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Abstract 
The aim of this investigation was to develop a predictive model of microorganism mesophiles in processed meat products during storage 
under fluctuating temperatures between 1°C to 7°C to establish the shelf removal date of the products based on mesophiles limits established 
by Colombian Technical Standard NTC 1325 of 2008 for non-canned processed meat products. The variables used in the model were as 
follows: temperature, storage time and population of microorganisms at the beginning of storage. The S curve of the growth of the 
microorganisms was approximated by sections using a multivariate quadratic regression equation. The model achieved 91% accuracy for 
the prediction of the shelf removal date. In terms of practicality, the model offers a simpler alternative to traditional models for the 
prediction of microorganisms that require a greater amount of parameters and data. 
 
Keywords: microorganisms mesophiles; multivariate quadratic regression model; processed meat products; the mean absolute percentage 
error (MAPE); fluctuating storage temperature; shelf removal date. 

 
 

Modelo predictivo de microorganismos mesófilos en productos cárnicos 
procesados durante almacenamiento bajo temperatura variable 

 
Resumen 
El objetivo de esta investigación fue desarrollar un modelo predictivo de microorganismos mesófilos para productos cárnicos procesados 
almacenados a temperaturas variables entre 1 °C y 7°C para establecer la fecha de retiro del producto en anaquel en función del límite de 
microorganismos mesófilos establecido por la NTC 1325 de 2008 para productos cárnicos procesados no enlatados. Las variables usadas 
en el modelo fueron: temperatura, tiempo de almacenamiento y población de microorganismos mesófilos al inicio del almacenamiento. La 
curva S de crecimiento de los microorganismos fue aproximada por tramos mediante una ecuación de regresión cuadrática multivariable. 
El modelo logró una exactitud del 91% en la predicción de la fecha de retiro de anaquel. En términos de practicidad, el modelo nos ofrece 
una alternativa más simple a los modelos tradicionales de predicción de microorganismos que requieren una mayor cantidad de parámetros 
y datos. 
 
Palabras clave: microorganismos mesófilos; regresión cuadrática multivariable; productos cárnicos procesados; error porcentual absoluto 
medio (MAPE); temperatura variable de almacenamiento; fecha de retiro de anaquel. 

 
 
 

1.  Introduction 
 
Meat and processed meat products are highly perishable 

foods that are characterized by a short shelf life, which is why 
it is important to properly handle post-production 
preservation processes. Temperature is the most important 
and influential factor in the quality and safety of these foods 

                                                      
1How to cite: Herrera-Mejía, M.J., Sarmiento, A.T. and Sotelo-Díaz, L.I., Predictive model of microorganism mesophiles in processed meat products during storage under 
fluctuating temperatures. DYNA, 86(208), pp. 46-52, January - March, 2019 

because if the storage and transportation conditions are 
inadequate with respect to the temperature, the shelf life will 
be considerably reduced [1]. Therefore, it would negatively 
affect the sales forecast of the product. In addition, 
temperature excesses increase the growth rates and survival 
of pathogenic microorganisms as well as increase the 
potential for toxin production [2]. On the other hand, the 
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manufacturing processes involve manipulations that can lead 
to microbial contamination at refrigeration temperatures 
considered to be extreme. Thus, storage temperature is one of 
the most important factors affecting food safety and quality 
because it directly influences microbial growth and 
consequently the associated risk of foodborne diseases 
(FBDs) [3,4]. In addition, inadequate temperature is second 
on the list of factors that cause FBDs, surpassed only by the 
initial microbial population present in the food [5]. 

Consequently, meat and meat products have to be 
processed, stored and transported under cold conditions 
within a temperature range of 2°C to 7°C depending on the 
type of product; each degree outside the given temperature 
range leads to a reduction in the shelf life [1], which also 
leads to considerable economic loss. Different authors have 
reported that the main problems related to incorrect 
temperature conditions occur at the points of the transfer of 
products from one place to another [6,7]. 

