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ABSTRACT 

The main aim of the study was to develop quantitative structure-activity relationship (QSAR) 
models for the prediction of phytotoxicity effects of chemical compounds on the Lactuca sa-
tiva seeds germination. A database of 73 compounds, assayed against L. sativa and Dragon’s 
molecular descriptors are used to obtain a QSAR model for the prediction of the phytotoxicity. 
The model is carried out with QSARINS software and validated according to OECD principles. 
The best model showed good value for the determination coefficient (R2 = 0.917) and others pa-
rameters appropriate for fitting (s = 0.256 and RMSEtr= 0.236). The validation results confirmed 
that the model has good robustness and stability (Q2

LOO = 0.874 and Q2
LMO= 0.875), an excellent 

predictive power (R2
ext = 0.896) and was product of a non-random correlation (R2

Y-scr = 0.130 and 
Q2

Y-scr = -0.265). Finally, we can say that this model is a good predictor tool to predict the toxicity 
over L. sativa of chemical compounds.

KEYWORDS: ecotoxicity, Lactuca sativa, phytotoxicity, QSARINS software.

RESUMEN

El objetivo principal del estudio fue desarrollar modelos cuantitativos de relación estructura-
actividad (QSAR) para la predicción de los efectos fitotóxicos de compuestos químicos, en la 
germinación de las semillas de Lactuca sativa. Se utiliza una base de datos de 73 compuestos, 
ensayados contra L. sativa y los descriptores moleculares del programa Dragon para obtener un 
modelo QSAR para la predicción de la fitotoxicidad. El modelo se lleva a cabo con el software 
QSARINS y se valida de acuerdo con los principios de la OCDE. El mejor modelo mostró buen 
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valor para el coeficiente de determinación (R2 = 0.917) y otros parámetros apropiados para el 
ajuste (s = 0.256 and RMSEtr= 0.236). Los resultados de la validación confirmaron que el modelo 
tiene una buena robustez y estabilidad (Q2

LOO = 0.874 and Q2
LMO= 0.875), un excelente poder pre-

dictivo (R2
ext = 0.896) y que no fue producto de una correlación casual (R2

Y-scr = 0.130 and Q2
Y-scr = 

-0.265). Finalmente, podemos decir que el modelo es una buena herramienta de predicción para 
predecir la toxicidad de compuestos químicos sobre L. sativa.

PALABRAS CLAVE: ecotoxicidad, fitotoxicidad, Lactuca sativa, programa QSARINS.

INTRODUCTION

As a consequence of progress in the chemical and pharmaceutical industries in the last decades, 
the quantity and the number of xenobiotics have considerably increased. The U.S. agencies, such as 
the Environmental Protection Agency (U.S. EPA) and the U. S. Food and Drug Administration (U.S. 
FDA), reported that in recent years people have been exposed to about 63000 chemicals, many of 
which show a high toxic activity [1]. The detrimental effects caused by these compounds act on both 
people’s health and on the balance of natural and manipulated ecosystems [2]. 

The environment is regularly exposed to organic chemicals (e. g. phenols, anilines, benzenes de-
rivatives, etc.) as well as mixtures of several chemical elements; through their use in industrial pro-
cesses, chemical assays in research institutions and domestic use of different substances. Wastewaters 
usually contain a variety of organic and inorganic chemicals, and the joint actions of the individual 
components can lead to complicated integrated toxic effects to the environment [3]. Several ecologi-
cal perturbations are associated with wastewater discharge into fluvial ecosystems, such as the intro-
duction of micropollutants to stream flow or the loss of invertebrate biodiversity [4, 5]. Consequently, 
the development of tools able to assess potential hazardous effects of chemicals on living organisms 
needs to receive attention. Therefore, information about the toxicity of industrial organic chemicals 
to the environment is of interest [6]. 

