•	 Graphical representation of  Error analysis for the above numerical 
experiments depicts that TMM can be employed on larger domains with 
accuracy.

•	 Challenging nonlinearities, boundary conditions and proportional delays can 
be handled with this scheme effortlessly.

•	 The proposed scheme can be further developed to obtain the solutions of  
complex differential models.
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•	 TMM can be employed to nonlinear FDEs without applying any perturbations 
and linearization. 

Data Availability Statement

All data are provided in full in a different section of  this paper. 
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