In this way, each product has a shelf life defined by an 
expiration date, which is established when the product is 
packaged at the end of the processing line. According to 
Colombian Resolution 2652 of 2004, the expiration date is 
the date set by the manufacturer, which ends the period after 
which the product, stored under the indicated conditions, will 
probably not have the quality attributes normally expected by 
consumers. After this date, the food will not be considered 
marketable. This date is linked, in addition to other factors, 
to the amount of microorganisms that can develop in the 
product over a certain period of time. The shelf life of the 
meat products depend, among others, on the maintenance and 
conservation of the cold chain, referring to the continuous 
process of the production, packaging and distribution of a 
temperature-sensitive product [8]. Thus, the shelf life defined 
by the producer cannot reflect the actual time of deterioration 
because it is deliberately estimated, in most cases, by not 
taking temperature changes during storage into account [9]. 
Therefore, one of the best methods to define the actual date 
when the product should be withdrawn from the market is to 
predict its actual shelf life [9]. 

The remaining shelf life of the product at each step in the 
supply chain can be estimated using methods such as 
traditional microbiological analyses. Although it is still 
difficult for companies to draw conclusions about the shelf 
life based solely on temperature data, the determination of the 
shelf life optimizes the product’s management and storage in 
order to minimize the economic losses [10].  

Therefore, more and more food producers are looking for 
intelligent systems that are able to predict the shelf life of a 
product after its transformation and also allow a calculation 
of the remaining life at each step of the cold chain. Thus, an 
alternative to costly research and time spent on the 
microbiological analyses of this type of product is 
microbiological prediction using mathematical models for 
predicting the growth, mortality, and survival of 
microorganisms [11]. 

Currently there are different models for predicting the 
shelf life of microorganisms; however, these methods have 
restrictions for their application in the meat industry due to 
factors that are not included in the direct operation of a meat 
business, which are associated with indirect costs such as the 

history of the growth of microorganisms, characterization of 
the growth of microorganisms [12], kinetic parameters in 
equations and constant temperature monitoring during 
growth [13,14]. 

 
1.1.  Predictive models of microorganism growth  

 
One area of food microbiology is predictive 

microbiology. It was defined as a quantitative science that 
allows users to objectively evaluate the effects of processing, 
distribution and storage operations on microbiological safety 
and food quality [15]. The goal of predictive microbiology is 
to develop mathematical equations that describe the behavior 
of microorganisms under the following different 
environmental factors: physical, chemical, and competitive 
[16-18]. The most important objective of predictive 
microbiology is to understand and predict the behavior of 
microbial ecosystems, which are very complex subjects to 
study because they show variable patterns in both the 
temporal and spatial domains that are still difficult to explain 
[19]. 

In science, mathematical models are essential in the 
construction of prediction tools, but in this study, traditional 
models of predictive microbiology do not work for the 
construction of the model because to build a predictive model 
with growth dynamics, the experimental data must be 
generated at constant temperature, and then a mathematical 
model (primary model) is developed to describe the 
relationship between the microbial population in food and 
storage time. Subsequently the dependence of the parameters 
used in the model on temperature is evaluated, which is 
considered a secondary model [20,21]. 

 
1.2.  Quadratic model for the construction of the predictive 

model 
 
Microbial growth is often sigmoidal and can be 

described by the S curve or logistic curve [9]. This is a 
model commonly used to study and modify future changes 
[22]; however, inadequate application of the S curve leads 
to very inaccurate results [23]. Thus, a straight line can be 
fitted to an S-curve if the beginning and end of the periods 
that compose it is ignored, but to establish the real growth 
of a population, for example, another type of information 
is required [23]. Therefore, it is important to know when 
this model can be used taking into account how to define 
the system, how to identify relevant growth variables for 
long-term forecasting, how to improve model and data 
consistency, and how to interpret the curve obtained [22]. 
In general, one should have good reason to believe that a 
fit of the S curve is appropriate [23]. When the population 
growth data are adjusted to the S curve, the model function 
tends to represent the trend curve of the data when these 
three parameters are known: (1) saturation, (2) growth 
time, and (3) mid-point. The first refers to the growth limit, 
the second refers to the time it takes to grow from 10% to 
90%, and the third refers to the inflection point of the curve 
[22]. 