The experimental tests provide most reliable data on the effects of chemicals, but they involve 
much time consumption and extensive resources, which makes it difficult to research great num-
bers of potential toxic compounds [7]. Therefore, quantitative structure-activity/toxicity relationships 
(QSAR/QSTR) studies provide an invaluable tool in the prediction of environmental toxicity directly 
from the molecular structure of compounds [8]. The QSAR/QSTR studies offer the advantages of 
higher speed and lower cost, especially when compared to experimental testing [9], and, in recent 
years, the predictions from computer models have been widely used in modern toxicological re-
search, as they are an important alternative for obtaining experimental evidence and play an important 
role in evaluating the toxicity of chemicals [10].

Among the different endpoints used to evaluate the potential toxicological impact of chemical 
exposure to terrestrial organisms, Lactuca sativa was chosen because is a very used test species; due 
to its sensitivity to different organic compounds, its high-frequency use in phytotoxicological test-
ing and its handiness [11, 12]. Also, lettuce (L. sativa) has agricultural importance and is one of the 
species recommended by the EPA, FDA and OECD (Organization for Economic Cooperation and 
Development) [11].
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Furthermore, our research group have a large experience, of more than a decade, developing QSAR 
models to predict different physicochemical, chemical, pharmacokinetical, toxicological as well as 
biological properties of different compounds [13-19]. The main objective of the present study was to 
propose a new and better mathematical model for prediction of potential hazardous effects of chemi-
cals in L. sativa seed germination process using QSAR INSubria software (QSARINS) [20-22]. This 
approach offers an alternative to conventional methods used to predict the toxicity by identifying the 
relationship between the chemical structure and its toxicity.

MATERIALS AND METHOD

Chemical Database and Descriptor Calculation

The general dataset used in this study assay was obtained from previously published papers [23, 
24]; it consists of 73 compounds, assayed against L. sativa. The dataset was divided in training set (56 
compounds) to fit the model the external prediction set (18 compounds), also known as test set. The 
experimental values of the molecules of the entire dataset are shown in Table 1.

For this study, we employed Dragon software [25] to calculate the molecular descriptors (MDs). 
This program allows calculating several families (0-2) of molecular descriptors such as: constitution-
al indices, functional group counts, 2D-autocorrelations, topological indices and molecular properties 
among others. After that, those MDs with values constant or near to constant were removed, thus 
they were not used in further analysis. Consequently, we finally used 313 descriptors to perform the 
genetic algorithm (implemented in QSARINS software) for variable selection.

QSAR-MLR Model Development

For the development of the multiple linear regression (MLR) model QSARINS software version 
2.2.2 was used, which has been developed in the QSAR Research Unit, University of Insubria, Italy. 
It allows obtaining MLR models by ordinary least squares (OLS) method [21]. The model was de-
veloped based on criteria such as fitting (highest R2), robustness (greatest Q2

LOO), stability (lowest 
R2–Q2

LOO), and low correlation of descriptors (lowest KXX), amongst others, so that it has a small dif-
ference between fitting, cross-validation and external validation parameters.
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Table 1. Structures and experimental valuesa of the data set

No Smile Log CL50 No Smile Log CL50

1 ClC1=CC=CC=C1O 1.818 45 CC(O)C 2.826
2 ClC1=CC(O)=CC=C1 1.650 46 CC(C)CO 2.485
3 ClC1=CC=C(O)C(Cl)=C1 1.381 47 O=C(O)C1=CC=C(CC)C(CC)=C1C(O)=O 1.664
4 ClC1=CC(Cl)=CC(O)=C1 1.112 48 O=C(O)C1=CC=C(CCCC)

C(CCCC)=C1C(O)=O 0.584
5 ClC1=CC(Cl)=C(Cl)C(O)=C1 1.002
6 ClC1=C(O)C(Cl)=CC(Cl)=C1 1.079 49 COP(OC)

(SCN2C(C1=CC=CC=C1N=N2)=O)=S 1.530
7 CC1=CC(Cl)=CC=C1O 1.516
8 CC1=CC(O)=CC=C1Cl 1.362 50 CCOP(OCC)(OC1=NN(C2=CC=CC=C2)