Thus, to apply the S curve, one must know the adaptation 
phase of the microorganisms, but for the construction of the 
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model in this particular case, the growth history of the 
microorganism to be studied is unknown, and the 
requirement of multiple variables makes it very complex to 
manipulate and/or adapt the S curve. However, assuming that 
microorganisms have this type of growth behavior, the 
authors propose approximating this S curve by sections, 
where each section is modeled as a multivariate quadratic 
equation. 

The most common measurement to determine the quality 
of prediction is the coefficient of determination R2 used in 
linear regression models [24]. In the linear context, it is a very 
intuitive measurement because values between 0 and 1 
provide a quick interpretation of how much of the variance 
of the data is explained by the fit [25]. However, the statistic 
R2 is an inadequate measurement to determine the quality of 
fit of non-linear regression models [25]. For this reason, the 
mean absolute percentage error (MAPE) has been used to 
find the error of the model; that is, it interprets errors in a 
percentage form, facilitating their comparison because it 
expresses the accuracy of the model as a percentage of the 
error [26]. 

 
1.3.  Normativity of meat products in Colombia 

 
In Colombia, NTC 1325 of 2008 establishes the 

requirements that non-canned processed meat products must 
meet. This includes the microbiological requirements for this 
type of food. The most important requirement for this case 
study is the maximum permissible index of mesophilic 
aerobic microorganisms, which identifies the acceptable 
level of quality for cooked processed meat products of 5 log 
CFU/g. 

 
2. Methodology 

 
During this research, a cooked processed meat product was 
used, which is defined by Colombian Technical Standard 
1325 of 2008 as part of the carcass or muscular portions of 
cured food-production animals that preserve their anatomical 
integrity and have undergone processes of being precooked 
or cooked or smoked or not smoked, including the following: 
cutlet, rib, tongue, loin, shank, processed legs, smoked 
turkey, and smoked chicken, among others. In this study, 
chilled processed cooked chorizo was used. 

The steps to develop the predictive growth model for 
aerobic mesophilic microorganisms in the storage of finished 
products were established with the following criteria: (A) 
non-constant storage temperature and lack of knowledge of 
the adaptation phase or lag phase of mesophilic 
microorganisms, and (B) the model is developed for a 
population of indicator microorganisms and not for a species 
in general. 

In the block diagram (Fig. 1), the main activities to 
construct the model are stated: 

 
2.1.  Definition of predictive model variables 

 
To define the variables of the model, the following 

concepts are defined: 

Figure 1. Block diagram of the proposed methodology. 
Source: The authors 

 
 

• Batch: independent production units with common 
characteristics. It consists of an amount of several 
packages of the same product. 

• Sample: a representative part of the batch that is used to 
carry out the microbiological analyses. A sample consists 
of a set of observations. The number of observations that 
compose the sample is called the sample size. 

• Study time (st): total time of the duration of the study 
equal to the shelf life of the product. 
Variables in the predictive model include the following: 

(1) the dependent variable seeks to predict the population of 
aerobic mesophilic microorganisms (number of 
microorganisms) in different batches of the product from a 
sample taken from each batch, and (2) the following are the 
independent variables (or explanatory variables for the 
number of microorganisms) in this model: 

• Time: storage time of the finished product after leaving 
production. It is expressed in weeks, from week 0 to week 
"st", which correspond to the weeks of product shelf life. 
• Storage temperature: post-production temperature of the 

finished product, expressed in degrees centigrade (°C), 
which is measured weekly from week 0. Observations 
were taken in the refrigeration rooms where the finished 
and packaged product is stored. 
 

Table 1. 
Definition of the variables associated with the model. 

Variable Notation Definition Unit 
Time t Time at which the sample is 

taken. 
 