C=N1)=S 1.146
9 OC1=CC=CC=C1O 2.428
10 OC2=CC=C1C=CC=CC1=C2 1.554 51 NCCN 3.829
11 CC1=CC=CC=C1O 1.914 52 CCCNCCC 2.048
12 CC1=CC(O)=CC=C1 1.909 53 CCCCNCCCC 1.492
13 ClC1=CC=CC=C1 1.487 54 C=CC(N)=O 3.172
14 ClC1=CC=C(Cl)C=C1 1.160 55 CC(NC1=CC=CC=C1)=O 2.293
15 ClC1=C(Cl)C(Cl)=CC=C1 0.863 56 C1=NC=CC=C1 2.538
16 ClC1=CC=C(Cl)C(Cl)=C1 0.920 57 NC1=CC=CC=C1N 2.778
17 ClC1=CC(Cl)=CC(Cl)=C1 0.858 58 O=CC1=CC=CC=C1 2.140
18 ClC1=CC=C(Cl)C(Cl)=C1Cl 0.623 59 O=C(O)CCCCC 2.020
19 ClC1=C(Cl)C=C(Cl)C(Cl)=C1 0.536 60 O1C=CC=C1 2.207
20 ClC1=CC(Cl)=C(Cl)C(Cl)=C1Cl 0.368 61 C1(C2=CC=CC=C2)=CC=CC=C1 0.887
21 ClC1=CC=CC=C1[N+]([O-])=O 1.775 62 C1=CC=CS1 1.981
22 ClC1=CC=CC([N+]([O-])=O)=C1 1.693 63 CC3(O)C2CC1C(N(C)C)

C(C(C(N)=O)=C(O)C(O)1C(C2=C(O)
C4=C3C=CC=C4O)=O)=O

1.15823 ClC1=C(Cl)C([N+]([O-])=O)=CC=C1 1.386
24 NC1=CC=CC=C1 2.418
25 NC1=CC=CC=C1Cl 1.938 64 CC1=CC(C)=NC(NS(=O)(C2=CC=C(N)

C=C2)=O)=N1 2.196
26 NC1=CC=CC(Cl)=C1 1.948
27 NC1=CC=C(Cl)C=C1Cl 1.516 65 CCN2C=C(C(O)=O)

C(C1=CC(F)=C(N3CCNCC3)C=C12)=O 1.694
28 NC1=CC=C(Cl)C(Cl)=C1 1.559
29 NC1=CC(Cl)=CC(Cl)=C1 1.458 66 CCC1C(C)(O)C(O)C(C)C(C(C)CC(C)

(O)C(OC3C(O)C(N(C)C)CC(C)O3)C(C)
C(OC2CC(C)(OC)C(O)C(C)O2)C(C)

C(O1)=O)=O
1.838

30 NC1=CC(Cl)=C(Cl)C=C1Cl 1.194
31 NC1=C(Cl)C=C(Cl)C=C1Cl 1.160
32 NC1=CC(Cl)=C(Cl)C(Cl)=C1Cl 0.959
33 NC1=C(Cl)C(Cl)=CC(Cl)=C1Cl 0.882 67 OCC(NC(C(Cl)Cl)=O)C(O)

C1=CC=C([N+]([O-])=O)C=C1 2.310
34 CC1=CC=CC=C1 1.540
35 C12=CC=CC=C1C=CC=C2 1.266 68 O=C(O)CC1=CC=CC=C1NC2=C(Cl)

C=CC=C2Cl 2.943
36 C23=C1C(CC3)=CC=CC1=CC=C2 0.968
37 CC1=CC=CC=C1C 1.352 69 O=C(C)NC1=CC=C(O)C=C1 3.450
38 C=CC1=CC=CC=C1 1.434 70 OC1=CC=CC=C1C(O)=O 2.230
39 CCCCCCC 0.738 71 OC(COC2=C1C=CC=CC1=CC=C2)