Weeks 

Temperature 𝐶𝐶𝐿𝐿,𝑡𝑡 Storage temperature of  batch  
L at time t. 

°C 

Population 𝑃𝑃𝐿𝐿,𝑡𝑡 It is the population of aerobic 
mesophiles that has batch L at 
time t 

LOG 
CFU* 

Initial 
Population 

𝑃𝑃𝑃𝑃𝐿𝐿,0 It is the population of aerobic 
mesophiles that has batch L at 
time t = 0 

LOG 
CFU* 

*LOG CFU = Logarithm in base 10 of the colony forming units 
Source: The authors  
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• Initial population: population of aerobic mesophilic 
microorganisms of the finished product obtained at the 
time of production, (week 0). It is expressed in log CFU 
(logarithm of colony forming units). 
Table 1 shows the notation of each of the model variables. 
 

2.2.  Data analysis 
 
To define the sample size (n) required for the construction 

of the model, one of the two methods could be used: 
• Heuristic rule: proposes that for multiple regressions, 20 

observations for each of the independent variables that the 
regression model includes must be chosen. That is, the 
sample size is n=20*m, where m is the number of 
independent variables [27]. 

• Green rule (1991): proposes a formula for determining the 
size of a sample for a regression model, which is 
described as n>50+8m, where m is the number of 
independent variables [28]. 
 

Table 2. 
Sample results format. 

 Batch N°   L 
Time t   (weeks) 0 1 2 3 4 … te 
Temperature   𝑪𝑪𝑳𝑳,𝒕𝒕 (°C)          𝐶𝐶𝐿𝐿,0 𝐶𝐶𝐿𝐿,1 𝐶𝐶𝐿𝐿,2 𝐶𝐶𝐿𝐿,3 𝐶𝐶𝐿𝐿,4 … 𝐶𝐶𝐿𝐿,𝑠𝑠𝑡𝑡 
𝑷𝑷𝑳𝑳,𝒕𝒕 (𝐋𝐋𝐋𝐋𝐋𝐋 𝐂𝐂𝐂𝐂𝐂𝐂) * 𝑃𝑃𝐿𝐿,0 𝑃𝑃𝐿𝐿,1 𝑃𝑃𝐿𝐿,2 𝑃𝑃𝐿𝐿,3 𝑃𝑃𝐿𝐿,4 … 𝑃𝑃𝐿𝐿,𝑠𝑠𝑡𝑡 
 𝑷𝑷𝑷𝑷𝑳𝑳,𝟎𝟎 (𝐋𝐋𝐋𝐋𝐋𝐋 𝐂𝐂𝐂𝐂𝐂𝐂) ** 𝑃𝑃𝑃𝑃𝐿𝐿,0 

*𝑷𝑷𝑳𝑳,𝒕𝒕 (𝐋𝐋𝐋𝐋𝐋𝐋 𝐂𝐂𝐂𝐂𝐂𝐂)  = Population   **𝑷𝑷𝑷𝑷𝑳𝑳,𝟎𝟎 (𝐋𝐋𝐋𝐋𝐋𝐋 𝐂𝐂𝐂𝐂𝐂𝐂)  = Initial population  
Source: The authors 

 
 
The two formulas above indicate the minimum number 

of observations required to construct a regression model. 
However, the formula that achieves the highest number of 
observations should be chosen because the out-of-sample 
forecast will be used [29]. This method is preferred 
because it divides the total observations into two sets: one 
 
Table 3. 
Table of observations. 