CNC(C)C 2.344
40 CC(Cl)(Cl)Cl 1.655
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No Smile Log CL50 No Smile Log CL50

41 ClC1(Cl)C(Cl)(Cl)CCCC(Cl)1Cl 1.117 72 CCCC(NC1=CC(C(C)=O)=C(OCC(O)
CNC(C)C)C=C1)=O 3.676

42 Cl/C(Cl)=C(Cl)/Cl 1.218
43 ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)1Cl 0.431 73 CC(C)(NCC(O)

COC1=NSN=C1N2CCOCC2)C 3.753
44 CC(O)CO 3.292

a the values of Log CL50 are expressed in ug/ml.

Validation of model

An important aspect of the QSAR model is validation. Consequently, the obtained model must be 
carefully checked and thoroughly validated. The QSARINS offers several tools to confirm that the 
model meets the standards, set by the OECD for the development, validation, acceptance and use of 
QSAR models in order to increase the confidence in the reliability of data predicted by it. Based on

these principles, the QSAR-MLR model must meet the following criteria: 1) a defined end point; 
2) an unambiguous algorithm; 3) a defined domain of applicability; 4) appropriate measures of good-
ness-of-fit, robustness and predictivity; and 5) a mechanistic interpretation, if possible [26]. In a pre-
vious paper we give a complete explanation of all these aspects; for details see reference [27].

In this work we use some cross-validation techniques for internal validation. First, leave-one-out 
(LOO) exercises were done because, with the disturbance of a single compound in a small database, 
one gets criteria of its robustness. Later, a leave-many-out (LMO) technique was developed, which 
allows studying the behavior of the model when a greater number of compounds are excluded. In 
order to demonstrate that the model is not the result of a casual correlation, the randomization (Y-
Scrambling) procedure was also applied. In this process, the answers are randomly located, so that 
there is no correlation with the descriptors and, as a result, the model performance should decay dra-
matically. In order to prove the model predictivity, an external validation was performed. For this, we 
use the prediction set, which has never been used in the model calculation.

Acute Toxicity Test with L. sativa Seeds

The acute toxicity test was carried out in the ecotoxicology laboratory of the Center of Toxicology 
and Biomedicine (TOXIMED) in Santiago de Cuba. We followed the procedure previously described 
by Sobrero and Ronco in 2004 [28], to develop acute toxicity test (120-h exposure) with L. sativa 
seeds; it was used for assessing the phytotoxic effects of the chemical compounds on the seed germi-
nation process; the toxicity was assessed as inhibition of the elongation of the radicle and hypocotyl. 
This test has been recommended and implemented by different agencies for environmental protec-
tion for the ecotoxicological assessment of environmental samples and pure compounds and also 
for evaluating the phytotoxic effect of pesticides on non-target species for the registration of these 
compounds [29, 30].
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RESULTS AND DISCUSSION

Develop of the QSAR-MLR Model

Several models were obtained while exploring the best combinations of molecular descriptors 
which show a high correlation with the response variable (Log CL50).Therefore, taking into account 
the principle of parsimony (describe the maximum information with the least number of descriptors), 
an analysis of the model’s parameters was done. Based on it, a QSAR-MLR model was developed 
to evaluate the toxic effects with seven variables. In the development of the model compounds the 
number 64 was detected as statistical outlier and removed; once rejected the model was obtained. The 
equation and the statistical parameters of the best model are the following:

Log CL50= -17.4396(±3.288) +19.910(±2.67)*Mi -0.773(±0.162)*RCl -3.699(±0.502)*X0Av
 +0.048(±0.007)*P_VSA_s_5 -0.264(±0.028)*SssCH2 +1.414(±0.194)*B02[C-S]
 -0.743(±0.202)*B09[N-O]         (1)

R2= 0.917 R2
adj= 0.904 R2-R2

adj= 0.013 LOF= 0.101
KXX= 0.315 Delta K= 0.052 RMSEtr= 0.236 MAEtr= 0.190
RSStr= 3.003 CCCtr= 0.957 s= 0.256 F= 72.231