Batch    
L Time t Temperature 

𝑪𝑪𝑳𝑳,𝒕𝒕 
Population 

𝑷𝑷𝑳𝑳,𝒕𝒕 

Initial 
population 

𝑷𝑷𝑷𝑷𝑳𝑳,𝟎𝟎 
1 0 𝐶𝐶1,0 𝑃𝑃1,0 𝑃𝑃𝑃𝑃1,0 
2 0 𝐶𝐶2,0 𝑃𝑃2,0 𝑃𝑃𝑃𝑃2,0 

… … … … … 
NB* 0 𝐶𝐶𝐿𝐿,0 𝑃𝑃𝐿𝐿,0 𝑃𝑃𝑃𝑃𝐿𝐿,0 

1 1 𝐶𝐶1,1 𝑃𝑃1,1 𝑃𝑃𝑃𝑃1,0 
2 1 𝐶𝐶2,1 𝑃𝑃2,1 𝑃𝑃𝑃𝑃2,0 

… … … … … 
NB 1 𝐶𝐶𝐿𝐿,1 𝑃𝑃𝐿𝐿,1 𝑃𝑃𝑃𝑃𝐿𝐿,0 
1 2 𝐶𝐶1,2 𝑃𝑃1,2 𝑃𝑃𝑃𝑃1,0 
2 2 𝐶𝐶2,2 𝑃𝑃2,2 𝑃𝑃𝑃𝑃2,0 

… … … … … 
NB 2 𝐶𝐶𝐿𝐿,2 𝑃𝑃𝐿𝐿,2 𝑃𝑃𝑃𝑃𝐿𝐿,0 
1 3 𝐶𝐶1,3 𝑃𝑃1,3 𝑃𝑃𝑃𝑃1,0 
2 3 𝐶𝐶2,3 𝑃𝑃2,3 𝑃𝑃𝑃𝑃2,0 

… … … … … 
NB 3 𝐶𝐶𝐿𝐿,3 𝑃𝑃𝐿𝐿,3 𝑃𝑃𝑃𝑃𝐿𝐿,0 
1     st** 𝐶𝐶1,𝑠𝑠𝑡𝑡 𝑃𝑃1,𝑠𝑠𝑡𝑡 𝑃𝑃𝑃𝑃1,0 
2 st 𝐶𝐶2,𝑠𝑠𝑡𝑡 𝑃𝑃2,𝑠𝑠𝑡𝑡 𝑃𝑃𝑃𝑃2,0 
L st 𝐶𝐶𝐿𝐿,𝑠𝑠𝑡𝑡 𝑃𝑃𝐿𝐿,𝑠𝑠𝑡𝑡 𝑃𝑃𝑃𝑃𝐿𝐿,0 

*NB = Number of batches **st = Study time  
Source: The authors 

to determine the parameters of the predictive model and 
the other in order to validate the accuracy of that model 
[30]. For the study model with three independent 
variables, it was decided to use the rule proposed by 
Green [28] because it requires a greater number of 
observations. This allows a sufficient amount of 
observations in each of the two sets. 

Table 2 shows the observations taken for batch L. 
The observations obtained from each of the batches 

are then organized as shown in Table 3. 
The total observations obtained in Table 3 are divided 

into two sets. The first is called a fit set, which 
corresponds to 80% of the total observations (nA 
observations) and must be used to construct the model 
(determine the values of its parameters). The second 
group is the test set, which corresponds to 20% of the 
observations (nP observations) and must be used to 
perform the validation of the model. 

 
2.3.  Determination of the quadratic regression parameters 

 
Minitab 17® software is used to determine the 

quadratic equation that best describes the observations of 
the fit set. Minitab 17® uses the least squares procedure 
to determine the values of the model parameters that 
minimize the sum of the squares of the differences 
between the observed values and those predicted by the 
fitted model, which are the residuals. Eq. (1) represents 
the quadratic model: 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘1 + 𝑘𝑘2 ∗ 𝑃𝑃 +  𝑘𝑘3 ∗ 𝐶𝐶 + 𝑘𝑘4 ∗ 𝑃𝑃𝑃𝑃 + 𝑘𝑘5 ∗ 𝑃𝑃2 +
𝑘𝑘6 ∗  𝑃𝑃 ∗ 𝐶𝐶 + 𝑘𝑘7 ∗ 𝑃𝑃 ∗ 𝑃𝑃𝑃𝑃 + 𝑘𝑘8 ∗ 𝐶𝐶 ∗ 𝑃𝑃𝑃𝑃                       (1) 
 