The number of compounds used as the training set was 56 compounds: R2 is the coefficient of de-
termination, R2

adj is adjusted R2, s is standard error of estimate, F is variance ratio, LOF is Friedman 
lack of fit [31, 32] and Kxx is the correlation among descriptors [33]. Delta K is the difference of the 
correlation between the descriptors (Kx) and the descriptors plus the responses (Kxy), RMSEtr is Root-
Mean-Square Error in fitting (for the training set), MAEtr is Mean Absolute Error in fitting (calculated 
on the training set), RSStr is the Residual Sum of Squares in the fitting (also for the training set) and 
CCCtr is the concordance correlation coefficient calculated over the training set [34-36].

The model developed in this study showed a R2 value of 0.917, indicating an appropriate fit to 
model the toxicity in L. sativa; this means that the model explains almost the 92 % of the experimen-
tal variance. The LOF parameter showed a low value (0.101), indicating that there was no overfitting 
risk. The correlation between the descriptors of the model is low because the Kxx is small (0.315), 
so we can say that there is little redundant information in the selected descriptors. In addition, the 
correlation between the descriptors and the modeled response is appropriate, in accordance with the 
Delta K parameter (0.052), with a small error on the calculations of training and parameters estima-
tion (RMSEtr= 0.236; MAEtr= 0.190; s= 0.256). The Figure 1A shows the scatter plot of the predicted 
response against experimental, in which it is evident that the compounds are located next to the di-
agonal line. 
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A B

Figure 1. Scatter plot of experimental Log (CL50) versus predicted by model. A) predicted by the model (Eq. 1) 
and B) predicted in by LOO croos validation..

Validation of the developed Model

The principal importance of the validation is to prove the predictability and the robustness of 
the model. In this work we performed both: internal (LOO, LMO and Y-scrambling) and external 
(prediction set) validation experiments only for the final model. According to the results of the LOO 
cross-validation, it can be stated that internal predictions are good and Q2

LOO = 0.874 has a value very 
close to R2 value, so the model is considered internally stable and robust, with a small error in the 
predictions (RMSEcv = 0.289 and MAEcv = 0.233). The Figure 1B shows the values predicted by LOO 
vs. experimental Log (CL50) values for the training and test sets. 

The model performance of internal validation by LMO (Q2
LMO= 0.875) is very similar to the ob-

tained with LOO, although it should be noticed that this technique is more useful with larger data-
bases. The Figure 2 shows Q2

LMO vs. KXY (correlation between the descriptors and toxicity). Notice 
that Q2

LMO values are similar to each other and comparable to KXY values, corroborating the good fit 
and stability of the model.

The last experiment of the internal validation was the Y-scrambling procedure, as we pointed out 
before; it was done to demonstrate that the model is not the result of a casual correlation. Here, the 
answers were placed at random, so that there is no correlation with the descriptors. As a consequence 
of this, the model performance decays dramatically. The values of R2 and Q2 of every iteration, and 
their averages (R2

Y-scr and Q2
Y-scr) offer the criteria that the model is good, since these parameters are 

ever lower with regard to the values of the model (R2
Y-scr = 0.130 and Q2

Y-scr = -0.265). The R2
Y-scr and 
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Q2
Y-scr values against R2 and Q2 of the model are shown in Figure 3. Notice that the values of R2 and 

Q2 of the model are far from the values obtained for those parameters in the Y-scrambling experiment, 
which indicates that the model is not obtained as a result of a random correlation.

Figure 2. Plot of LMO validations compared with the original model.
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Figure 3. Plot of Y-scrambled model compared with the original model.

Table 2. Experimental and predicted values (expressed as Log CL50) of the toxicity in L. Sativa

No. Experimentala Predictionb Residualc No. Experimentala Predictionb Residualc

1 1.818 1.588 -0.231 38* 1.434 1.608 0.174
2* 1.650 1.588 -0.063 39 0.738 0.563 -0.175
3 1.381 1.303 -0.078 40 1.655 1.533 -0.122
4 1.112 1.303 0.191 41* 1.117 0.427 -0.690
5* 1.002 1.079 0.077 42 1.218 1.067 -0.151
6 1.079 1.079 0.000 43 0.431 0.221 -0.210
7 1.516 1.558 0.042 44* 3.292 3.340 0.048
8 1.362 1.558 0.196 45 2.826 2.780 -0.046
9 2.428 2.125 -0.303 46 2.485 2.656 0.171

10* 1.554 1.482 -0.072 47* 1.664 1.719 0.055
11 1.914 1.826 -0.088 48 0.584 0.647 0.063
12 1.909 1.826 -0.083 49 1.530 1.379 -0.151
13* 1.487 1.279 -0.208 50 1.146 1.660 0.514
14 1.160 0.991 -0.169 51 3.829 3.504 -0.325
15 0.863 0.763 -0.100 52 2.048 2.334 0.286
16 0.920 0.763 -0.157 53* 1.492 1.556 0.064
17* 0.858 0.763 -0.095 54 3.172 3.487 0.315
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No. Experimentala Predictionb Residualc No. Experimentala Predictionb Residualc

18 0.623 0.545 -0.078 55 2.293 2.915 0.622
19 0.536 0.545 0.009 56* 2.538 2.050 -0.488
20 0.368 0.350 -0.019 57 2.778 2.421 -0.357
21 1.775 1.994 0.219 58 2.140 1.745 -0.395
22* 1.693 1.994 0.301 59 2.020 2.096 0.076
23 1.386 1.752 0.366 60 2.207 1.995 -0.212
24 2.418 2.092 -0.326 61 0.887 1.483 0.596
25* 1.938 1.783 -0.155 62 1.981 2.148 0.167
26 1.948 1.783 -0.165 63 1.158 1.276 0.118
27 1.516 1.530 0.014 64 2.196 -outlier- -outlier-
28 1.559 1.530 -0.029 65 1.694 1.576 -0.118
29* 1.458 1.530 0.072 66 1.838 1.989 0.151
30 1.194 1.310 0.116 67* 2.310 2.576 0.266
31 1.160 1.310 0.150 68 2.943 2.560 -0.384
32 0.959 1.112 0.153 69 3.450 3.065 -0.385
33 0.882 1.112 0.230 70 2.230 2.137 -0.094
34* 1.540 1.588 0.048 71 2.344 2.490 0.146
35 1.266 1.296 0.030 72* 3.676 3.467 -0.209
36* 0.968 0.477 -0.491 73 3.753 3.586 -0.167
37 1.352 1.531 0.179

a Experimental values (See Table 1). b Predicted values using Eq. 1. c Residual values: log(Obsd)‒log(Pred). * Compounds used as 
prediction set.

However, it has been recognized that the only way to establish the real predictivity power of any 
model is through an external validation [37]. The use of an external prediction set is the best way of 
validating a QSAR model. The result of our model for the prediction showed excellent results (R2

ext 
= 0.896, RMSEext = 0.269, MAEext = 0.199, PRESSext = 1.300, Q2-F1 = 0.869, Q2-F2 = 0.868, Q2-F3 
= 0.892, CCCext = 0.939, r2m_aver = 0.797, r2m_delta = 0.097). Where, R2

ext is the external deter-
mination coefficient [37]; RMSEext is the Root-Mean-Square Error in external prediction; MAEext is 
the Mean Absolute Error in external prediction; PRESSext is the Predictive Residual Sum of Squares 
(external validation); Q2-F1 [38], Q2-F2 [39], Q2-F3 [40] are the explained variances in external pre-
diction; CCCext is the Concordance Correlation Coefficient [34-36] and r2

m_aver and r2
m_delta are the 

Roy criteria: average and delta [41]. The predictions of compounds in the external set can be seen in 
Figure 1 (blue circles) and Table 2.