Finally, the MAPE is calculated, and eq. (2) describes the 

MAPE of the fit set: 
 

                      𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝐴𝐴 =  
∑ �

𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�𝑛𝑛𝐴𝐴
𝑖𝑖=1

𝑛𝑛𝐴𝐴
 𝑥𝑥 100  (2) 

 
Where 𝑦𝑦𝑃𝑃 is the real value, 𝑦𝑦�𝑖𝑖  is the predicted value, and 

𝑃𝑃𝑀𝑀 is the number of observations of the fit set. 
 

2.4.  Validation of the quadratic regression model 
 
Validation is an essential step of the modeling 

process. Models cannot be applied without a pre-
validation process. This typically consists of confirming 
predictions experimentally using any quantitative 
method [31]. 

To prove that the constructed model has predictive 
ability, the test set is used. To do this, the variables 𝑃𝑃, 𝐶𝐶, 
and 𝑃𝑃𝑃𝑃 are replaced in eq. (1), and the predicted results 
are compared with the actual values. Finally, the MAPE 
of the test set is found with eq. (3):  
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Table 4.  
Scale to assess forecast accuracy using MAPE. 

MAPE Interpretation 
< 10% Highly accurate forecast 

11% - 20% Good forecast 
21% - 50% Reasonable forecast 

>50% Inaccurate forecast 
Source: Adapted from [32] 

 
 

           𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝑃𝑃 =  
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦

�𝑖𝑖
𝑦𝑦𝑖𝑖

�𝑛𝑛𝑃𝑃
𝑖𝑖=1

𝑛𝑛𝑃𝑃
 𝑥𝑥 100   (3) 

 
Where 𝑦𝑦𝑃𝑃 is the real value, 𝑦𝑦�𝑖𝑖  is the predicted value and 

𝑃𝑃P is the number of observations in the test set. 
According to the result of the error, the model is accepted 

or rejected. For this, Lewis [32] developed a scale to assess 
the accuracy of the forecast using the MAPE indicator, which 
is presented in Table 4. 

 
2.5.  Forecast generation 

 
This step sought to identify the week in which the product 

exceeds the specified limit of aerobic mesophilic 
microorganisms defined by NTC 1325 of 2008. Eq. (4), 
which is a recursive equation to calculate the level of aerobic 
mesophilic microorganisms at the beginning of week t (𝑃𝑃𝑃𝑃), 
is based on the level of aerobic mesophilic microorganisms 
at the beginning of week t-1 (𝑃𝑃𝑃𝑃𝑃𝑃−1=𝑃𝑃𝑃𝑃−1) and the 
temperature at the beginning of period t (𝐶𝐶𝑃𝑃). In this sense, 
𝑃𝑃𝑃𝑃𝑃𝑃−1 represents the population of mesophiles influenced by 
all temperatures prior to period t. 

 
𝑃𝑃𝑡𝑡 = 𝑘𝑘1 + 𝑘𝑘2 ∗ 𝑃𝑃 + 𝑘𝑘3 ∗ 𝐶𝐶𝑡𝑡 + 𝑘𝑘4 ∗ 𝑃𝑃𝑃𝑃𝑡𝑡−1 + 𝑘𝑘5 ∗ 𝑃𝑃2 + 𝑘𝑘6 ∗

                    𝑃𝑃 ∗ 𝐶𝐶𝑡𝑡 + 𝑘𝑘7 ∗ 𝑃𝑃 ∗ 𝑃𝑃𝑃𝑃𝑡𝑡−1 + 𝑘𝑘8 ∗ 𝐶𝐶𝑡𝑡  ∗ 𝑃𝑃𝑃𝑃𝑡𝑡−1 (4) 
 

2.6.  Validation of the results 
 
In predictive microbiology, experimental analysis of the 

growth of microorganisms in food is the basis for validation 
of the results; experimental growth data are compared with 
model predictions [33]. To determine the efficiency of the 
predictive model, it is important to specify when predictions 
of the withdrawal dates of product batches are considered 
favorable cases and when they are considered unfavorable 
cases. 

There are 3 types of favorable cases: 
a. Type 1: Those cases in which the predicted data and 

actual data indicate the withdrawal of product from the 
distribution system in the same week it is stored based on the 
limit of aerobic mesophilic microorganisms established by 
NTC 1325 of 2008. 

b. Type 2: Those cases in which the prediction indicates 
the withdrawal of the product from the distribution system 
one week before the actual date, based on the limit of aerobic 
mesophilic microorganisms established by NTC 1325 of 
2008. 

c. Type 3: Those cases in which the predicted data and 

actual data exceed week six complying with NTC 1325 of 
2008 with less than 5 log CFU. 

There are 2 types of unfavorable cases: 
a. Those cases where the model predicts that the product 

should be withdrawn from the distribution system after the 
actual date, in relation to the limit of aerobic mesophilic 
microorganisms established by NTC 1325 of 2008. In other 
words, when comparing the predicted value and the actual 
value, the first indicates a withdrawal of the product one or 
more weeks after when it should actually be withdrawn 
according to actual results. 

b. Those cases where the model predicts that the product 
should be withdrawn from the distribution system two or 
more weeks in advance of the actual value based on the limit 
of aerobic mesophilic microorganisms established by NTC 
1325 of 2008. 

 
3. Case study 

 
The methodology proposed in section 2 was applied to a 

local meats products company, which was called EPPC for 
confidentiality. Packaged chilled processed cooked sausage 
was used as the product. Each package weighed 500 grams 
and contained 8 units of product. This product, if kept 
refrigerated between 0°C and 4°C, is assigned a shelf life of 
six weeks from the date of manufacture. EPPC had sampled 
60 batches of the product for the quality control stage. 

Below are the steps of the proposed methodology applied 
to the case study. 

 
3.1.  Definition of predictive model variables 

 
The time, temperature and initial number of aerobic 

mesophilic microorganisms were defined as independent 
variables, and the population was described as the number of 
aerobic mesophilic microorganisms in each time-temperature 
condition. The shelf life of the product was six weeks (study 
period). 

 
3.2.  Data analysis 

 
Observations were taken week by week, in cold rooms 

where the product is stored. For each of the batches, 
observations were taken from week 0 to week 6. Therefore, 
each batch should have 7 observations, one for each week of 
storage. Each observation can consist of several product 
packages, from which a sample pool is created to perform the 
corresponding microbiological analysis. 

Subsequently, the sample size is defined for the 
construction of the model using the Green method (section 
2.2). In this study, it gives a result of at least 74 observations. 
If for each batch there are 7 observations, following the 
equation 𝐿𝐿 =  𝑛𝑛

7
, this corresponds to a minimum of 11 batches. 

In this study, information came from 60 batches (NL = 
60), which resulted in a number (420 observations) greater 
than the minimum recommended, and thus, it was decided to 
include all batches in the case study analysis. 
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Table 5. 
Parameters of the quadratic equation. 

Parameter Value 
k1 0,135 
k2 0,5730 
k3 0,217 
k4 0,950 
k5 -0,04240 
k6 0,0790 
k7 -0,1131 
k8 -0,0760 

Source: The authors 
 
 
The 420 observations were divided into two groups. The 

fit set had nA = 336 observations, and the test set contained 
nP = 84 observations. 

To enter the observations of the fit and test sets into the 
Minitab 17® software, the information for each set was 
organized independently according to Table 2. 