Aplicability Domain

A critical aspect in chemometrics and QSAR studies, for either classification or regression models, 
is the definition of the applicability domain (AD), because only predictions for compounds that fall 
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within the domain of applicability may be considered reliable. In this work we use the leverage (h) 
and standardized residual approach, described in the literature [42]. The Figure 4 shows the graph of 
William for the training and prediction sets; as can be seen in this figure, most compounds are within 
the AD of the model. Only rather few chemicals of the training set showed values of leverage reater 
than the critical leverage value (h*=0.444), although they showed values of standard deviation within 
the limits, which means that they should be considered as influential compounds instead of outliers. 
Therefore, we can say that these models, for their applicability domain, can be used with high ac-
curacy. 

Figure 4. Williams plot. Hat diagonal values versus standardized residuals.

In addition, QSARINS software provides a new approach to determine the application domain: 
the Insubria graph. This method is based on the leverage and model predictions. The Insubria graph 
is useful to evaluate the position of the molecules, lacking experimental response compared to the 
structural application domain, and to compare their predictions to those of the compounds having 
experimental values. We detect that the same compounds that have values over the h* in the previous 
graph showed the same behavior with this approach. The Figure 5 shows the Insubria graph for the 
applicability domain.
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Figure 5. Insubria graph. Hat diagonal values versus predicted data.

Experimental Evaluation

Finally, some chemical compounds, used routinely in the ecotoxicology assays of the laboratory 
of the TOXIMED, were experimentally tested against L. sativa. We carried out the assay as explained 
above and the results are presented in the following table, as well as the prediction obtained by the 
model (Eq. 1) for each compound.

Table 3. Experimental results of the evaluated compounds

Compound Experimentala Predictionb

Methanol 4.670 3.244
Ethanol 4.170 2.967

Chromotropic acid 2.673 3.147
Phenol 1.974 1.900

p-nitroaniline 1.419 2.587

a Experimental values obtained in the assay in our lab.
b Predicted values using Eq. 1.
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As can be seen, the compounds were sorted in decreasing order of toxicity (according to the ex-
perimental results). We can classify as more toxic those compounds with value of Log CL50<3.0 and 
as less toxic those with values of Log CL50>3.0; taking this into account, the computational model 
predicts the more toxic compounds better. Notice that the prediction of two compounds, phenol and 
chromotropic acid are good and showed low residual values; it also predicts the p-nitroaniline accept-
ably well (with a residual about 1.1). However, the prediction of the least toxic compounds (ethanol 
and methanol) has not been so good (residuals being greater than 1.5). For both compounds the model 
overestimates the toxicity when compared to the experimental values; the increment in the difference 
could be caused because in the development of the experiment perhaps there was a loss by evapora-
tion (notice that both compounds are volatile) and the value of the assay could underestimate the real 
toxicity of the compound. Thus, the experiment should be carried out in the future taking into account 
this inconvenience, as well as one should evaluate other chemical of interest for the above mentioned 
laboratory. In general, we can say that this model is a good predictor tool to predict the toxicity over 
L. sativa of chemical compounds and that, for future works, it could become an important tool for the 
work in the ecotoxicology laboratory of TOXIMED.

CONCLUSION

In the present work, a QSAR-MLR model was developed by using molecular descriptors cal-
culated using the Dragon software, which adequately predicts the acute toxicity against seeds of L. 
sativa, so as to assess the phytotoxic effects of the chemical compounds on the seed germination. The 
model was preformed with QSARINS software and extensively validates following the principles es-
tablished by the OECD; the robustness of the model was tested through internal validation techniques 
(LOO, LMO, and Y-scrambling), and its predictability was checked through an external prediction set 
(external validation). The obtained model showed good statistical parameters for training and a pre-
diction set concluding that the proposed computational tools are efficient to predict the acute toxicity 
against L. sativa.
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