 
3.3. Determination of the parameters of the quadratic 

equation 
 
Using the observations from the fit set, the values of the 

parameters shown in Table 5 were obtained. 
Therefore, eq. (5) represents the quadratic equation for 

the prediction of aerobic mesophiles with variable 
temperatures of the sausage product: 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0,135 + 0,5730 ∗ 𝑃𝑃 +  0,217 ∗ 𝐶𝐶 + 0,950 ∗

𝑃𝑃𝑃𝑃 − 0,04240 ∗ 𝑃𝑃2 + 0,0790 ∗ 𝑃𝑃 ∗ 𝐶𝐶 − 0,1131 ∗ 𝑃𝑃 ∗ 𝑃𝑃𝑃𝑃 − 0,0760 ∗
𝐶𝐶 ∗ 𝑃𝑃𝑃𝑃    (5) 

 
With the application of eq. (5) to the fit set, a MAPE of 6.7% 

was obtained, which, according to Lewis [32], is considered a very 
accurate fit of the prediction model, as the error was less than 10%. 

 
3.4.  Validation of the regression model 

 
The validation of the multiple quadratic regression model 

was performed with the test set after replacing the variables 
𝑃𝑃,𝐶𝐶,𝑃𝑃𝑃𝑃 in eq. (5). A MAPE of 9% was obtained, indicating a 
very accurate forecast (Lewis [32]). 

 
3.5.  Forecast generation 

 
The recursive eq. (6) was used to identify, in each batch, the 

week in which the product does not meet the requirement for the 
count of aerobic mesophilic microorganisms given by NTC 1325 
of 2008, which stipulates that the maximum allowable index to 
identify a level of good quality is 5 log CFU. 

 
        𝑃𝑃𝑡𝑡 =  0,135 + 0,5730 ∗ 𝑃𝑃 +  0,217 ∗ 𝐶𝐶 + 0,950 ∗ 𝑃𝑃𝑃𝑃𝑡𝑡−1 −
0,04240 𝑃𝑃2 + 0,0790 ∗ 𝑃𝑃 ∗ 𝐶𝐶 − 0,1131 ∗ 𝑃𝑃 ∗  𝑃𝑃𝑃𝑃𝑡𝑡−1 − 0,0760 ∗
𝐶𝐶 ∗ 𝑃𝑃𝑃𝑃𝑡𝑡−1                                         (6) 

 
3.6.  Validation of results 

 
The validation of the results was performed by comparing 

the resulting predicted values with eq. (6) against the actual 
 

Table 6. 
Results of the complementary analysis. 

Type of favorable case MAPE % of cases 
Type 1 4,90% 52,1 
Type 2 2,57% 5,8 
Type 3 5,19% 41,1 

Source: The authors 
 
 

values, and each batch was labeled as favorable or 
unfavorable. 

In this way, 51 favorable cases and 9 unfavorable cases 
were obtained from the 60 batches evaluated, indicating an 
accuracy percentage of 91%. Thus, as stipulated in section 
2.6, the 51 favorable cases are divided as follows: 27 type 1 
cases, 3 type 2 cases and 21 type 3 cases. 

 
3.7.  Supplementary analysis 

 
Finally, the MAPE was found in each of the favorable 

types of cases presented. Based on the favorable cases 
obtained from the 60 batches evaluated, the percentages of 
types 1, 2 and 3 favorable cases were also found. The results 
obtained are listed in Table 6. 

 
4. Conclusions and future work 

 
The model proposed in this research has the ability to 

predict the behavior of aerobic mesophilic microorganisms in 
meat products at storage temperature conditions fluctuating 
between 1°C and 7°C. 

In this manner, the model constitutes an important 
contribution to the meat industry by allowing the withdrawal 
date of the shelf life to be known more accurately according 
to storage conditions associated with temperature. With this, 
companies can more efficiently manage their inventory levels 
by estimating a sufficient quantity of product not only based 
on customer demand but also on the expiration date. 

As future work, it is recommended to carry out the 
prediction model of other indicator or pathogenic 
microorganisms for other industries based on the proposed 
methodology. In addition, it is recommended to extend the 
prediction model to the supply chain, taking into account 
other types of storage. As for example, transport storage from 
one city to another taking into account the temperature 
changes that products suffer along the supply chain. 
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